

Control engineering

An introductory course

Jacqueline Wilkie, Michael Johnson
and Reza Katebi

Control engineering

An introductory course

Jacqueline Wilkie
Michael Johnson
Reza Katebi

© Jacqueline Wilkie, Michael Johnson and Reza Katebi 2002

All rights reserved. No reproduction, copy or transmission of
this publication may be made without written permission.

No paragraph of this publication may be reproduced, copied or
transmitted save with written permission or in accordance with
the provisions of the Copyright, Designs and Patents Act 1988,
or under the terms of any licence permitting limited copying
issued by the Copyright Licensing Agency, 90 Tottenham Court
Road, London W1P 0LP.

Any person who does any unauthorised act in relation to this
publication may be liable to criminal prosecution and civil
claims for damages.

The authors have asserted their right to be identified
as the authors of this work in accordance with the
Copyright, Designs and Patents Act 1988.

First published 2002 by
PALGRAVE
Houndmills, Basingstoke, Hampshire RG21 6XS and
175 Fifth Avenue, New York, N. Y. 10010
Companies and representatives throughout the world

PALGRAVE is the new global academic imprint of
St. Martin’s Press LLC Scholarly and Reference Division and
Palgrave Publishers Ltd (formerly Macmillan Press Ltd).

ISBN 0–333–77129–X

This book is printed on paper suitable for recycling and
made from fully managed and sustained forest sources.

A catalogue record for this book is available
from the British Library.

Typeset by Ian Kingston Editorial Services, Nottingham, UK

10 9 8 7 6 5 4 3 2 1
11 10 09 08 07 06 05 04 03 02

Printed and bound in Great Britain by
Antony Rowe Ltd, Chippenham, Wiltshire

To my husband, Patrick, for his continual supply of tea and under-
standing; to my daughters, Róisín and Erin, for not playing on mummy’s
computer; and to my three-day-old son, Rory, who arrived just in time for
this dedication.

Jacqueline Wilkie

For my mother and father – whose love and support have never failed me,
and for my Glaswegian friend, Stanley.

Michael Johnson

To Raha and Imaon.
Reza Katebi

This page intentionally left blank

Contents

Dear Student xi

1 Introduction: Control engineering is a part of our life 1
Wind turbine systems 3
Wastewater treatment plant control 4
Flight control systems 6
Coordinate measuring machines 8
Ship autopilot design 10
Hot strip rolling mills in the steel industry 11
Industrial heaters 14

2 Tools for the control engineer 16
How many ways of writing complex numbers are there? 17
What is the complex exponential and how do I use it? 18
I just want to know how to add, subtract, multiply and divide

complex numbers. Is this easy? 20
Control engineers talk about transfer functions. What is a transfer

function? 22
What are the magnitude or gain values of a complex number? 22
How do I work out the phase of a complex number? 22
I need to practise solving quadratic equations: are there some

simple methods? 23
Parameter dependent complex numbers! That sounds hard –

what are they? 24
How do I define a Laplace transform? 25
What is the Laplace variable s and the s-plane? 26
Where do the poles and zeros come from in a Laplace transform? 27
How do I use transform tables? 28
Oh dear, I need to work out Laplace transforms from first principles.

How do I begin? 30
The transforms get even harder: what are the exponential–trigonometric

signals? 32
When I multiply a signal by a constant, what happens to the

Laplace transform? 34
I need to transform a combinations of signals. How do I do this? 34
What Laplace transform operations should I learn? 35
Why is a differentiator like multiplying by s? 36
How do we represent an integrator using Laplace transforms? 37

I need to use Laplace transforms to represent a differential equation.
How do I do this? 38

My lecturer says the system is linear. What does she mean? 39
I want to know what the superposition property is. Is it useful? 42
The tutorial sheet mentions causality and physical realisability.

They sound difficult. What are they? 43
Can I use partial fractions to help me with Laplace transform derivations? 44
What is the Final Value Theorem? 45
How do I use the Initial Value Theorem? 46
How do I find the frequency content of a signal? 47

3 Software toolkit: MATLAB 52
3.1 Introduction to MATLAB 52
3.2 Starting MATLAB 53
3.3 Basic operations 54
3.4 Vectors 55
3.5 Vector manipulation 56
3.6 Polynomials 57
3.7 Matrices 58
3.8 Functions 59
3.9 Help window/tips 60
3.10 Plotting 61
3.11 Transfer functions in MATLAB 64
3.12 MATLAB environment 68
3.13 M-files and functions 70
3.14 SISO Design Tool: rltool 75
General MATLAB commands 78

4 Software toolkit: Simulink 83
4.1 Using Simulink for analysis 83
4.2 Detailed house model 86
4.3 Building a simple Simulink model 91
4.4 Development and analysis of the house heating model 96

5 Modelling for control engineering 102
5.1 Signals, systems and block diagrams 103
5.2 Actuator–Process–Transducer device structure 106
5.3 Modelling summary 109
5.4 Chemical process engineering: liquid level control 110
5.5 Mechanical systems: model of a shaker table 122
5.6 Modelling of a manufacturing process component 135

6 Simple systems: first-order behaviour 147
6.1 First-order system model 150
6.2 First-order step response 151
6.3 Positive and negative step signals (‘up and down’ step signals) 154
6.4 Use of Simulink to find the step response 155
6.5 General first-order system time response 155

vi Contents

6.6 System parameters and system behaviour 158
6.7 Speed of response 163
6.8 Process time delays 165
6.9 Modelling of deadtime process 167
6.10 MATLAB function: pade 168

7 Simple systems: second-order systems 173
7.1 Second-order systems: model of a trailer suspension system 174
7.2 Second-order system parameters 177
7.3 Second-order transfer function forms 181
7.4 Solving general second-order equations 183
7.5 Modelling of second-order systems with deadtime 189
7.6 Simulink model of second-order system with deadtime 190

8 Feedback improves system performance 196
8.1 Open and closed-loop systems 197
8.2 Introducing feedback into control 200
8.3 Practical closed-loop control systems 202
8.4 Block diagram manipulation 204
8.5 Feedback changes the closed-loop performance 211

9 Design specifications on system time response 219
9.1 Design specifications: steady state and transient behaviour 220
9.2 Steady state performance 221
9.3 Transient performance 226
9.4 Specifications for disturbance rejection 233

10 Poles, zeros and system stability 242
10.1 Poles and zeros 243
10.2 System parameters and their relationship to pole locations 248
10.3 The link between pole position and system step response 251
10.4 How do the zeros of a transfer function model arise? 253
10.5 Further analysis and interpretation of the role of zeros in a system 257
10.6 Open- and closed-loop poles and zeros 259
10.7 What do we mean by bounded signals? 264
10.8 System stability 267

11 Three-term control: PID control 277
11.1 Controller assessment framework 279
11.2 Proportional control 282
11.3 Integral control 290
11.4 Derivative control 299
11.5 PI and PID controller formula 307

12 PID control: the background to simple tuning methods 312
12.1 Choice of controller structure 313
12.2 Manual tuning method 318
12.3 Proportional control of a system with a first-order model 321

Contents vii

12.4 Proportional and integral control of a system with a
first-order model 327

12.5 Proportional and derivative control procedures 331
12.6 PID controller design by pole placement 340

13 Root locus for analysis and design 351
13.1 The relationship between the poles and system

dynamic response: a summary 352
13.2 Introducing the root locus 353
13.3 Preliminary MATLAB root locus investigations 358
13.4 Some useful root locus rules 360
13.5 Second-order system performance: root locus contours 362
13.6 Effects of adding a pole or a zero to the root locus of a

second-order system 364
13.7 Time delays and inverse response systems 368
13.8 Parameter root locus 370
13.9 Using MATLAB rltool and rlocus routines 375

14 The frequency domain 383
14.1 Identification of magnitude and phase values from a

sinusoidal signal 386
14.2 Frequency and logarithmic frequency scales 390
14.3 Presentation of gain and phase information 392
14.4 The frequency response and system features 397
14.5 Special frequency points 405
14.6 Interpretation of frequency response plot 409
14.7 Performance specification: gain and phase margins 410

15 Frequency response using Bode plot presentation 426
15.1 The Bode plot 428
15.2 Gain and phase calculation without using a computer 428
15.3 Using computers to form a frequency response plot 430
15.4 What are low, middle and high frequencies? 432
15.5 Transfer function components 434
15.6 Magnitude and phase of transfer function components 436
15.7 Introducing a sketching table 439
15.8 Elementary examples 445
15.9 Second-order underdamped system 451
15.10 Effect on gain and phase plots of increasing the damping ratio 454
15.11 Further examples using MATLAB plots 457
15.12 Magnitude plots of closed-loop and sensitivity transfer functions 461

16 Controller design using the Bode plot 469
16.1 Design specifications 470
16.2 Design example 1: proportional control with lag term added 471
16.3 Design example 2: PI control 477
16.4 Phase lag and phase lead elements 482
16.5 Phase lag controller 486

viii Contents

16.6 Phase lead control design 491
16.7 Design is iterative: a cautionary tale 498
16.8 Summary of the effects of phase lag and phase lead

controllers on system responses 500

17 Analysis and simple design using the Nichols chart 505
17.1 Adding closed loop information to a Nichols plot 507
17.2 The Nichols chart 513
17.3 Design specifications on the Nichols chart 516
17.4 Reading gain and phase margins from the Nichols plot 517
17.5 Altering the loop gain to achieve design specifications 519

18 The practical aspects of PID control 529
18.1 Understanding common notation for industrial PID controllers 531
18.2 Industrial PID control technology 535
18.3 The issues in implementing an industrial PID controller 538
18.4 Integral wind-up and anti-wind-up circuits 539
18.5 Implementing the derivative term 545
18.6 Industrial PID controller structures 547
18.7 Different forms of industrial PID controllers 553
18.8 Reverse acting controllers 556
18.9 Digital PID control 565

19 PID controller tuning methods 577
19.1 Understanding PID tuning procedures 579
19.2 Process reaction curve PID tuning method 584
19.3 Sustained oscillation PID tuning 592
19.4 Damped oscillation or quarter amplitude decay PID

tuning procedure 600
19.5 The relay experiment 605
19.6 Conclusions; or is the PID tuning problem solved? 613

20 Introducing a state variable description of a system 620
20.1 What is a state variable? 621
20.2 State vectors and matrices of coefficients 622
20.3 General procedure for writing a state variable representation 623
20.4 State variable diagram 629
20.5 MATLAB–Simulink representation of state variable models 630
20.6 Example of the development of a state variable model 632
20.7 State variable free and forced responses 635
20.8 Modelling and simulation in Simulink using an ABCD form 640
20.9 State variable model to transfer function model 643
20.10 MATLAB function ss2tf: state space to transfer

function conversion 645
20.11 From transfer function to state space model 647
20.12 MATLAB command tf2ss: transfer function to state

space conversion 653

Contents ix

21 Linearisation of systems from the real nonlinear world 659
21.1 What do we mean by linear? 660
21.2 Nonlinear examples 662
21.3 Working regions and operating points 664
21.4 Linear approximation through Taylor series 667
21.5 Where do we apply linearisation? 668
21.6 Linearisation of a simple nonlinear dynamic equation 670
21.7 Linearising the model equations for a liquid level process 673
21.8 Linearisation of a more general nonlinear state variable model 675
21.9 Linearising a nonlinear state variable model to produce

a linear ABCD model 676

22 Analysis of state variable systems 683
22.1 Matrix revision 684
22.2 Eigenvalues and eigenvectors 688
22.3 Poles, eigenvalues and system stability 691
22.4 More on state variable system time responses 696
22.5 Case study: Eigenvalues, eigenvectors and time responses 699

23 An introduction to control using state variable
system models 710
23.1 State variable system structure 711
23.2 State variable controller structure 712
23.3 A state variable investigation of output feedback 713
23.4 Pole placement design with output feedback 716
23.5 Investigating state feedback: using the state vector directly 722
23.6 At the signpost of advanced control 733

Answers to multiple choice questions 738

Answers to selected questions 740

Index 745

MATLAB and Simulink index 751

x Contents

Dear Student

As engineers, our interests lie in the specification, analysis, design, construction and testing of
different systems. We often enjoy seeing an ‘end product’ to our efforts; this may be the part we
played in the development of a new device, the software code that we wrote to upgrade a system
or the report we constructed which analysed the possible failure modes for one part of a complex
system. As control engineers, we find that many engineers from different disciplines need to
design and implement control systems: the chemical engineer may need to provide level control
for a tank of liquid; the manufacturing engineer may need to control the speed of a conveyor belt
regardless of the load put upon it, the mechanical engineer may need to control the position of a
machine’s cutting tool; and the electrical engineer may need to maintain a constant electrical
power output regardless of the number of electrical machines being used in the factory. To design
these systems, we need to combine process and control engineering knowledge with design
procedures, mathematical skills and analysis tools.

This book provides a first-level introduction to control engineering. Although we take a guided
route through the basics of control, we have still covered sufficient material to enable you to
understand the design of many simple control loops found in industry. The book can be consid-
ered to be in two halves: the first covers simple design in the time domain, while the second
covers frequency domain material and introduces state variables and simple analysis for state
variable models.

In the first part (see Figure 1), we start by providing three chapters on the analysis and software
kits which are commonly used to represent control systems. Even if you have already covered
some of the mathematics or software tools before, you can use these chapters for revision. We
have not placed this material in an appendix because we believe that mathematics is a key skill in
control engineering and the software tools we use are now a commonplace design aid even in
industry. This emphasis on mathematical understanding is necessary because we use particular
software (Simulink) models from an early stage of analysis and Simulink icons often include math-
ematical notation. However, we will find that these mathematical skills and the new software lead
to easy-to-use ‘graphical’ control design packages and tools. MATLAB, Simulink and similar soft-
ware are similar to a powerful calculator for today’s control engineer.

We use our analysis tools for modelling simple industrial control systems. Here we are inter-
ested in introducing basic block diagrams and identifying the actuator–process–transducer
model. We illustrate this modelling format for three processes from differing engineering disci-
plines – chemical, mechanical and manufacturing. Throughout the book we have used simple
control examples from different engineering disciplines that do not require extensive knowledge
of another engineering field. This is because control engineering is genuinely applied in many
different fields and at many different levels. The mechanism for switching off an automatic kettle

once it has boiled and the autopilot on your luxury cruise liner (which you will enjoy as a successful
control engineer!) are both examples of control systems.

Having produced some basic models we then look at how these systems behave. We examine
first- and second-order models in detail, as these are the class of models most representative of
the simple systems studied at this level. Indeed, many complex industrial systems can also be
approximated by models of this form.

Once we have some idea of how these systems respond to input signals, we look at how we can
change and improve a system’s performance; for this we introduce the concept of feedback. We
acquire some more skills when we study elementary closed loop block diagram analysis.
Following on from this, we need to look at the performance we might require from a control
system. How much do we allow the output to exceed the desired setpoint? Should the system
respond slowly or quickly? We also need to introduce the important concept of the stability of
systems and how this is related to features (poles and zeros) of the system model. We find that
once the concept of a ‘pole–zero’ map is understood, the plotting of the poles and zeros and
determination of the system stability can be done easily using MATLAB commands.

We then look at designing a controller – a three-term controller or Proportional–Integral–Deriva-
tive (PID) controller. Since this controller is one of the most common controllers found in industry,
we have made PID a strong theme in this book. We discuss the differences in the three terms and
we provide some elementary manual tuning methods. At this place in the book we are almost at a
breakpoint. As shown in Figure 1, we have learnt some analysis and looked at the modelling and
behaviour of some simple systems. We now understand the benefits of feedback and can formulate
some specifications for a control system. We can also design a suitable PID controller for the
system. To complete our set of new skills and ideas, it remains to introduce a more theoretical
chapter which ties together some of the ideas – we introduce the root locus technique.

Most of this first stage material has been presented in the time domain. This is because we can
often understand more easily how a system behaves in time. It is sometimes less obvious to
understand its behaviour in the frequency domain. The second part of this book (Figure 2) then

xii Dear Student

Analysis and software toolkits

Modelling and system behaviour

Feedback systems

Root locus analysis

Time domain specifications
and

system stability

Controller design;
three term control; PID

Figure 1 Route to simple control design.

introduces the frequency domain and first of all reminds us how to read the logarithmic scales
which are often found on system frequency plots.

System responses in the frequency domain require us to examine the ideas of system gain and
phase and the graphical ways in which these features may be represented. We introduce the
three common plots – Bode, Nyquist and Nichols – and learn to identify certain features on these
plots. After this, we mainly use the Bode plot for control system design. If you are an electrical
engineering student you might already have met frequency response plots when analysing the
frequency response of simple analogue circuits.

After some elementary Bode plot analysis, we look at control design on the Bode plot and
Nichols chart. We use the Bode plot for many control designs, but we find that for more complex
systems, we can gain more information by using the other graphical techniques available to us:
root locus, Nichols chart and time domain analysis.

It is important that your newly acquired control engineering skills should relate to common
industrial practice. Therefore we look again at PID controllers, although this time we move away
from the textbook representation of the earlier chapters and look at the practical aspects of
controllers in an industrial context. This is followed by a chapter on the autotuning of PID control-
lers which highlights their advantages and disadvantages and the systems which would be appro-
priate for the three different autotuning methods discussed.

We end the book with several chapters on state variable models. State variable representation
is an important way of expressing more complex or high-order control systems in a concise
manner. Many system descriptions are given in state variable format, so it is appropriate at this
level of textbook to ensure that we know how to use the representation and how to perform some
elementary analysis. It is also often used in the MATLAB and Simulink software as one option for
the representation of systems. Therefore we introduce state variable notation and the ABCD
model format. We also present a separate chapter on linearisation. Many of the systems we deal
with in the book are represented by linear models, but we acknowledge that the real world is
nonlinear and we demonstrate the common linearisation procedure. Since state variable models
are becoming more common due to the ease of analysis, design and implementation, we provide
the elementary background in state variable model analysis and state feedback design in order to
provide you with an initial set of skills in this design format.

Dear Student xiii

Frequency domain
and

system representation

Bode plot presentation
of frequency response

Compensator design
on the Bode plot

and the Nichols chart

Aspects of
industrial PID controllers

State variable
representation

Control Engineering
First half of the book

leads to

Autotuning rules for
PID controllers

State variable analysis

Linearisation

State variable design

Figure 2 Outline of the second half of the book.

It remains to say that we hope to meet you someday, sketching block diagrams and Bode plots
on a notepad or entering control systems into your laptop and becoming excited about a control
system that you have designed or had a part in designing. If you have any comments on the book
or the exercises, we should be very pleased to hear from you, so do email us if you wish.

Best wishes
Jacqueline Wilkie, Michael Johnson and Reza Katebi
Glasgow, Scotland, UK
wjk@eee.strath.ac.uk

Some special features

There never seems to be enough time to do assignments; coursework seems to take forever and
then those assessed tutorials! To help we have used some study and learning aids in this book.
The future in many engineering areas will belong to software like MATLAB or Simulink, which are
becoming industry standards, so we feel you should learn about these tools. We introduce them
in Chapters 3 and 4. Throughout the book we have used software examples where appropriate.
Examples using these software tools have been indicated with the

and

symbols respectively. Sometimes we have included smaller references to appropriate MATLAB or
Simulink commands directly in the text where they represent an easy way of providing a solution.
You should try out all these calculation and simulation opportunities. You will improve your
MATLAB skills if you do.

Skill sections
In this book you will learn that control engineering is a combination of knowledge, skills and tools,
but especially skills. Practice in these skills is essential and to help, we have marked certain areas
as skill sections.

At the beginning of most chapters we have included a block diagram outline of the chapter with
some genies (described below) to guide you through the book. We hope that this helps you find
the important bits and lets you set aside the more demanding sections for that long train ride!

xiv Dear Student

Trying things out/progress being made

Answering specific questions or discussing a particular problem

The end of each chapter has three types of exercises; multiple choice questions for a quick test
of your knowledge, practical skills questions where there are some simple rote exercises and
finally problems which use the skills learnt in the chapter.

Dear Student xv

More advanced material

Skill or practice section

Read carefully: new knowledge at this point

This page intentionally left blank

Introduction
Control engineering is a part of our life

Control engineering is an exciting discipline: without the advances in sensors, actuator
devices and control design, space travel would be impossible, music systems would be
mono, energy production would be smog-bound and computers would remain the terri-
tory of science fiction writers! Control engineering uses the measurements of process
variables and the power of actuators to provide better control of a system’s outputs. This
could be the accurate positioning of components in manufacturing processes or the main-
tenance of disc speed in a DVD drive. The application of control theory and technology is
so widespread today that you can hardly find a working engineering system around you
without some form of control circuitry, logic or control procedure.

An example of a simple everyday control system is the electronic shower. If you choose
a desired temperature for the water, you expect the water to be delivered at that tempera-
ture whatever the variations in the cold water flow caused by others in the household
drawing off cold water from the system. We expect control systems to produce the desired
outputs even when the process is subject to variations or disturbances. Apart from these
fundamental performance requirements, we find that there are many other strategic
reasons why control techniques are widely used in modern computer-based engineering
systems.

Improvements in production processes

In today’s highly competitive global economy, control engineers have to produce the best
quality products at the lowest cost. Improving product quality and minimising cost in the
manufacturing and process industries have always been major tasks for industrial control
engineers. Why? We find that most industrial installations require huge amounts of
capital expenditure to build. So every time a company improves product quality or
reduces cost per unit, all the competitors have to follow suit or lose their market. To do
this, companies cannot simply rebuild their plant; it would cost too much. So instead
they call in the control engineer. Control engineers look at the control systems, at the
latest advances in sensors, actuators, control methods and computer systems, and then
recommend how plant performance can be improved for a much lower capital outlay. One
day it may be necessary to rebuild the plant and introduce the next generation of produc-
tion technology, but until that day arrives, as a control engineer you are likely to be

1

travelling the world improving and enhancing your company’s factories and production
facilities.

Improvement in quality of life

Our health services have undergone a radical change in recent years due to advances in
control, sensors, actuators and information technology. Medical equipment and aids for
the disabled have been two beneficiaries of these technology improvements. In the
medical area, we find kidney dialysis machines, pacemakers, artificial hearts, automated
procedures in operations, and automated treatment equipment all using control
methods. For example, control engineering is helping anaesthesia procedures and radia-
tion treatment to become more reliable, more accurate, and safer. Assistive technology is
the field where we find control engineering helping to give the physically and sensory
impaired person a better quality of life. Automatic stair lifts, motorised wheelchairs,
digital hearing aid electronics and the voice-controlled computer mouse are all examples
where understanding the principle of feedback is crucial to a successful design.

Improvements in natural resource usage

If we make a quick comparison of our manufacturing and process industries with the
factories of 20 years ago we will find a dramatic change in working conditions and the
technology of production processes. Computer control systems are widespread, and
factories with several thousand manual workers and huge chimneys polluting the envi-
ronment have long since disappeared. Control engineering and its technology can
monitor the use of resources and energy in production systems. We can use this informa-
tion to identify control loops that need re-tuning, or processes that need better control.
We can look again at the performance levels that production should be achieving and
compare (or benchmark, as it is called nowadays) these against our competitors to see if
we need to introduce new control schemes altogether. Environmental control is also of
critical importance in these audits. We can design control schemes to minimise the
production of harmful emissions. As an example, we can cite gas turbine control schemes
designed to reduce NOx emissions. Even processes designed to eliminate harmful atmo-
spheric gases like CO2 scrubbers at coal-fired power stations will use control engineering
principles.

Control engineering plays an important role in many other areas of industry, such as
the processes in pharmaceutical plants, steel works, and the utility industries. Special-
ised control systems are also very important and these are often associated with partic-
ular products. For example, in cars we find engine management systems, in surface
vessels we find ship autopilots, and sub-sea we find remotely operated vehicle (ROV)
control systems. An aircraft control system is a vital control engineering application.
Going just a little higher, much of our space technology would not be where it is now
without control techniques and technology to help it stay in place! In the following
sections we will give some more detail of examples of control engineering applications
that we have worked with in our own careers or simply just admire. At the end of each
case we identify the particular control objectives for the application and list some of the
features that make this a demanding control problem.

2 Introduction

Wind turbine systems

Wind turbine systems are probably the most widely applied renewable energy method for
generating electric power. You may have seen one of the wind turbine farms that are becoming
an increasingly familiar feature of the landscape in windy regions. The tower, hubs and blades
of a wind turbine system undergo large stresses during operation. By designing an efficient
and reliable control system, we can reduce these effects as well as provide improved energy
capture from the wind.

For several centuries, windmills were a common sight in our countryside, and they were
used for grinding corn or pumping water. In the 1900s they largely disappeared, but, in
recent years, new types of windmill, or ‘wind turbines’, have been built and installed in
groups, called wind farms, to convert wind energy into electricity.

These new developments have occurred because wind energy is currently viewed as
one of the most promising forms of renewable energy sources. The turbines are deployed
as a single unit, in small groups of four or five, or, increasingly, in wind farms of up to 50
machines. The most distinctive feature of a wind turbine is its rotor, with, typically, two
or three blades (Figure 1.1 (a)). The aerodynamic forces, which are dependent on the inci-
dent air speed, act upon the blades and cause the rotor to turn. The power of a wind
turbine is proportional to the swept area of its rotor. We can find machines of different
size, from 600 mm diameter, rated at about 50 W and used for example for recharging
batteries, to 60 m diameter, rated at about 3 MW, which can be connected to an electric
power transmission network. The rotational speed is roughly inversely proportional to
rotor diameter, so that blade tip speeds lie somewhere between 50 ms–1 and100 ms–1 for
large machines.

For fixed speed wind turbines, the rotational energy of the main shaft is passed to the
generator, often through a gearbox and a high-speed shaft (Figure 1.1(b)). The shafts and
associated gearboxes are referred to as the ‘drive train’. The high-speed shaft is connected
to a generator, which produces electrical energy. To connect a wind turbine to the grid,
the rotor speed is controlled until the high-speed shaft speed reaches the grid frequency.

Improvements in natural resource usage 3

Generator Gearbox

Hub

High-speed
shaft

Low-speed
shaft brake

Low-speed
shaft

(b)

Nacelle containing
Hub

Blades
Movable blade
or blade tip

Tower

power train

(a)

Figure 1.1 A diagram of an actively regulated wind turbine. (a) Horizontal axis wind
turbine; (b) the power train.

The turbine is then connected to the grid and the speed of rotation is maintained by the
grid frequency. As we can see, these control design and implementation problems call for
control, mechanical and electrical engineering skills, but it is the control engineer who
will integrate the various aspects to produce a working system.

Example of a control problem: Wind turbine systems

Control objective: To regulate the power output and to minimise the stresses and torque
disturbances, also called the load disturbances by control engineers, on the rotor, the drive
train and the tower installation.

Manipulated variable: Altering the angles of the blades – or the blade tips – to the incoming
wind controls the rotational speed of the wind turbine.

Enabling technologies: System modelling, control design, mechanical system design, power
electronics and electrical power systems knowledge.

Wastewater treatment plant control

Environmental concerns have had a large impact on the regulations for the effluent disposal
from wastewater treatment plants. For example, recent European Union directives no longer
allow the dumping of untreated sewage to sea. So, throughout Europe, operators of
wastewater treatment plants have to ensure that sewage influent is treated to the highest stan-
dards before the effluent can be discharged to the environment. To meet these stringent new
regulations, new advanced supervisory and control systems are being used in the wastewater
treatment plants.

Wastewater treatment is a long-standing and essential task for many sectors of human
activity. We use the term ‘wastewater treatment’ to cover the processing of effluent from
agricultural activities and all forms of industrial and manufacturing processes as well as
the disposal of domestic or urban sewage. In fact, many large industrial plants will have
their own specialised wastewater treatment processes and plants. The particular process
we shall describe here is that for the treatment of urban sewage. Urban sewage is charac-
terised by three parameters: the Biochemical Oxygen Demand (BOD), the concentration
of suspended solids, and the bacteriological content. Fairly limited instrumentation is
available to monitor effluent quality before discharge, and advanced supervisory and
control systems are needed to ensure that the effluent attains the quality values specified
by EU directives and regulations.

An urban sewage wastewater treatment plant incorporates a number of treatment
processes. We can describe these using a sequential process framework: Preliminary,
Primary, Secondary, and Tertiary stages, as shown in Figure 1.2.

In the preliminary and primary stages, mechanical and hydraulic methods are used to
extract and remove the larger sized particulate content from the incoming sewage,
known as the influent. The preliminary processes usually include a mechanical grid filter
to remove the large-scale debris, typically sanitary products and solid waste, from the
influent. In the case of grit, long channels are used to settle the grit while leaving the

4 Introduction

 organic material suspended. Moving on to the primary stage, large tanks are used to settle
out some of the larger sized organic waste. These tanks are often termed the primary
settlement tanks.

In the secondary processes, biotechnology comes to the fore and the processes to treat
wastewater are really different ways of engineering a biological reactor. One very
common secondary process is known as the Activated Sludge Process, where the waste in
the sewage is transformed to sludge and separated from the clarified liquid. Aerated
sewage is a sewage–liquid mixture that has been mechanically exposed to the atmosphere
in order to increase the dissolved oxygen (DO) in the sewage mixture. This aerated
mixture is then able to support a population of free-floating biological organisms that are
able to use the organic matter and the dissolved oxygen in the sewage as a food source.
Eventually the population of bio-organisms reaches a stage where the live and dead organ-
isms form an activated sludge. The activated sludge process is the name given to the use
of this sludge in a continuous bio-reactor to process the organic material content of urban

Improvements in natural resource usage 5

PRELIMINARY
Screens
Filters
Long channels

Formation

Sewage
inflow

Overflow
stream

Underflow
stream:
primary
sludge

PRIMARY
Settlement
basin

Rivers and sea

TERTIARY

SECONDARY (biological)

Aeration tank
Clarifier

Sludge
drying

Activated sludge (recycled)

�

�

�

Solids removal
Disinfection
Nutrient removal

�

�

�

Figure 1.2 The stages in wastewater treatment.

sewage. This continuous bio-reactor is engineered as a sludge recycle process comprising
an aeration tank and a gravity clarifier tank. This can be seen in the middle part of Figure
1.2. The activated sludge is encouraged to grow in the aeration tank via the control of the
dissolved oxygen content of the sewage–liquid mixture. This mixture is then transferred
by flow to a gravity settler or clarifier, where the live and dead organic matter falls to the
bottom and clear effluent is withdrawn. The sludge at the bottom of the clarifier is bled
off for recycling or disposal. The part-sludge off-take which is fed back in the recycle path
is used to maintain the growth of the biological population in the aeration tank. We
recognise this recycle as an internal feedback mechanism in the process. The major part
of the sludge off-take is, however, dried and then disposed of. If the control systems are
working well, then the clear effluent may be directly discharged to the sea or river basin
receiving waters. However, in some cases treatment by tertiary processes may be
necessary.

The tertiary processes form a group of operations that take place at the end of the
secondary wastewater treatment stage to achieve further treatment objectives. Some-
times these processes are called polishing processes because they are designed to raise
effluent quality to one extra grade. Typically these tertiary processes might achieve finer
suspended solids removal or specific nutrient (nitrate) removal.

Example of a control problem: Waste water treatment plant control

Control objective: To maintain the population level of micro-organisms in the aerated sludge
tanks it is essential to control the concentration of dissolved oxygen (DO) in the sewage–
liquid mixture in the tank.

Manipulated variable: The concentration level of dissolved oxygen in the sludge tank is
controlled by switching on more aerators and changing the rotational speed of the individual
aerator devices.

Enabling technologies: Analytical sensors to measure DO, online models to predict sludge
and effluent quality variables, SCADA systems to provide good overall treatment plant control,
and Programmable Logic Controllers (PLCs) to implement control loops at the individual
process stages.

Flight control systems

Many of the most advanced control and instrumentation systems are found in the aerospace
and space industries. Almost all of the basic manoeuvres performed by an aircraft, such as
landing, take-off and directional control, are automated and implemented by computer
systems. Highly accurate aircraft models allow the use of the most advanced control design
techniques.

The Flight Control System (FCS) on any aircraft, whether a passenger jet or a high perfor-
mance fighter, is a highly automated computerised system that incorporates almost all
the control and monitoring functions. These will include the routine manoeuvres such as
landing and take-off. A fully integrated flight control system maximises aircraft perfor-
mance while ensuring crew and passenger safety. We find that such a system reduces the

6 Introduction

burden of decision making and eases the task faced by the human crew when piloting the
increasingly complex aircraft designs being built. Aircraft like Concorde, Boeing 737,
Eurofighter and so on would simply not be possible without a significant technological
input from control engineers.

In military jet fighters, the advantage will lie with the aircraft that has the faster
speed and the pilot who has the most manoeuvrability. To exploit these features, the
pilot faces both aircraft structural limitations and aerodynamic constraints. We can
take an example and look at the aircraft design. The pilot has three primary control
surfaces to manipulate. These are the ailerons, rudder, and elevator. Each of the three
primary control surfaces moves an aircraft about one of the three flight axes: the ailerons
roll the aircraft about its longitudinal axis; the rudder turns the aircraft about its vertical
axis and the elevator moves the aircraft about its lateral axis. We can see the flight control
surfaces in Figure 1.3. A control system is required for each axis, to process the sensor
measurements and to change the control surfaces to compensate for the effect of wind
and other disturbances and keep the aircraft in the air.

In previous generations of fighter aircraft technology and at a slower speed, the human
pilot functioned as an expert system and learnt to manipulate and coordinate some of
these flight surfaces instinctively to achieve the sort of manoeuvrability that would win
a duel of fighters in the air. But from Figure 1.3, we can see immediately that any human
pilot is going to have great difficulty doing all the computations necessary (even instinc-
tively) to move a complicated set of flight control surfaces for a fighter aircraft. Indeed, it
might be not be too surprising to learn that a fighting advantage can be obtained by
making jet fighter manoeuvres unstable for a very short period of time before moving
back into the stable flight regime again! This is the only case we have ever come across
where we design for an unstable closed-loop system, and we can only be thankful that
passenger jet aircraft controls are not designed this way otherwise every journey would
be just too exciting for most of us.

In a fighter aircraft, the various types of manoeuvres will be identified and categorised.
For each type of manoeuvre a different control strategy will be devised. In fighting mode

Improvements in natural resource usage 7

Ailerons
Rudder

Thrust

Elevator

Figure 1.3 Flight control surfaces.

the pilot can demand an evasive or attacking manoeuvre, knowing that the flight control
computers will perform all the necessary computations to coordinate and move the flight
control surfaces to deliver the manoeuvre demanded by the pilot. The very same
computers will be ensuring that the aircraft response will be within the limits of a safe
operating flight envelope. The flight control system will incorporate models of the
aircraft and other flight formulas that will use onboard sensors measuring flight parame-
ters, such as speed, acceleration, altitude, aircraft configuration (noting features like how
much of the aircraft remains operational), aircraft mass and balance. These models will
then be used to define the current structural and aerodynamic limits and if necessary
limit the response of the aircraft to pilot demands. This will prevent the pilot from over-
stressing the aircraft structure or flying in a way that leads to completely uncontrolled
flight while in the middle of combat activities.

The autopilot is the name we give to the control technology used in aircraft to keep to a
simple heading direction in long-range cruising mode. In a fighter like the Eurofighter,
the autopilot can be used to help the pilot in tactical situations to provide basic track,
heading, altitude and airspeed modes. Even optimum attack profiles can be implemented
automatically. More advanced modes such as auto-climb, auto-attack and auto-approach
control systems are also integrated with the autopilot system.

Example of a control problem: Flight control systems

Control objective: To keep the aircraft in a horizontal position and maintain a desired
heading.

Manipulated variable: Flight control surfaces.

Enabling technologies: Onboard smart sensors to measure aeronautical variables. Advanced
electro-hydraulic actuation equipment, aircraft models and formulas, advanced control algo-
rithms, control and manoeuvre visualisation, and computer systems.

Coordinate measuring machines

A coordinate measuring machine is a robotic machine with high-precision movement in three
dimensions which is able to take measurements to a fraction of a micron on machined prod-
ucts. These machines are used for quality control in the automotive, aerospace and other
component manufacturing industries. The precise control of the arm positions in three direc-
tions is essential for operation of the system.

Coordinate measuring machines (CMMs) are reliable and robust tools for obtaining
measurements at micrometre accuracy on machined products. Machined products are
invariably metal goods cut and ground to a high precision by numerically controlled
machine tools. Typically, we find that these products are used in a wide range of high-
precision applications, from gas turbine components to spacecraft construction. Speed is
of the essence in the production and manufacturing cycle for these machined product.
The coordinate measuring machine is needed to ensure that the manufacturing process is
producing goods which have the requisite dimensional accuracy. We have to be able to
identify when the production setup is going astray and prevent the production of any off-

8 Introduction

spec. products. We also have to be able to prove to our customers that they are actually
receiving goods that meet the specification agreed on the order form.

The demand for enhanced product quality and reduced manufacturing cycle time has
continued in recent years. This has meant that the coordinate measuring machine has to
be more accurate and faster in operation than ever before. Originally built from mechan-
ical and analogue components, the advent of high-speed computing machines and the
development of high-power electronic components have made it possible to improve the
speed and accuracy of the modern coordinate measuring machines significantly.

The elementary components of a coordinate measuring machine are a table for
mounting the workpiece, a set of mechanical linked arms, a probe for component loca-
tion, contact/measuring scales to determine the component position and the power drive
systems. As shown in Figure 1.4, there are three orthogonal arms in a coordinate
measuring machine: Joint 1 to Joint 2, Joint 2 to Joint 3 and Joint 3 to Joint 4. The probe at
the end of Joint 5 is capable of rotating about the (xyz)5 axis. The tip of the probe operates
like a switch and when it touches a surface, it sends back a signal to be recorded by the
coordinate measuring machine supervisory control computer.

If we wished to measure the length of a workpiece to micrometre accuracy, we would
first set a target starting position in the supervisory computer. This starting position is a
small distance from the actual edge of the workpiece. The probe moves to this target posi-
tion at the highest acceleration and velocity possible. From this target position the probe
is then moved at a slow constant speed until contact is made with the edge of the
workpiece. A triggering mechanism in the probe sends a signal to indicate the actual
initial edge position. From there the probe tracks the workpiece until it reaches the other
edge, when it sends a signal to indicate the end point of the product length. The coordi-
nate measuring machine requires a supervisory control system which has been
programmed to measure the specific product. We can imagine that for a complicated,
non-flat machined product we would need some complex programming to store away the
shape being measured.

Improvements in natural resource usage 9

Joint 3

Joint 2

Joint 4

Joint 5

Joint 1

x5
x0

y5

y0

z5

z0

Figure 1.4 The coordinate measuring machine.

The success of the high-level control supervisor depends on the performance of the low-
level control loops; that is, those loops controlling the basic arm servo devices, and vari-
ables like current, velocity and position. The control problem is complicated by a require-
ment for high positioning accuracy. It is also necessary to ensure that the control system
does not use motions that trigger even the smallest structural vibrations of the coordinate
measurement machine arms, since this would deteriorate the measurement accuracy.

Example of a control problem: Coordinate measuring machine

Control objective: To move the coordinate measurement machine probe to a desired position
quickly and accurately.

Manipulated variable: Current in motor drives.

Enabling technologies: Measurement sensors, power drives, trajectory planning at the super-
visory control system level, and interacting control loop designs.

Ship autopilot design

Proportional–Integral–Derivative (PID) controllers are common in industry today. They are also
called three-term controllers, since the controller output is the combination of terms relating to
a proportion of the error, integral of the error and derivative of the error in a feedback system.
The PID controller was first implemented in analogue form to maintain the heading of a ship.
Today, digital control systems prevail, but they still use the traditional PID format for the
controller design. Most ships also have additional control systems to compensate for ship
motions such as roll, yaw and pitch.

If you have travelled on a passenger ferry you will remember that due to the environment
disturbances, like wind, wave and sea current, the ferry and you will experience roll, yaw
and heave. The more severe the inclement weather, the more you will have experienced
these phenomena, which can be quite unpleasant. In Figure 1.5 we can find the precise
details of the coordinate systems and the disruptive directions of ship motions. We have
designed different types of control systems to reduce and compensate for the effects of
these disturbances and make the sea transport more safe and comfortable. For example,
fin-roll stabilisers and their control systems are used to reduce ship roll effects, while
ship autopilots are used for heading control problems.

Ship autopilots have two modes of operation: course keeping and course changing. In
course keeping the control objective is to maintain a fixed heading. The main actuator is
the rudder, whose angle can be varied to change the heading of the ship. The heading
angle is measured using a gyrocompass and the control objective is to keep the ship on a
specified heading or a specified path. In this situation the controller must compensate for
the disturbance effects of wind, waves and ship loading. At the same time, the high-
frequency motion of the ship caused by the waves and detected through the gyrocompass
must be blocked to minimise the rudder activity and wear and tear on the steering mecha-
nism. By way of contrast, the control objective in course changing is to perform a
manoeuvre quickly and accurately. The manoeuvre should have a clear start and it should

10 Introduction

be completed without overshoot. This ‘no overshoot’ performance specification is an
interesting one which will be met again as a critically damped response later in this book.

The problems of ship autopilot design are classical examples of control engineering
applications. The performance specifications are given in both the time and frequency
domains. The design has to accommodate a certain amount of model inaccuracy, because
we do not have exceptionally accurate models of ship motion. The controllers to be used
must be simple because all the commissioning and testing takes place at sea, which
provides a rather hostile environment for engineering work and few repeatable sets of test
conditions. We find that the controller methods are classical three-term or PID control-
lers. Such a PID controller solution was first installed on a Russian ship. Even today, fin
stabiliser control systems on ferries and modern luxury cruise liners also use PID tech-
nology. This type of controller has been used throughout many engineering disciplines,
and motivated by this widespread industrial use, we will study its structure and perfor-
mance in detail in this book.

Example of a control problem: Ship autopliot design

Control objective: To reduce the roll motions on a cruise vessel by using high-frequency
commands to the rudder while still using the low-frequency commands for course keeping.

Manipulated variable: Hydraulic systems controlling the rudder.

Enabling technologies: Roll sensors, advanced control algorithms and digital computer
control systems.

Hot strip rolling mills in the steel industry

The modern hot strip rolling mill is an example of a complex production facility that uses
advanced control and instrumentation technology. The slab of steel enters the mill at 25 cm
thickness and leaves the last stand at 2.5 mm, a reduction by a factor of 100. It takes about
twenty minutes to walk from one end of the process to the other, so it is a very large-scale
industrial installation.

A hot strip rolling mill produces rolled steel sheet. This sheet is used in car bodies and
white goods like washing machines. So the next time that you turn on your washing

Improvements in natural resource usage 11

X surge

Yaw

RollPitch
Y sway

Z heave

Wind Wave

Current

Figure 1.5 Sea-going vessel.

machine, just think of the steps that the steel shell of your washing machine has been
through before it ended up in your kitchen. Passing through the hot strip mill is only one
of these. The whole hot strip mill process sequence can be found in Figure 1.6. In a hot
strip mill the sheet product starts out as a slab at the furnaces with dimensions 25 cm
thick, 9 m to 12 m in length and between 600 mm and 1600 mm in width, and with a
temperature of around 1320 °C. At the finish, the hot rolling process will have changed
the slab into a steel strip about 1 km long and 1.5 to 2.5 mm thick.

We can use Figure 1.6 to track the progress of the slab as it passes through the hot strip
rolling mill.

1. Descaling process
On leaving the furnace, the slab undergoes a descaling process. There are two stages.
Initially the slab goes through a vertical rolling operation. This breaks up the surface
scale, which is then washed away by strong jets of water in the secondary stage.

2. Roughing stage
The thickness of the slab is then reduced by a factor of 10 to about 3 cm in thickness.
This is the first rolling process, which gets the slab into a ‘rough’ strip shape ready for
the finishing rolling process. Because the mill produces a ‘rough’ strip shape this
rolling mill is called a roughing mill.

3. Crop shear
From the roughing mill, the slab passes along a length of roller table to a crop shear
that trims the ends of the now much thinner slab.

4. Second descaling process
A second scale breaker process finishes this first stage of the hot strip mill process.

5. Hot strip rolling process (finishing area)
In the middle part of the hot strip rolling process, the slab enters the hot strip finishing
mill. The hot strip finishing mill usually has from four to seven mill stands operating
in tandem. The mill in Figure 1.6 is shown with seven stands, labelled F1 to F7. A roll
stand (Figure 1.7) is a set of stacked rollers that have their roll speed and roll gap width
controlled to impart a desired thickness to the steel strip at each stand. A mechanical
arm, called a looper, supports the hot strip between the stands. The looper is used to
keep the strip tension constant. At each mill stand there are very few instruments to
measure the main strip variables of thickness (gauge), profile, temperature and width.

12 Introduction

Descalers

Finishing area
Mills F1–F7

Run-out
tables

Cooling
sprays

F1 F2 F3 F4 F5 F6 F7

Crop
shear

Roughing
stage

Furnace

Coilers
area

Mill stands and
loopers

Figure 1.6 Hot strip rolling process.

The roll stand speed derives from some very large roll drive motors, one per stand.
These are rated at about 5–6 MW and they generate the torque to transport and compress
the strip. Each stand has a load cell sensor to measure the roll force, and of course there
is a measurement of roll speed available. But, as with so many industrial control prob-
lems, we cannot actually directly measure the variable that we wish to control, which in
this case is the thickness of the steel strip. At the inter-stand looper, we wish to control
strip tension; again, this is a variable that we cannot measure directly. It is problems like
this that make control engineering such a fascinating and challenging discipline.

6. Run out tables
On leaving the finishing mill, the strip is moved along on a conveyor belt consisting of
a set of rollers, which move it at a linear speed dependent on the section it is in. As the
steel becomes thinner and longer, the roller table has to become faster towards the end
of the process. At this point metallurgical requirements also make an appearance. The
steel has to be rolled within a certain temperature range around 800 °C so that it can be
cooled at a specified rate before coiling. The cooling process occurs at the so-called
run-out table. The run-out table has a distributed sprinkler system designed to cause
the desired controlled cooling of the strip down to a temperature of about 350 °C.

7. Coilers area
At the very end of the process the finished strip is coiled ready for further processing in
a cold strip rolling mill. Needless to say, the cold mill is a story saved for another book!

Example of a control problem: Hotstrip rolling mill

Control objective: By controlling the roll force and the strip speed, the strip gauge can then
be controlled to a desired thickness.

Manipulated variable: Roll gap setting and current in motor drives.

Enabling technologies: Coordinated supervisory computer control system, advanced multi-
loop control algorithms, process models in control systems, and robust sensor technology for
harsh industrial environments.

Improvements in natural resource usage 13

Entry speed > 1.5 ms–1
Exit speed > 11.5 ms–1

Loopers

Roll stands

F1 F2 F3 F4 F5 F6 F7

Figure 1.7 Roll stand and looper in a hot strip finishing mill.

Industrial heaters

Industrial heaters are extremely large-scale furnaces that act as heat suppliers for chemical
feed stock (the materials entering the chemical process and pharmaceutical industries). The
fuel used may be oil or gas, and it is used at very high rates. These heaters require control and
monitoring of internal and external variables in order to minimise fuel consumption, reduce
furnace maintenance and improve heat transfer. With this type of application the chemical and
petrochemical industry is a major application area for control engineering.

The rapid growth of modern chemical and petrochemical industries has led to close scru-
tiny of fuel consumption and the level of CO2 emissions to the atmosphere within the
industry. The benchmarking of process control units to discover where it is possible to
save costs and reduce environmental pollution has been widespread in the industry.
Control engineering is an enabling technology for achieving better and more efficient
control of chemical and petrochemical processes. An industrial heater burning either oil
or gas, as shown in Figure 1.8, is an example of a common petrochemical process that
consumes a great deal of energy. This type of heater is usually used as a heat exchanger for
a down stream process.

We have two control priorities in this system: firstly, to maintain the outlet tempera-
ture of the feedstock liquid with as little fluctuation as possible, and secondly, to reduce
the oxygen percentage in the exhaust gases in the duct. Since the thermal efficiency of
the heater depends on the outgoing percentage oxygen concentration, the lower the
percentage, the higher the thermal efficiency. To achieve these objectives, we can vary
the oil fuel flow rate to the burners and the change the orientation of the damper in the
exhaust duct. Reducing the rate of oil flow reduces the outlet feedstock temperature but
increases the percentage of oxygen in the duct. This in turn will reduce the thermal effi-
ciency of the heater. On the other hand the outlet temperature will increase as the
damper is closed and the oxygen percentage will also reduce. We are faced with designing
a control system to balance the effect of changing the fuel oil flow and the damper posi-
tion on the outlet temperature and efficiency of the boiler. As a result, we have a complex
control design problem in which we have to balance several performance objectives. We

14 Introduction

Mechanical
damper

Exhaust gas

Liquid in

Liquid out Burners

Duct

Heater
firebox

Fuel oil

Figure 1.8 An industrial heater burning
oil fuel.

call this type of problem a multivariable control problem due to the interactive nature of
the system inputs on the output variables, in this case, the feedstock output temperature
and percentage oxygen.

Example of a control problem: Industrial heater control

Control objective: To control the temperature of the outgoing liquid and the oxygen content in
the duct exhaust gases.

Manipulated variable: Fuel oil flow and position of control damper.

Enabling technologies: Sensors for measuring percentage of oxygen and other exhaust
gases, flow meters, valve technology, control systems for processes with multivariable objec-
tives, and processes with actuator limitations.

Onwards

From the many examples we have described here we find that control engineering is an
important feature in many aspects of our lives. Putting it simply, control is everywhere:
in household goods themselves, in the manufacture of the material from which we make
household goods, and in the domestic environment with which we surround ourselves. In
the wider picture, our ability to measure and then control temperature, velocity and
energy use leads directly to the urban, industrial and transport infrastructure on which
our society depends. In the lifestyle of today, we rely heavily on technology and its appli-
cations. Control engineers are needed to analyse these technological systems and provide
the crucial control systems without which modern society would simply not be possible.
This book is a first stage control book that brings together all the key elements in an easy
manner to be able to analyse and design effective controllers for simple systems.

Onwards 15

Tools for the control engineer
Analysis kit

Today’s engineer is a problem-solver, and the engineering method splits into problem analysis
and design followed by solution implementation. More and more the engineer must:

� Decide upon the right questions to be asked.

� Formulate a scientific and engineering description of the questions.

� Use appropriate analysis and software tools to solve the problem.

� Engineer and implement the solution.

The control engineer needs analysis tools to prepare a precise problem formulation and soft-
ware tools to find a solution to the problem posed. Logical reasoning is needed by the engineer to
ensure sound judgement and to work with some sophisticated mathematical methods. In control
engineering many of the ideas, concepts and mathematical tools are advanced, but software is
available to make the use of these tools easy.

The control engineer must not be fazed by the use of precision mathematics and brilliant soft-
ware packages. What is important is being able to concentrate on the real issues of the control
problem. The toolkit of analysis methods for control engineering is small, but should be thor-
oughly understood and practised. The software kit used – products like MATLAB (Chapter 3) for
example – should be treated like a sophisticated calculator. What is important is the control
problem to be formulated and what the solution says about the control issues being studied. In
this chapter we describe a small set of tools which form a Control Engineer’s Analysis Toolkit. We
can use this chapter either to learn about and practise using the tools or simply to refer to the
appropriate section when we need to.

We can even work our way through the whole chapter on the grounds that the key to under-
standing the theoretical aspects of control engineering and system dynamics is a thorough
knowledge of complex numbers and Laplace Transforms. In this case we need to organise our
work around the five steps that are needed to acquire a sound knowledge of Laplace transforms
for control engineering studies. These steps are shown in Figure 2.1.

The chapter is ordered according to these steps, but we have set it in the form of a set of
frequently asked questions on the analysis found in control engineering studies. In this way we
can also use the chapter to answer worrying questions.

2

Learning objectives

� To revise complex number operations.

� To introduce the Laplace transform for signals and systems.

� To introduce an alternative Laplace transform representation for differentiation and
integration.

� To examine some formal Laplace transform manipulations.

Step 1 Complex numbers

Q How many ways of writing complex numbers are there?

There are three representations for complex numbers, these are called Cartesian, polar
and complex exponential.

Cartesian (or rectangular) representation:

z = a + jb where a and b are real numbers

Polar representation:

z = r(cosθ + j sinθ) where r ≥ 0 and –π < θ ≤ π

Complex exponential representation:

z = rejθ

We should note that we can move from one representation to another and also that we
have two graphical interpretations available for use: the Cartesian and the polar versions.
We can represent z = a + jb using the Cartesian plane, as shown in Figure 2.2.

Tools for the control engineer 17

Operations with Laplace transforms

Formal properties for systems

Laplace transforms for simple systems

Laplace transforms for signals

Complex numbers

5

4

3

2

1

1st

Figure 2.1 The five steps to success with Laplace transforms.

We identify the real part of z using the notation a = Re(z) and for the imaginary part of z

we use b = Im(z). One Cartesian property is the distance between the origin and the point
z; this length is called the modulus, denoted |z|, and is given by:

We can now now impose the trigonometric relations onto the Cartesian framework
to obtain the polar representation for z. Using Figure 2.3 we use the polar angle, θ, where
–π < θ ≤ π and the radial length r = |z|.

We have r z a b= = +| | 2 2 , and from Figure 2.3,

a = r cosθ and b = r sinθ

so that z = a + jb

and z = r cosθ + jr sinθ

giving z = r(cosθ + j sinθ) where r ≥ 0 and –π < θ ≤ π.

This is the familiar polar representation for a complex number z.

Q What is the complex exponential and how do I use it?

The link between the polar form for z and the complex exponential is established
formally by the use of series for ex, cos x and sin x. Any student mathematical handbook
gives:

18 Tools for the control engineer

(0,0) a Re()z

Im()z

b z a b= (,)

Figure 2.2 Cartesian representation for z = a + jb.

2 2z a b= +

(0,0) a Re()z

Im()z

b z a b r= (,) =(cosq, sinr q)

r
q

Figure 2.3 Polar representation of z = a + jb.

2 3
e 1

2! 3! !

n
x x x x

x
n

= + + + + + +

Let us now evaluate ex for x = jθ; hence:

and if we partition this, we obtain

and using the series for cosine and sine, we obtain

ejθ = cosθ + j sinθ

The link is now almost established, since the polar representation for a complex number
is

z = r(cosθ + j sinθ)

and this can now be written in complex exponential form as

z = rejθ r ≥ 0 and –π < θ ≤ π

As an exercise, if ex is similarly evaluated for x = –jθ you should be able to show:

e–jθ = cosθ – j sinθ

We show some properties and different ways to use the complex exponential in Table
2.1. For example, we will find that the power rule is used quite frequently.

Example Two complex numbers z1 and z2 have unity modulus. If the polar angle of z1 is θ1 = +25° and the
polar angle of z2 is θ2 = –1.396 rad, give the complex exponential form for z = z1z2.

Solution The general exponential form is z = rejθ. Thus, z1 has r = 1 and θ1 = 25°. We change θ1 to radians
to give θ1 = (25/180) × π rad = 0.436 rad. Then z1 = ej0.436

. The complex number z2 has r = 1 and
θ2 = –1.396 rad. Thus z2 = e–j1.396. We use the power rule to find z = z1z2 as follows:

z = z1z2 = ej0.436e–j1.396 = ej(0.436 – 1.396) = e–j0.96

Tools for the control engineer 19

2 3 4 5
e 1 ...

2! 3! 4! 5!
j j j jq q q q q

q= + - - + + +

2 4 3 5
e 1

2! 4! 3! 5!
j jq q q q q

q
Ï ¸ Ï ¸Ô Ô Ô Ô= - + - + - + -Ì ˝ Ì ˝
Ô Ô Ô ÔÓ ˛ Ó ˛

1 Unit modulus |ejθ| = 1

2 Inverse exponential ejθ e– jθ = 1

3 Power rule ejθ1 ejθ2 = ej(θ1+θ2)

4 The Euler formulas cos ()θ θ θ= −1
2 e + ej j and sin ()θ θ θ= − −1

2 j e ej j

Table 2.1 Useful properties of the complex exponential.

3 5 7 2 1
sin ... (1) ...

3! 5! 7! (2 1)!

n nx x x x
x x

n

+
= - + - + + - +

+

2 4 6 2
cos 1 ... (1) ...

2! 4! 6! (2)!

n
nx x x x

x
n

= - + - + + - +

Q I just want to know how to add, subtract, multiply and divide complex numbers. Is this easy?

Addition
The addition of two or more complex numbers is easiest in the Cartesian form. Consider
two complex numbers:

z1 = a + jb and z2 = c + jd

Then their sum z = z1 + z2 is given by

Subtraction
The subtraction of two or more complex numbers is easiest in the Cartesian form.
Consider two complex numbers:

z1 = a + jb and z2 = c + jd

Then their difference z = z1 – z2 is given by

Example: Addition

z1 = 4 + j9 and z2 = 5 + j(–5)

Their sum, z = z1 + z2 is given by

z = z1 + z2

= (4 + j9) + (5 + j(–5))

= (4 + 5) + j(9 – 5)

= 9 + j4

Example: Subtraction

z1 = 4 + j9 and z2 = 5 + j(–5)

Their difference, z = z1 – z2 is given by

z = z1 – z2

= (4 + j9) – (5 + j(–5))

= (4 – 5) + j(9 + 5)

= –1 + j14

Multiplication
The multiplication of two or more complex numbers is easiest in the polar form.
Consider two complex numbers:

20 Tools for the control engineer

1 2

(j) (j)

() j()

z z z

a b c d

a c b d

= +
= + + +
= + + +

1 2

(j) (j)

() j()

z z z

a b c d

a c b d

= -
= + - +
= - + -

z r1 1 1= ejθ and z r2 2 2= ejθ

Then their product z = z1z2 is given by

Division
The division of two or more complex numbers is easiest in the polar form. Consider two
complex numbers:

z r1 1 1= ejθ and z r2 2 2= ejθ

Then their ratio z = z1/z2 is given by

Example: Multiplication

z1 = 2ej0.1 and z2 = 3.5ej1.4

Their product, z = z1z2, is given by

z = z1z2 = 2ej0.13.5ej1.4

= 7ej1.5

and if z = a + jb, a = r cosθ, b = r sin θ, then,

z = 0.49 + j6.98

Example: Division

z1 = 2ej0.1 and z2 = 3.5ej1.4

Their ratio, z = z1/z2, is given by

z z z= =1 2

0 1

14
2

35
/

.

.

.
e
e

j

j

= 0.57e–j1.3

and if z = a + jb, a = r cosθ, b = r sin θ, then,

z = 0.15 – j0.55

Tools for the control engineer 21

1 2

1 2

1 2
j j

1 2

j()
1 2

j
1 2 1 2

e e

()e

e ,where () and ()

z z z

r r

r r

r r r r

q q

q q

q q q q

+

=

=

=

= = = +

1
1 2

2

1 2

1 2

j
1 j j1

j
22

1 j()

2

j
1 2 1 2

/

e e

e

e , where (/) and ()

z z z

rr e
rr e

r

r

r r r r

q
q q

q

q q

q q q q

-

-

=

Ê ˆ
= = Á ˜

Ë ¯

Ê ˆ
= Á ˜

Ë ¯

= = = -

Q Control engineers talk about transfer functions. What is a transfer function?

As control engineers, we will often meet expressions of the form

G s
n s
d s

()
()
()

=

where s is a complex variable which is written as

s = σ + jω

with a real component σand an imaginary component ω, or frequency. The terms n(s) and
d(s) are numerator and denominator polynomials in s. The function G(s) is commonly
referred to as a transfer function, since it will determine how the information or energy in
the input signal is transferred to the output signal.

Q What are the magnitude or gain values of a complex number?

The magnitude or gain are terms we often apply to the modulus of complex numbers. For
example, we might have that a transfer function has been worked out for a frequency of ω
= 2 rad s–1 to give:

G()j
j
j

2
3 4
2 3

=
+
+

The magnitude or gain of the complex number G(j2) is simply its modulus and we calcu-
late it as follows:

Q How do I work out the phase of a complex number?

Similarly, the phase is a term we often apply to a ratio of complex numbers as might arise
from a transfer function that has been worked out for a particular frequency. For example,
we might have a transfer function that has been worked out at a frequency of ω= 2 rad s–1

to give:

G()j
j
j

2
3 4
2 3

=
+
+

The phase of the complex number G(j2) is simply its polar angle. Therefore we need to be
able to find the polar angle from a complex number.

Finding the phase (polar angle) from a complex number

Given z = a + jb

we can write equivalently z r r= +cos sinθ θj

= +r(cos sin)θ θj

Therefore a r b r= =cos sinθ θand

22 Tools for the control engineer

2 2

2 2

3+j4 |3+j4| 3 4 25
| (j2)|= 1.3867

2+j3 |2+j3| 132 3
G

+
= = = =

+

and tan
sin
cos

sin
cos

θ
θ
θ

θ
θ

= = =
r
r

b
a

so that θ= ⎛
⎝
⎜ ⎞

⎠
⎟−tan 1 b

a

In general, for a complex number we can write

θ= −tan 1 Imag
Real

One strategy for finding the phase of G(j2) is to write it as G(j2) = a + jb. Thus

giving

θ = tan–1 (–1/18), so that θ = –3.179°

Equivalently we can evaluate the expression by noting that the angle or phase, denoted
∠, of a fraction is merely the phase of the numerator minus the phase of the denominator:

One last topic which may involve complex numbers is that of solving a quadratic equa-
tion. This procedure will appear time and time again in control engineering, since many
systems can be represented as second-order processes.

Q I need to practise solving quadratic equations: are there some simple methods?

There are two common methods for finding the roots of a quadratic equation. Here we
give both. Firstly, assume that we have a second-order polynomial equation of the form:

as2 + bs + c = 0

We wish to find the values of s that solve this equation.

Method 1: Formula
The roots of the quadratic equation are given by

Example Find the roots of 3s2 + 2s + 4 = 0.

s = − ± − × × × = − ± − = ± = ±() / () / . .2 2 4 3 4 2 3 2 44 6
1
3

11
3

033 11052 j j

Method 2: Separating real and imaginary parts to give a ‘sum of squares’ form
This method is more clearly understood by an example.

Tools for the control engineer 23

2 2

3+j4 3+j4 2 j3
(j2)

2+j3 2+j3 2 j3

6 j9+j8+12 18 j1 18 1
j

13 13 132 3

G
Ê ˆ Ê ˆ-

= = Á ˜ Á ˜-Ë ¯ Ë ¯
- - -

= = = +
+

1 13 j4
(j2) (3 j4) (2 j3) tan (4 / 3) tan (3/ 2) 3.179

2+j3
G - -+

– = – = – + - – + = - = - ∞

2 4
2

b b ac
s

a
- ± -

=

Example Find the roots of 3s2 + 2s + 4 = 0.
Divide through by the coefficient of s2:

s s s s2 22
3

4
3

066 133 0+ + = + + =. .

We note that we can rewrite the terms in s2 and s as follows:

s2 + 0.66s = (s + 0.33)2 – 0.332

Substituting this into the original equation gives:

{s2 + 0.66s} + 1.33 = {(s + 0.33)2 – 0.332} + 1.33 = (s + 0.33)2 + 1.21 = 0

We find that the square root of 1.21 is 1.105, and this gives us the alternative ‘sum of squares’ form:

s2 + 0.66s + 1.33 = (s + 0.33)2 +1.1052 = 0

The final steps are simple:

(s + 0.33)2 +1.1052 = 0

(s + 0.33)2 = –1.1052

s + 0.33 = ± j1.105

s = –0.33 ± j1.105

We can see that the real and imaginary parts of the roots can easily be read from the ‘sum of
squares’ form when the original equation is rearranged into this convenient form.

Q Parameter dependent complex numbers! That sounds hard – what are they?

In control engineering we often meet complex numbers which are dependent on an inde-
pendent parameter. In our case this parameter is usually angular frequency, ω . Let us
begin using the Cartesian form for complex numbers z:

z = a + jb

We introduce a dependency on the parameter ω as:

z a b() () ()ω ω ω ω= + − ∞< < ∞j

For example, let

a b() cos () sinω ω ω ω= + = +1 1and

then

z() (cos) (sin)ω ω ω ω= + + + − ∞< < ∞1 1j

The graphical implication of this dependency is that the point z(ω) = (a(ω), b(ω)) is no
longer fixed but changes position as the parameter ω travels from – ∞ to ∞. We say that the
point z traces out a locus. Indeed, it is not difficult to see that:

giving

24 Tools for the control engineer

() = 1 + cos and hence (() 1) = cos
() = 1 + sin and hence (() 1) = sin

a a
b b

w w w w
w w w w

-
-

(a(ω) – 1)2 + (b(ω) – 1)2 = 1

and the locus or path, given by z(ω) = a(ω) + b(ω), is a unit circle, centre (1,1). We show this
in Figure 2.4.

The step to a polar parametric representation is easily taken:

z r j() ()(cos () sin ())ω ω θ ω θ ω= +

In the example of the circle locus, the formulas for r(ω) and θ(ω) are not so convenient:

This characterisation of z(ω) through the pair (r(ω), θ(ω)) motivates a potential represen-
tation as two graphs: (1) modulus r(ω) versus parameter, and (2) angle θ(ω) versus param-
eter ω . This type of representation will be seen to be quite important as the basis of our
frequency response plots, or as they are called in control engineering, Bode plots. When
we use these types of plot we usually use logarithmic scales.

Step 2 The Laplace transforms of signals

The Laplace transform is a useful tool for the analysis of control systems. We discuss its
definition and some of its important properties in this step on the route to success. The
emphasis is on gaining some confidence with defining Laplace transforms and under-
standing something of their structure.

Q How do I define a Laplace transform?

Let us assume that x(t) is a time signal for 0 ≤ t < ∞ and x(t) = 0 for t < 0. The operation of
applying the Laplace transform is indicated by the symbol {x(t)} and is defined as:

where s = σ+ jω is a complex variable.
As can be seen, the Laplace transform takes the time signal, x(t) and integrates out the

time variable to produce a function X(s) of the complex variable, s. We normally use the

Tools for the control engineer 25

(0,0)

1

1

w, positive

w,negative

((), ())a bw w

w=0

(a)

(0,0) 1 Re()z

Im()z

1

z1= ((a w1), (b w1))

z2= (a(w2),b(w2))(b)

Figure 2.4 Plot for z(ω) = a(ω) + jb(ω), where a(ω) = 1 + cosω ,
b(ω) = 1 + sinω , –∞< ω < ∞ .

1/2

1

() (3+2(cos + sin))

1 sin
() tan where

1 cos

r w w w
w

q w w
w

-

=
+Ï ¸= - • < < •Ì ˝+Ó ˛

•
-= = Ú

0

() { ()} ()e dstX s x t x t tL

lower-case letter for a time signal, x, and the upper-case letter for its Laplace transform,
X. We also use the notation Re(s) for the real part of s and Im(s) for the imaginary part of s;
thus if s = σ+ jω , then Re(s) = σand Im(s) = ω .

Example Find the Laplace transform of the decaying exponential signal:

x t e tt() = < < ∞− 4 0where

Solution Substitute for x(t) in the definition of the Laplace transform to obtain:

Evaluating the transform, we have

and

X s
s

()
()

=
+
1

4

Fortunately, we do not often work out Laplace transforms from first principles, but use a table of
common Laplace transforms, as shown in Table 2.2 (pp. 29–30).

Q What is the Laplace variable s and the s-plane?

The Laplace variable s is a complex variable defined in the formula of the Laplace trans-
form. It is given by:

s = σ + jω

where σ is the real part of s, which we also denote as Re(s). We will see later that σ is
related to the boundedness of a signal or the stability of a system. Variable ω is the imagi-
nary part of s, which we also denote as Im(s). This variable will be shown to be related to
the frequency content of a signal.

We can show the range of variation of s or the domain of s schematically as a plane. We
call the horizontal axis of this plane the real axis, since it is defined by:

s = σ + j0

The vertical axis is known as the imaginary axis and is represented by:

s = 0 + jω

The origin is represented by the complex zero s = 0 + j0. The region to the left of the imagi-
nary jω axis (for –∞< σ< 0) is known as the Left Half Plane (LHP) and the region to the right
of the imaginary axis (for 0 < σ< ∞) is known as the Right Half Plane (RHP). We call the
whole complex plane the s-plane (Figure 2.5).

26 Tools for the control engineer

• •
- - - - += = =Ú ÚL 4 4 (4)

0 0

() {e } e e d e dt t st s tX s t t

=•- +

=

È ˘ È ˘= = -Í ˙ Í ˙- + - + - +Î ˚Í ˙Î ˚

4(4)

0

e 0 1
()

(4) (4) (4)

ts

t

X s
s s s

Q Where do the poles and zeros come from in a Laplace transform?

Very often Laplace transforms work out as the ratio of two constant coefficient polyno-
mials, for example:

This can be written in general form as

We write this in the format:

X s
s

s
()

()
()

=
num
den

and identify the following:

Numerator polynomial, num(s)

with the degree of num(s) given by the integer m.

Transform zeros
The Laplace transform zeros are the values of s for which the transform is zero. The are
found by setting the numerator polynomial to 0 and solving the resulting equation.

Tools for the control engineer 27

Real axis, Re()s

RHPLHP

Imaginary axis,
Im()s

s s-plane = s+ jw

Figure 2.5 The s-plane.

2
6

()
4 3

s
G s

s s

+
=

+ +

1
1 1 0

1
1 1 0

...
()

...

m m
m m

n n
n n

b s b s b s b
X s n m

a s a s a s a

-
-

-
-

+ + + +
= ≥

+ + + +

1
1 1 0num() ...m m

m ms b s b s b s b-
-= + + + +

1
1 1 0num() ... 0m m

m ms b s b s b s b-
-= + + + + =

Denominator polynomial, den(s)

with the degree of den(s) given by the integer n. Parameter n is also called the order of the
transform, X(s).

Transform poles
The Laplace transform poles are the values of s for which the transform is infinite. The
poles are found by setting the denominator polynomial to 0 and solving the resulting
equation.

Example G s
s

s s
() =

+
+ +

6
4 32

We write this in the form:

G s
s
s

s
s s

()
()
()

= =
+

+ +
num
den

6
4 32

and identify the following:

Numerator polynomial: num(s) = s + 6, with the degree of num(s) given by m = 1.

Transform zeros: Solve num(s) = s + 6 = 0 and s = -6.

Denominator polynomial: den(s) = s2 + 4s + 3, with the degree of den(s) given by n = 2.
This is also the order of the transform, G(s).

Transform poles: Solve den(s) = s2 + 4s + 3 = 0 and the poles are s1 = –1 and s2 = –3.

Q How do I use transform tables?

We have seen that the Laplace transform definition was given as:

This shows how the time variable, t, is integrated out to leave a transform function X(s)
which is a function of complex variable s. If we wish to reverse this process and go from a
given signal transform X(s) to a time domain signal x(t) then there is a complex inversion
integral formula available, as shown below.

The inverse Laplace transform

As can be seen, this is a fairly formidable looking operation. Fortunately we have no
reason to use this formula in this book; instead we rely on tables and computers to assist

28 Tools for the control engineer

1
1 1 0den() ...n n

n ns a s a s a s a-
-= + + + +

1
1 1 0den() ... 0n n

n ns a s a s a s a-
-= + + + + =

0

() ()e d jstX s x t t s s w
•

-= = +Ú

j

j

1
e ()d 0

2 j()
0 0

stX s s t
x t

t

s

sp
+ •

- •
Ï £ < •Ô= Ì
Ô -• < <Ó

Ú

us. Table 2.2 shows common Laplace transform pairs. The tables available of the Laplace
transforms cover a wide range of signals and these can be consulted in two different ways.

From a time function to its Laplace transform:
Look down the time function column until the required time function is found and
then read off the equivalent Laplace transform.

From a Laplace transform to its time function:
Look down the Laplace transform column until the required Laplace transform is
found and then read off the time function.

Tools for the control engineer 29

X(s) x(t), t 0

1. 1 δ():t unit impulse at t = 0

2. 1
s

1: unit step, t > 0

3. 1
2s

t: ramp function

4. 1

sn
1
1

1
()!n

tn
−

−

5. 1
()s a+

e–at

6. 1

()s a n+
1

1
1

()!n
tn at

−
− −e

7. 1
s s a()+

1
1

a
at()− −e

8. 1
s s a s b()()+ +

1
1

ab
b

b a
a

b a
at bt−

−
+

−
⎛
⎝
⎜ ⎞

⎠
⎟− −e e

9. ()
()()

s
s s a s b

+
+ +

α 1
ab

b a
b a

a b
b a

at btα
α α

−
−
−

+
−
−

⎛
⎝
⎜

⎞
⎠
⎟− −() ()

e e

10. 1
()()s a s b+ +

1
b a

at bt
−

−− −()e e

11. s
s a s b()()+ +

1
a b

a bat bt
−

−− −()e e

12. ()
()()

s
s a s b

+
+ +

α 1
b a

a bat bt
−

− − −− −[() ()]α αe e

13. ω
ω

n

ns2 2+
sinωn t

14. s

s n
2 2+ ω

cosωn t

15. 1
2 2s s n()+ ω

1
12ω

ω
n

n t(cos)−

Table 2.2 Common Laplace transform pairs.

Although we will find that there are transform tables and computer programs to help us
find the Laplace transform of signals, it is often useful to derive one or two examples
ourselves, so that we understand more fully how the information in the tables is arrived
at. The following examples are the transforms of the most common signals we use in
control engineering: the step, the ramp, sine and cosines, growing and decaying exponen-
tial signals and growing and decaying sinusoidal signals.

Q Oh dear, I need to work out Laplace transforms from first principles. How do I begin?

(a) The step signal transform

Time domain definition: x t
A t

t
()

,
,

=
< < ∞

− ∞< <
⎧
⎨
⎩

0
0 0

This signal is a step of height A units.

Laplace transform: X s
A
s

() =

Derivation: Directly from the transform definition:

30 Tools for the control engineer

16. 1
2 2()s a b+ +

1
b

btat(sin)e−

17. 1
2 2s s a b[()]+ +

1 1
2 2 2 2

1

a b b a b
bt

b
a

at
+

+
+

−

=
−
⎛
⎝
⎜ ⎞

⎠
⎟

−

−

e sin()

tan

φ

φ

18. ω
ζω ω

ζn

n ns s

2

2 22
1

+ +
<

ω

ζ
ω ζζωn t

nn t
1

1
2

2

−
−−e [sin ()]

19. ω
ζω ω

ζn

n ns s s

2

2 22
1

()+ +
< 1

1

1
1

1

2
2

1
2

−
−

− +

=
−

−

−

ζ
ω ζ φ

φ
ζ

ζ

ζωe

where

nt
n tsin[()]

tan

20. s

s a b

+
+ +

α
()2 2

()
[sin()]

tan

α
φ

φ

− +
+

=

−

−

a b
b

bt

b
a

at
2 2

1

e

where

21. s

s s a b

+
+ +

α
[()]2 2

α α
φ

φ

a b b
a b

a b
btat

2 2

2 2

2 2
1

+
+

− +
+

+

=

−[()]

()
sin()

tan

e

where − −
−

−
−

1 1b
a

b
aα

tan

Table 2.2 Common Laplace transform pairs (continued).

00

() e d e 0
t

st st

t

A A A
X s A t

s s s

• Æ•
- -

=

È ˘= = = - =Í ˙- -Î ˚Ú

and

X s
A
s

() =

(b) The ramp signal transform

Time domain definition: x t
At t

t
()

,
,

=
< < ∞

− ∞< <
⎧
⎨
⎩

0
0 0

This signal is a ramp signal with slope A.

Laplace transform: X s
A
s

() = 2

Derivation: Directly from the definition we have

Using integration by parts:

Set u = t, dv = e–st dt, du = dt, v
s

st
=
− −e

Then

Evaluating the transform:

and

X s
A
s

() = 2

(c) Decaying exponential signal

Time domain definition: x t
A t

t

at
()

,
,

=
< < ∞

− ∞< <
⎧
⎨
⎩

−e 0
0 0

This is a decaying exponential signal where A > 0 and a > 0.

Derivation: Substitute for x(t) in the definition of the Laplace transform to obtain:

Evaluating the transform, we have

Tools for the control engineer 31

• •
- -= = =Ú ÚL

0 0

() { } e d e dst stX s At At t A t t

d [] du v uv v u= -Ú Ú

00

e e
() d

tst st

t

t
X s A A t

s s

Æ• •- -

=

È ˘ Ê ˆ
= - - -Í ˙ Á ˜

Í ˙ Ë ¯Î ˚
Ú

2 2 2
0

e e 0 0 0 1
()

tst st

t

t
X s A A A

s s ss s s

Æ•- -

=

È ˘ Ê ˆ Ê ˆ
= - - = - - - - -Í ˙ Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

()

0 0

() { e } e e d e dat at st s a tX s A A t A t
• •

- - - - += = =Ú ÚL

and

X s
A

s a
()

()
=

+

(d) The trigonometric signals: the sine signal

Time domain definition: x t
A t t

t
n

()
sin ,

,
=

< < ∞
− ∞< <

⎧
⎨
⎩

ω 0
0 0

This is a sine waveform where amplitude A > 0 and ωn > 0.

Laplace transform: X s
A

s
n

n
()

()
=

+
ω
ω2 2

Derivation: Directly in the definition

use

Then,

A careful look at the conditions where t →∞ shows that

and

X s
A

s
n

n
()

()
=

+
ω
ω2 2

Q The transforms get even harder: what are the exponential–trigonometric signals?

In this section we look at the several types of exponential–trigonometric signal which
can arise in some control problems. We classify them by whether the exponential enve-
lope is of decaying or growing type.

32 Tools for the control engineer

()

0

1 1
() e 0

() () ()

t
s a t

t

A
X s A A

s a s a s a

Æ•
- +

=

È ˘ È ˘
= - = - =Í ˙ Í ˙+ - + +Î ˚ Î ˚

0

() sin e dst
nX s A t tw

•
-= Ú

j j1
sin (e e)

2
n nt t

nt
j

w ww -= -

j j

0

(j) (j)

0 0

(j) (j)

0 0

() (e e)e d
2

e d e d
2

e e
2 (j) 2 (j)

n n

n n

n n

t t st

s t s t

t ts t s t

n nt t

A
X s t

j

A
t t

j

A A
j s j s

w w

w w

w w

w w

•
- -

• •
- - - +

Æ• Æ•- - - +

= =

= -

È ˘
Í ˙= -
Í ˙Î ˚

È ˘ È ˘- -
= Í ˙ - Í- ˙

- +Í ˙ Í ˙Î ˚ Î ˚

Ú

Ú Ú

1 1
() 0 0

2 (j) 2 (j)n n

A A
X s

j s j sw w
È ˘ È ˘

= + - +Í ˙ Í ˙- +Î ˚ Î ˚

Growing exponential–trigonometric signal transforms

Time domain definition:
x t

A t t
t

x t
A t

at
n

at
n

s

c

e

e

()
sin ,

,

()
cos ,

=
< < ∞

− ∞< <
⎧
⎨
⎩

=

ω

ω

0
0 0

0
0 0

< < ∞
− ∞< <

⎧
⎨
⎩

t
t,

These are growing exponential sine and cosine waveforms where amplitude A > 0, a > 0
and ωn > 0.

Laplace transforms: X s
A

s a
X s

A s a
s a

n

n n
s c()

()
, ()

()
()

=
− +

=
−

− +
ω

ω ω2 2 2 2

Decaying exponential–trigonometric signal transforms

Time domain definition:
x t

A t t
t

x t
A

at
n

at
n

s

c

e

e

()
sin ,

,

()
cos

=
≤ < ∞

− ∞< <
⎧
⎨
⎩

=

−

−

ω

ω

0
0 0

t t
t

,
,

0
0 0

≤ < ∞
− ∞< <

⎧
⎨
⎩

These are decaying exponential sine and cosine waveforms where amplitude A > 0, a > 0
and ωn > 0

Laplace transforms: X s
A

s a
X s

A s a
s a

n

n n
s c()

()
, ()

()
()

=
+ +

=
+

+ +
ω

ω ω2 2 2 2

Derivation of the decaying cosine–exponential transform:
Use the relationship cos () /ω ω ω

n
t tt n n= + −e ej j 2 and the definition of the Laplace trans-

form to obtain:

A careful consideration of the upper limit behaviour as t →∞ shows that

X s
A

s a s a
A s a

s an n
c j j
()

() ()
()

()
=

+ +
+

+ −
⎡
⎣⎢

⎤
⎦⎥
=

+
+ +2

1 1
2ω ω ωn

2

Tools for the control engineer 33

c
0

j j

0

(j) (j)

0

(j) (j)

0

() e cos e d

e e
e e d

2

{e e }d
2

e e
2 (j) (j)

n n

n n

n n

at st
n

t t
at st

s a t s a t

ts a t s a t

n n t

X s A t t

A t

A
t

A
s a s a

w w

w w

w w

w

w w

•
- -

• -
- -

•
- + + - + -

Æ•- + + - + -

=

=

Ê ˆ+
= Á ˜

Ë ¯

= +

È ˘
= Í + ˙

- + + - + -Í ˙Î ˚

Ú

Ú

Ú

Q When I multiply a signal by a constant, what happens to the Laplace transform?

When we multiply a signal, x(t), by a number, k, its Laplace transform, X(s), is also multi-
plied by the number k. We prove this simple property by direct use of the Laplace defini-
tion; recall,

L { ()} () ()x t X s x t tst= = −
∞

∫ e d
0

Consider y(t) = kx(t); then,

Y s kx t kx t t k x t t kX sst st() { ()} () () ()= = = =−
∞

−
∞

∫ ∫L e d e d
0 0

so that Y(s) = kX(s)
Note that if two signals, x(t) and y(t), are equal so that (k = 1) and x(t) = y(t), then their

Laplace transforms are also equal: X(s) = Y(s).

Example From Table 2.2, if x(t) = e–4t, 0 < t < ∞ , then

X s
s

() =
+
1

4

If y(t) = 5e–4t = 5x(t) then

Y s y t x t x t X s() { ()} { ()} { ()} ()= = = =L L L5 5 5

and

Y s X s
s

() ()
()

= =
+

5
5

4

Q I need to transform a combinations of signals. How do I do this?

When we add or subtract two signals, the Laplace transform of the resulting signal will be
the sum or the difference of the Laplace transforms of the two signals. For example,
consider two signals r(t) and y(t). If we form the signal e(t) by subtracting y(t) from r(t), we
have

e(t) = r(t) – y(t)

In Laplace transforms, take the transform of both sides of this equation; then

We may write this operation in more general form for two signals f1(t) and f2(t).
Consider

h t k f t k f t() () ()= ±1 1 2 2 for constants k1 and k2

Then

34 Tools for the control engineer

• • •- - -

-

- = -

-
-

Ú Ú Ú0 0 0

() = { ()} = { () ()}

= (() ())e d ()e d ()e d

= { ()} { ()}

= () ()

st st st

E s e t r t y t

r t y t t r t t y t t

r t y t

R s Y s

L L

L L

Using the Laplace transform property {kf(t)} = kL{f(t)} gives

Q What Laplace transform operations should I learn?

The list of Laplace transform properties is quite extensive but those in Table 2.3 are often
useful.

Problem Find the Laplace transform of the signal y(t) as shown in the figure below:

Solution First the Laplace transforms of the individual input signals are determined from Table 2.2:

The block diagram shows the signals being combined together:

y(t) = k1a(t) + k2b(t) – k3c(t)

Tools for the control engineer 35

Operation on signals Formal transform operation

Laplace transform of simple signal {x(t)} = X(s)

The multiplication of a signal by an exponential L{ ()} (),e− = + >at x t X s a a 0

Delayed signals L{ ()} ()x t T X sTs− = −e

Scaling a signal
L x

t
a

aX as
⎛
⎝
⎜ ⎞

⎠
⎟

⎧
⎨
⎩

⎫
⎬
⎭
= ()

Multiplying a signal by a constant L L{ ()} { ()} ()kf t k f t kF s= =

Combinations of signals L L L{ () ()} { ()} { ()}

()

k f t k f t k f t k f t

k F s k

1 1 2 2 1 1 2 2

1 1

± = ±

= ± 2 2F s()

Table 2.3 Formal Laplace transform properties.

k1

k2

k3

++

−

y t()

a t() = 2

b t t() =

c t() = 1

= \ =

= \ =

= \ =

2

2
Signal () 2 is a step of height 2 units ()

1
Signal () is a ramp of unit slope ()

1
Signal () 1is a unit step ()

a t A s
s

b t t B s
s

c t C s
s

±
±

1 1 2 2

1 1 2 2

() = { ()} { ()}

= () ()

H s k f t k f t

k F s k F s

L L

± = ±1 1 2 2 1 1 2 2() = { ()} = { () ()} { ()} { ()}H s h t k f t k f t k f t k f tL L L L

Y(s) = {y(t)} = {k1a(t) + k2b(t) – k3c(t)}

= k1 {a(t)} + k2 {b(t)} – k3 {c(t)}

= k1A(s) + k2B(s) – k3C(s)

= k
s

k
s

k
s1 2 2 3

2 1 1
+ −

Hence, putting this over a common denominator leads to:

Our main aim in this section was to become familiar with the derivation of Laplace trans-
forms for signals. An introduction to the s-plane was also made. This initial look at the
formal algebraic and manipulation issues is now to be followed by the more important
interpretative aspects of Laplace transforms.

Step 3 Transforms for simple systems

When we begin to use Laplace transforms to analyse systems and their controllers, we
will need to manipulate the transforms of signals and the time derivatives of signals. The
number of useful properties and formulas that we are required to know is relatively
small, and some practice will soon ensure a good familiarity with their use.

Q Why is a differentiator like multiplying by s?

We can find the Laplace transform of the derivative of a signal x(t) by using the
relationship:

where x(0) is the initial value of x(t), evaluated at t = 0. We can prove this relationship
using integration by parts as follows:

Let u = e–st and dv = dx/dt; then du = –se–st and v = x(t). Then use

so that

36 Tools for the control engineer

- +
= 1 3 2

2
(2)

()
k k s k

Y s
s

Ï ¸ = -Ì ˝
Ó ˛

() () (0)
d

x t sX s x
dt

L

• -Ï ¸ =Ì ˝
Ó ˛ Ú0

d
() e d

d
std x

x t t
dt t

L

d [] du v uv uv= -Ú Ú

• •- -

• -

Ï ¸ È ˘= - -Ì ˝ Î ˚Ó ˛

= - +

= -

Ú

Ú

00

0

() e () (e) ()d

(0 (0)) e ()d

() (0)

st st

st

d
x t x t s x t t

dt

x s x t t

sX s x

L

This simple formula has a very useful system analogy. Assume that the signal x(t) has
zero initial condition. Then the result becomes {dx/dt} = sX(s), so that a derivative oper-
ating on a signal can be represented as multiplying the signal Laplace transform by s. We
see this in block diagram form as Figure 2.6. We have shown by dashed lines the equiva-
lent time domain differentiation.

We find a similar relationship for the second derivative of x(t) with respect to time, t,
and it is very useful to see the two results side by side.

Laplace transform of the first derivative of the time signal x(t):

L
d
d
x
t

sX s x⎧⎨⎩
⎫⎬⎭
= −() ()0

Laplace transform of the second derivative of the time signal x(t):

L
d
d

2x
t

s X s sx x2
2 0 0

⎧
⎨
⎩

⎫
⎬
⎭
= − −() () �()

where the initial conditions are x(0) and �()x 0 . Observe that the second derivative is equiv-
alent to operating on the Laplace transform by s2. If the initial conditions are defined as
zero, then {d2x/dt2} = s2X(s).

Q How do we represent an integrator using Laplace transforms?

The Laplace transform of the integral of a signal x(t) results in the relationship

and we can also prove this using integration by parts as follows:

Let

Then du = x(t) and v = (–1/s)e–st so that

Tools for the control engineer 37

s

x t() y t() =
dx
dtd

dt

X s() Y s sX s() = ()

Figure 2.6 Operational equivalence between time domain differen-
tiation and multiplication by the Laplace variable s.

t t Ê ˆÏ ¸ =Ì ˝ Á ˜Ë ¯Ó ˛Ú0
1

()d ()
t
x X s

s
L

t t t t
• -Ï ¸ =Ì ˝

Ó ˛Ú Ú Ú0 0 0
() (()d)e d

t t stx d x tL

0
()d and d e

t stu x vt t -= =Ú

It is always necessary to be careful when evaluating integral limits. The result is as
follows:

As is the case with the differentiator, there is a useful system analogy in this result. The
Laplace transform for the integrator is:

Thus the effect of an integrator operating on a signal is equivalent to operating on or multi-
plying the signal Laplace transform by 1/s. We see this in block diagram form as Figure 2.7,
where, once again, we have shown the integral time-domain version using dashed lines.

Q I need to use Laplace transforms to represent a differential equation. How do I do this?

Many physical systems involve a rate of change equation, so the operations of differentia-
tion and integration arise naturally when we describe this physical property mathemati-
cally. We have already seen how the operations of differentiation and integration can be
interpreted as operations on the input signal Laplace transform, and now we start from
the rate-of-change equations to extend this to the idea of a physical process as an opera-
tion on the system’s input variables. We do this by first looking at a simple example.

Example A system operates on an input signal u(t) to produce an output signal x(t). The system is
described by a first-order differential equation:

�() () ()x t ax t bu t+ =

with an initial condition of x(0) = 0. Find the Laplace transform relationship for the system.

38 Tools for the control engineer

d [] du v uv uv= -Ú Ú

t t t t
•

•- -

• -

È ˘Ê ˆ Ê ˆÏ ¸ Ê ˆ= - - -Ì ˝ Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Ó ˛ Î ˚
Ê ˆ= - + Á ˜Ë ¯

Ê ˆ= Á ˜Ë ¯

Ú Ú Ú

Ú

0 0 0
0

0

1 1
()d ()d e () e d

1
(0 0) ()e d

1
()

t t st st

st

x x x t t
s s

x t t
s

X s
s

L

t t Ê ˆÏ ¸ =Ì ˝ Á ˜Ë ¯Ó ˛Ú0
1

()d ()
t
x X s

s
L

()x t

X s()

= ∫
t

0
() ()dy t x t t

⎛ ⎞= ⎜ ⎟⎝ ⎠
1

() ()Y s X s
s

∫

1
s

Figure 2.7 Operational equivalence between an integrator
and multiplication by (1/s).

Solution We take the Laplace transforms of the system differential equation and use standard formulas to
find

L L

L L L

L

{ �() ()} { ()}

{ �()} { ()} { ()}

x t ax t bu t

x t ax t bu t

+ =
+ =

{ �()} { ()} { ()}

() () () ()

x t a x t b u t
sX s x aX s bU s

+ =
− + =

L L
0

Solve for X(s):

But x(0) = 0, giving

We call G(s) the Laplace transform or transfer function description of the system given by the
equation �() () ()x t ax t bu t+ = .

We often find that the differential equation arises directly from modelling the physical
system. The next example shows how a tank-filling exercise can be written in terms of
Laplace transforms.

Example Figure 2.8 shows a tank which is being filled with liquid and which has an outflow pipe for the
liquid to drain from the tank.

The rate of change equation for this system can be given by

{Rate of change in liquid volume in tank} = {Inflow of liquid} – {Outflow of liquid}

Defining some system variables:

v(t) = volume of liquid in the tank, m3

qi(t) = inflow of liquid, m3/s

qo(t) = outflow of liquid, m3/s

Then, substituting these variables in the rate of change equation gives

d
d i ot

v t q t q t() () ()= −

Tools for the control engineer 39

= +
+ +

1
() () (0)

b
X s U s x

s a s a

() () () () where ()
b b

X s U s G s U s G s
s a s a

= = =
+ +

Flow out
qo()t

Height/level
h t()

Flow in
qi()t

Figure 2.8 Tank being filled with liquid.

If the tank is a closed vessel, there is no outflow, so qo(t) = 0 and the rate-of-change equation
becomes:

d
d it

v t q t() ()=

Suppose now that the formula for the liquid volume is given by v(t) = Ah(t), where A is the constant
cross-sectional area of the tank and h(t) is the height of the liquid in the tank, the rate of change
equation becomes:

We use our Laplace transform formula for the derivative to find

where H(s), Qi(s) are the Laplace transforms of the liquid height and the inflow variables, and
KT = 1/A.

If we assume that the tank was empty at time t = 0 then h(0) = 0 and the Laplace equation can
be simplified to:

and we write this as a physical system transfer function relation, namely:

H(s) = GT(s)Qi(s)

where the tank’s transfer function, GT(s), is given by

Remarks 1. The transfer function GT(s) is a relation from the system input to a system output. In the
example above the input was the inflow variable, qi(t) and the chosen system output was the
liquid height, h(t).

2. The system transfer function, GT(s), is dependent on the system physical parameters, in this
case KT = 1/A. This parameter KT tells us something about the tank filling process. If the
cross-sectional area A is large the tank will be slow to fill, while if the value of A is small, then
the tank will fill at a much faster pace. Think about the difference in filling a bath and a swim-
ming pool. The tap is the same but the areas are very different, and so is the time it takes to
fill them. So we see that all this abstract analysis is firmly linked to the real world.

3. We categorise the different types of physical system behaviour using the type of transfer
function that we obtain for our physical process. In the example of the tank filling process,
the system transfer function GT(s) = KT/s tells us that we have an integrating process.

40 Tools for the control engineer

= =

Ê ˆ= Á ˜Ë ¯

i

i

d d
(()) (()) ()

d d
d 1

() ()
d

Ah t A h t q t
t t

h t q t
t A

i i T i
d () 1 1

() (0) () { ()} ()
d
h t

sH s h q t q t K Q s
t A A

Ï ¸ Ï ¸= - = = =Ì ˝ Ì ˝
Ó ˛Ó ˛

L L L

Ê ˆ= Á ˜Ë ¯
T

i() ()
K

H s Q s
s

Ê ˆ= Á ˜Ë ¯
T

T()
K

G s
s

The example was typical of the use of transfer function analysis, and because the anal-
ysis gave more insight into the physical process the method is a very powerful tool in our
analysis toolkit.

Step 4 Formal properties for systems

The links between systems, Laplace transforms and their transfer function representa-
tion run very deep in the world of control engineering. To appreciate the full technical
detail requires plenty of mathematical background and as engineers we do not want to
become too engrossed in all the technical niceties. In this section we look briefly at some
technical concepts we are likely to meet and use. Beyond these concepts we have to
recognise that if knowledge of the full technical theory of Laplace transforms is going to
be necessary, then it is time to call in the experts – the mathematicians!

Q My lecturer says the system is linear. What does she mean?

For system linearity we are considering whether our physical system is going to behave in
a fairly straightforward manner or whether we can expect some unusual effects in the
system behaviour. The fairly straightforward manner we are looking for is linear system
behaviour, whereas the counter-intuitive behaviour is nonlinear system behaviour.
Systems that behave as a linear system can be analysed much more easily than those that
do not fit this useful category. So how does linear and nonlinear system behaviour arise?
For this we are going to use the tank filling exercise described in the Step 3 section on
physical system transfer functions.

In filling a tank with liquid the rate of change equation was given by:

d
d i ot

v t q t q t() () ()= −

where v(t) = volume of liquid in the tank, qi(t) = inflow and qo(t) = outflow. We assumed
the tank was a closed vessel, so that there is no outflow, and so qo(t) = 0. In this case, the
rate-of-change equation becomes:

d
d it

v t q t() ()=

The next step in the analysis was to supply a formula for the liquid volume; we used
v(t) = Ah(t), where A is the cross-sectional area of the tank and h(t) is the height of the
liquid in the tank. It was at this point that a very crucial assumption was introduced, for
if the area was dependent on height in any way then instead of having a well-behaved
linear system, the analysis becomes complicated and nonlinear. Let us put the two devel-
opments side by side to see the difference.

Tools for the control engineer 41

Linear tank model Nonlinear tank model

Let the formula for the tank volume be v(t) = Ah(t), where A is the cross-sectional area of the tank

A is regarded as a constant. A is dependent on say h, so that we can write A =

A(h). This might arise because the tank has sloping

sides rather like a funnel.

The rate of change equation becomes:

d
d

d
d

d
d

i

i

i

t
Ah t q t

A
h
t

q t

h
t A

q t

(()) ()

()

()

=

=

=
1

The rate of change equation becomes:

d
d
d
d

d
d

d
d

i

i

A h h t
t

q t

A
h

h
t

h t A h
h
t

q t

h
t A

() ()
()

() () ()

=

+

=

∂
∂

1
() (/) ()

()
h A h h t

q t
+ ∂ ∂ i

The Laplace transform for the derivative gives

sH s h
A

Q s K Q s() () () ()− = =0
1

i T i

Clearly this will not allow the use of the Laplace

transformations very easily and a simple physical

transfer function is not going to emerge. This is a

nonlinear system.

If we assume that the tank was empty at time t = 0

then h(0) = 0 and the Laplace equation can be

simplified to:

H s
K
s

Q s G s Q s() () () ()= =T
i T i

GT(s) is the transfer function of the tank. This is a

linear system.

Further analysis can be applied to reduce it to a

linear system case – or we can use more difficult

nonlinear analysis methods.

Unfortunately, our world is nonlinear and even the most simple systems are really
quite difficult to describe fully. However, we have to make the most of approximating the
actual physical models of real systems, and these approximations usually lead to linear
system models. This is very convenient, since we are very good at analysing linear
systems, and this is why we concentrate on having a good background in control engi-
neering theory for linear systems. The linear system assumption or hypothesis is funda-
mental to many of the properties used in this book (for example the next question is on
the superposition property and in turn this needs a linear system assumption), so read on.

Q I want to know what the superposition property is. Is it useful?

The superposition principle asks a very simple question about the output of a system to a
sum of inputs. Suppose we have two system inputs, u1, u2 and a combined input defined
by: u12 = u1 + u2, and let the system output, y, be obtained as the operation y = S(u). We
look at two cases.

42 Tools for the control engineer

Case 1: Separate inputs Case 2: Summed inputs

In this case the inputs pass through the system

separately and are formed as ysum. Mathematically,

define the outputs to the two inputs u1, u2 as

y1 = S(u1), y2 = S(u2)

and define a summed output as

ysum = y1 + y2

In this case the inputs are first summed and

passed through the system as a single input. Math-

ematically, define the summed input as

u12 = u1 + u2

The output to the summed inputs is defined as y12,

where

y12 = S(u12)

Do the system outputs satisfy ysum = y12? If yes, the principle of superposition holds.

One of the important implications of system linearity is that the principle of superposition
holds. This follows from the linearity property that the general output equation satisfies:

y S u S u= = ×()

From this we can easily get:

Case 1: Separate inputs

Case 2: Summed inputs

so that y12 = ysum and the principle of superposition holds.
Is this useful? The answer is yes, because if there are several inputs to a system arising

from different physical sources, the principle of superposition allows us to decompose
the system output into corresponding output components due to each of the different
physical inputs. We can then analyse the effect of the system on these different inputs
separately. System linearity and the principle of superposition are extremely powerful
properties.

Q The tutorial sheet mentions causality and physical realisability. They sound difficult. What
are they?

Causal and physically realisable systems are two terms for a property of systems in the
real world. The concept turns on whether the output of a real system depends on future
input values. To put this formally in a real practical system, does the output y(t) at time t
depend on future values of the system input, u(tfuture), where tfuture > t as well as the past
system input, u(tpast), where tpast ≤ t? For example, does an RC circuit have an output

Tools for the control engineer 43

S

u2

u1
u12

y12+

+

= + = + = ¥ + ¥ = ¥ + = ¥ =sum 1 2 1 2 1 2 1 2 12 12() () ()y y y S u S u S u S u S u u S u y

= = ¥ = ¥ + = ¥ + ¥ = + =12 12 12 1 2 1 2 1 2 sum() ()y S u S u S u u S u S u y y y

S

S
u2

u1 y1

y2

ysum+

+

voltage which depends on input voltages which have not yet been applied to the circuit?
The answer is no, because the system is causal or physically realisable, in which case the
output y(t) depends only on the past system input, u(tpast), where tpast ≤ t. There are
several consequences of causality, one of the most notable being that we can find the time
response of a casual system if we know the past inputs to the system.

Step 5 Useful operations with Laplace transforms

Although it must be said that the day of easily portable symbolic manipulation software
is not so far away now, and many manual mathematical skills currently taught for
control courses will disappear, it can be argued that the need for an understanding of
these techniques will not disappear. This means that some of the skills reviewed in this
section still form a significant part of the tricks of the trade and are often needed in exam-
inations, so there is a good incentive to practise and polish your performance.

Q Can I use partial fractions to help me with Laplace transform derivations?

A convenient method for obtaining the inverse Laplace transform is to use the partial
fraction expansion method. This method breaks down the signal transform X(s) into
simple transforms for which the inverse Laplace transform is readily available from
tables (see Step 2). We present this method by using the following example where we wish
to find the inverse Laplace transform of a given signal:

The solution strategy we adopt is to write X(s) as the summation of two simple trans-
forms for which the time function can be found easily; we write:

To find the values of A and B, multiply both sides of the above equation by s(s + a) to
obtain:

b = 0s1 + bs0 = A(s + a) + Bs = (A + B)s1 + Aas0

Now equate the coefficients of this polynomial equation to find A and B, namely:

Coefficient of s1:

A + B = 0

Coefficient of s0:

Aa = b

Solving these two equations to find A and B gives:

A
b
a

= and B
b
a

= −

We can now write the partial fraction expansion of X(s) as

44 Tools for the control engineer

=
+

()
()

b
X s

s s a

= = +
+ +

()
()

b A B
X s

s s a s s a

A look at the Laplace transform pairs in Table 2.2 shows that

and we can identify these transforms in X(s):

The corresponding time functions are thus:

x(t) = [b/a]1 – [b/a]e–at, 0 < t < ∞

Hence

This step of going from X(s) to x(t) is called performing the operation of inverse Laplace
transformation, sometimes denoted ILT{X(s)} and sometimes as –1{X(s)}.

Q What is the Final Value Theorem?

We are often interested to know the final value or steady state value of a signal, x(t), as
time approaches infinity. This we might write as

The final value xss is firstly assumed to exist and be finite. This requires at least a
bounded signal, a condition which is tested by checking that all the poles of X(s) = {x(t)}
lie in the left half plane. The jω axis is, however, excluded except for a single pole at
origin. This is because purely sinusoidal signals, whose transforms will have poles on the
jω axis, do not settle to a constant value xss as t →∞ . Multiple poles at the origin are also
excluded because as we have already seen in the table of Laplace transforms, these corre-
spond to unbounded signals like ramps. With these conditions noted:

1. X(s) should represent a bounded signal, having poles only in the left half plane,

2. X(s) should have no purely complex poles,

3. X(s) should not have multiple poles at the origin,

then the Final Value Theorem is:

This relationship states that the infinite-time limit of x(t) can be obtained from the limit
of the Laplace transform of its derivative, sX(s), as s → 0.

Tools for the control engineer 45

/ /
()

() ()
b b a b a

X s
s s a s s a

= = -
+ +

1 1
{1} and {e }=

()
at

s s a
-=

+
L L

1 1
() [/] [/]

()
X s b a b a

s s a
= + -

+

0, 0
()

(1 e), 0at

t
x t b

t
a

-

<Ï
Ô= Ì - £ÔÓ

ss lim ()
t

x x t
Æ•

=

ss
0

lim () lim ()
t s

x x t sX s
Æ• Æ

= =

Problem Find the infinite-time value of the signal y(t) = ke–at, a > 0.

Solution From the Laplace transform pairs in Table 2.2, we find that the Laplace transform of the signal y(t)
is given by

Y s y t
k

s a
() { ()}= =

+
L

The signal transform has a single pole on LHP, at s = –a < 0; it has no purely complex poles or
multiple poles at the origin. Hence we may use the Final Value Theorem:

Note that, since a > 0, this signal is a decaying exponential and y(t) → 0 as t →∞ .

Problem A signal, x(t), is described by the transform

where a > 0 and U(s) is the transform of input signal, u(t). Find the infinite-time value of x(t) when
the signal u(t) is a unit step.

Solution For a unit step

U s
s

() =
1

Replace this in the relationship for X(s); hence:

X s
b

s a s
()

()
=

+

The signal transform X(s) has a single pole at the origin and a pole at s = –a < 0 hence we may
apply the Final Value Theorem:

Q How do I use the Initial Value Theorem?

By analogy with the Final Value Theorem, we can relate the initial value of a signal to the
Laplace transform of its derivative as s →∞ , using the Initial Value Theorem:

Problem A signal x(t), is described by the transform:

where a > 0.Find the initial value x(t) when the signal U(s) is a unit step.

46 Tools for the control engineer

ss
0 0

lim () lim () lim 0
t s s

sk
y y t sY s

s aÆ• Æ Æ
= = = =

+

() ()
b

X s U s
s a

=
+

ss
0 0

lim () lim () lim
()t s s

sb b
x x t sX s

s a s aÆ• Æ Æ
= = = =

+

0
0

lim () lim ()
t s

x x t sX s
Æ Æ•

= =

() ()
b

X s U s
s a

=
+

Solution For a unit step:

U s
s

() =
1

Substitute this in the relationship for X(s):

The transform has poles at s = 0 and s = –a, and we may apply the Initial Value Theorem as:

Q How do I find the frequency content of a signal?

If the signal x(t) is bounded and has Laplace transform X(s) then the frequency content of
the signal x(t) can be recovered by setting s = 0 + jω in X(s). This is equivalent to evalu-
ating X(jω). We demonstrate this by writing the Laplace transform integral and setting
s = σ+ jω :

so that if we now set σ= 0 we obtain:

We define X(jω) as the spectral density function of the signal x(t). In fact, X(jω) is the
Fourier transform of the signal x(t) and reveals the frequency content of the signal. We
should note that X(jω) is a frequency-dependent complex function and we will be able to
graph gain and phase as frequency varies.

Problem Use the Laplace transform to determine the spectral density function or spectrum for the expo-
nential signal x(t) = e–t, 0 < t < ∞ .

Solution We use the Laplace transform result of Table 2.2, where we find:

Thus setting a = 1, the Laplace transform X(s) = L{e–t} is

This has a pole at s = –1 and hence X(s) corresponds to a bounded signal. To recover the
frequency content, set s = jω , then

Tools for the control engineer 47

()
()

b
X s

s a s
=

+

0
0

lim () lim ()

lim
()

lim 0
()

t s

s

s

x x t sX s

b
s

s a s
b

s a

Æ Æ•

Æ•

Æ•

= =

=
+

= =
+

(j)
0

() (j) ()e dtX s X x t ts ws w
• - += + = Ú

j
0

(j) ()e dtX x t tww
• -= Ú

- =
+

L
1

{e }
()

at
s a

1
()

(1)
X s

s
=

+

We see that the spectral density function X(jω) is a parameter-dependent complex function where
the independent parameter is frequency, ω .

To obtain the magnitude plot:

and the phase plot:

Thus for positive frequency 0 ≤ ω< ∞ , the frequency content of the signal x(t) = e–t is given in
magnitude and phase as:

As plots, this information is shown in Figure 2.9.

As can be seen, the frequency content lies mostly in the low-frequency region, and the
maximum phase shift φx(ω) is –90°.

48 Tools for the control engineer

1/22 2

2 2 2 1/2
1 () 1

| (j) |
(1) (1)

X
w

w
w w

Ï ¸+ -Ô Ô= =Ì ˝
+ +Ô ÔÓ ˛

2
1 1

2
/(1)

Arg((j)) tan tan ()
1/(1)

X
w w

w w
w

- -Ï ¸- +Ô Ô= = -Ì ˝
+Ô ÔÓ ˛

1
2 1/2

1
() | (j) | and () Arg((j)) tan ()

(1)
x xA X Xw w f w w w

w
-= = = = -

+

Magnitude plot

Phase plot

Frequency

Frequency

Magnitude

Phase

1.0

0.5

0 1 2 3

1 2 3

–45°

–90°

Figure 2.9 The magnitude/phase plots for a negative exponential signal transform.

2 2 2
1 1 (j 1) 1 j 1

(j) j
j 1 (j 1) (j 1) (1) (1) (1)

X
w w w

w
w w w w w w

È ˘ È ˘- + - -
= = = = +Í ˙ Í ˙+ + - + + + +Î ˚ Î ˚

What we have learnt

� To add, subtract, multiply and divide complex numbers.

� To represent complex numbers in cartesian, polar and complex exponential forms:

cartesian form: z = a + jb
polar form: z = r cos θ + j r sin θ = r(cos θ + j sin θ)
complex exponential form z = rejθ

� To realise that the Laplace variable s is a complex variable:

s = σ+ jω

� To be able to find a Laplace transform representation of a system given its differential
equation description and using the following transforms.

� To be able to combine simple systems together by using combinations of their
Laplace transforms.

{a(t) + b(t)} = {a(t)} + {b(t)} = A(s) + B(s)

� To use the Final Value Theorem as applied to Laplace transforms

Multiple choice

Multiple choice 49

M2.1 The Cartesian or rectangular form for the
complex number, z, is given by
(a) z = rejθ

(b) z = a + jb
(c) z = r(cosθ + j sinθ)
(d) z a b= +() /2 2 1 2

M2.2 Using tables or otherwise, the Laplace
transform of f(t) = 4e–5t is given by:
(a) F(s) = 4/(s + 5)
(b) F(s) = 5/(s + 4)
(c) F(s) = 4/(s – 5)
(d) F(s) = 5/(s – 4)

M2.3 The Laplace transform of the signal
f(t) = 2a(t) – 7b(t) is given by:
(a) F(s) = 14A(s) + B(s)
(b) F(s) = 2A(s) – 7b(t)
(c) F(s) = 2sA(s) – 7sB(s)
(d) F(s) = 2A(s) – 7B(s)

M2.4 The roots of the quadratic equation
s2 + 3s + 5 = 0 are:
(a) s1,2 = –3 ± j 11
(b) s1,2 = –1.5 ± j 11 2/
(c) s1,2 = –5 ± j 13 2/
(d) s1,2 = –2.5 ± j 13 2/

M2.5 The Laplace transform for the following
operation: y(t) = �()x t is given by:
(a) Y(s) = sX(s)
(b) Y(s) = X(s)/s
(c) Y(s) = aX1(s) + bX2(s)
(d) Y(s) = s2X(s)

M2.6 Laplace transform methods can be used to:
(a) do calculations with complex numbers
(b) represent linear system operations as

transfer functions
(c) manipulate parameter-dependent complex

numbers
(d) solve algebraic equations

{ ()} ()

d
() (0)

d

y t Y s

y
sY s y

t

=

Ï ¸ = -Ì ˝
Ó ˛

L

L

ss
0

lim () lim ()
t s

x x t sX s
Æ• Æ

= =

Questions: practical skills

50 Tools for the control engineer

M2.7 Linear system descriptions have many
useful features and one of these is:
(a) we can determine the system stability from

the system zeros
(b) we can apply the principle of superposition

to summed inputs
(c) all derivatives can be set to zero in the

system description
(d) we can multiply signals x(t) and y(t) together

M2.8 Partial fraction expansions can be used to:
(a) find out whether a system is physically

realisable
(b) establish whether the principle of superpo-

sition applies
(c) decompose the transform to allow easy use

of Laplace tables
(d) solve differential equations directly

M2.9 When using the Final Value Theorem, the
transform should not have poles on the imagi-
nary axis because:
(a) these poles represent sinusoids which do

not settle out to a steady value as t →∞
(b) these poles lead to unbounded signals like

ramps which are not finite as t → ∞
(c) these poles lead to decaying signals which

have a final value of zero
(d) the partial fraction method cannot then be

applied

M2.10 Setting s = jω in a signal Laplace transform
enables:
(a) the steady state value of the signal to be

calculated
(b) the frequency content of the signal to be

specified
(c) the initial value of the signal to be found
(d) the final value of the signal to be found

Q2.1 Convert the following complex numbers to polar representation (r,θ):
(a) 2 + j3
(b) 4 – j6
(c) –1 + j0.5
(d) –j7

Q2.2 Convert the following complex numbers in polar representation to rectangular form:
(a) (6, 30°)
(b) (2, –50°)
(c) (2.5, 0.6 radians)
(d) (1, –0.3 radians)

Q2.3 Given the following values of z1 and z2, what are the values of z1 × z2?
(a) z1 = (2, –45°) and z2 = (3, 50°)
(b) z1 = (4, 20°) and z2 = (6, 30°)
(c) z1 = (3, –10°) and z2 = (20, –50°)

Q2.4 Given the transfer function G(jω) = (1 + j2ω)/(3 + jω) and the following frequency values:
(i) ω1 = 1 rad/s and (ii) ω2 = 0.5 rad/s, what are |G(jω)| and ∠G(jω)?

Q2.5 For the following second-order equations:
(i) what are the roots of the equations?
(ii) express the equations in the sum of squares form.

(a) s2 + 2s + 3 = 0
(b) s2 + 4s + 6 = 0
(c) 3s2 – s + 2 = 0

Q2.6 Using the Laplace transform tables, give the transform X(s) of the following time domain signals:
(a) x1(t) = 6e–t

(b) x2(t) = 2t

Problems

Problems 51

P2.1 The Laplace transform of the signal x(t) is defined as:

X s
s

U s()
()

()=
+
1

2 1

(a) Find x(t) for U(s) = 1.
(b) Using partial fraction expansion, repeat (a) for U(s) = 1/s.
(c) Plot the time signals found in (a) and (b) on the same graph.
(d) Which time signal exhibits an exponential rise and which an exponential fall?

P2.2 Consider the signal diagram shown below.

(a) Find the Laplace transform of u(t) and v(t).
(b) Find the Laplace transform of x(t) and y(t).
(c) Find the poles and zeros of Y(s).

P2.3. Consider the Laplace transform of the signals x1(t) and x2(t):

(a) Find the poles of X1(s) and X2(s).
(b) Find the final values of x1(t) and x2(t).

P2.4. Find the spectral density function for x(t) = e–3t.

u t() = 2

v t() = 1

5

3

+ x t()
–2 –– –

+

y t()

1 22 2
2 3 1

() , ()
(3 2) (2 2)

s
X s X s

s s s s

+
= =

+ + + +

(c) x3(t) = 4t + 7e–2t

(d) x4(t) = sin 5t
(e) x5(t) = –cos 2t

Q2.7 Using Laplace transform tables, find the time domain signals from the following Laplace
transforms:
(a) X1(s) = 3/(2 + s)
(b) X2(s) = 6/(s – 3)
(c) X3(s) = 7/(s2 + 16)
(d) X4(s) = 1/s(s + 3)
(e) X5(s) = 3/s2

Q2.8 Given the following transfer functions, what are the final values of the signals?
(a) X1(s) = 6/(s2 + 2s + 1)
(b) X2(s) = 6/(s3 + s2 + 3s)

Software toolkit: MATLAB

3.1 Introduction to MATLAB

MATLAB is a high-level language for technical computing which is often used by engi-
neers to help them design systems or analyse a system’s behaviour. We present the
following material in a tutorial style which can therefore be used as a self-teaching exer-
cise, or as a reminder for those who may have used MATLAB and forgotten some of the
notation. The following represents a beginner’s route into the MATLAB package.
Although we use version 6, almost all the basic commands are valid in MATLAB version
5.x.

Throughout the text of this book, MATLAB exercises will be marked by .

33

Starting MATLAB

Basic operations

Transfer functions

Plotting

Help window/ Tips

Functions

Matrices

Polynomials

Vector manipulation

Vectors

Exercise

Exercise

Exercise

Exercise

Exercise

Exercise

Exercise

Exercise

Exercise

More advanced
features

More advanced features

M-files and
functions

Exercise

Interactive design
tool: rltool

Exercise

Reference page

The MATLAB
environment

3.2 Starting MATLAB

To run MATLAB, move the cursor to the MATLAB icon and double-click on the left-hand
mouse button.

The MATLAB desktop will open. This is an integrated development environment for
working with MATLAB suite of toolboxes and programs. It initially looks fairly complex.
We see in Figure 3.1 that there are three open windows, which represent:

� the Command Window

� the Launch Pad and Workspace

� the Command History and Current Directory

We can make a particular window active by clicking anywhere inside its borders.

For this chapter, we use only the Command Window. To simplify our display, we can
view only the Command window. This can be achieved by going to View, Desktop Layout
and then to Command Window Only. The result is shown in Figure 3.2. This is the
window that would open if we had used MATLAB 5.x.

3.2 Starting MATLAB 53

Launch Pad and
Workspace window

Command History and
Current Directory
window

Command Window

Figure 3.1 MATLAB Desktop (version 6).

However, we will use the other windows once we become more proficient and will give
a brief summary of their purpose later in the chapter.

Command Window: We type all our commands in this Window at the prompt (>>) and
press return (↵) to see the results of our operations.

3.3 Basic operations

As we go through this tutorial, we introduce new MATLAB commands and functions. We
have used the following two symbols in the tutorial:

1. The symbol ↵ is used at the end of a command line to indicate that we need to press the
Return Key to execute the command.

2. The symbol � shows what MATLAB returns to the Command Window when we issue
our command.

We can assign a numerical value (data) to a variable using the equal (=) sign. For
example, type:

a = 2

and press return (↵). MATLAB returns (�):

� a =
2

or b = –5.2 ↵

� b =
–5.2

54 Software toolkit: MATLAB

Figure 3.2 Command window only on display.

Exercise 1: Basic operations
Complete the table below. The basic arithmetic operations use the operators shown. Use values
of a = 4 and b = –2.1

Operation Operator Example Result

Plus + a+b↵ �

Minus – a–b↵ �

Multiply * a*b↵ �

Power ^ a^b↵ �

Divide / a/b↵ �

3.4 Vectors

Enter each element of the row vector (separated by a space) between square brackets, and
set it equal to a variable. For example, to create the row vector x, enter into MATLAB:

x=[1 2 3 4]↵
� x =

1 2 3 4

To enter a column vector, separate the elements by a semicolon ‘;’. For example:

y=[1;2;3;4] ↵
� y =

1
2
3
4

We can determine the size of the vectors x and y by using the size command.

size(x)↵
� ans =

1 4

size(y)↵
� ans =

4 1

If we want to create a vector with elements between 0 and 5 evenly spaced in incre-
ments of 0.5, we can use:

t = 0:0.5:5↵
� t =

Columns 1 through 7
0 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000

Columns 8 through 11
3.5000 4.0000 4.5000 5.0000

3.4 Vectors 55

Exercise 2: Vectors

(a) Enter the first three prime numbers as a row vector.

(b) Repeat (a), but use a column vector.

(c) The following table shows some measurements of voltage across a resistor as a function of
time.

Time (s) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Voltage (V) 1.1 1.2 1.3 1.4 1.5 1.4 1.3 1.2 1.1 1.0

(d) Enter the time as a column vector called tim.

(e) Enter the voltage as a column vector called vol.

(f) Enter the command plot(tim,vol)↵ .

Which variable is on the independent axis?
Which variable is on the dependent axis?

3.5 Vector manipulation

Manipulating vectors is almost as easy as creating them. Try the following operations:

a=[1 2 3 4]↵
x=a+2↵ Result:
x=a-2 ↵ Result:
x=a*2 ↵ Result:
x=a/2↵ Result:

Let b = [1 2 3]. What happens if we try to add two variables (vectors: a+b) of different
dimensions? What is the error message?

(We note that, in the example x=a+2↵ , variable a is size 1 × 4 and 2 is size 1 × 1. Tech-
nically they could not be added together, as the dimensions are not compatible. However,
MATLAB assumes, when you add/subtract/multiply/divide a variable by a number, that
all elements of the vector should be operated on. This is not true with two ‘variables’, as
we see now.)

For x = [1 2 3 4] and y=[5;6;7;8], would the following operations be acceptable?

x + y ? Yes/No

x*y ? Yes/No

y*x ? Yes/No

In this case we note that we cannot add x + y since they do not have appropriate dimen-
sions. However, if we transpose x →x′ (where ′ indicates the transpose), we can then
evaluate:

x+y′

The size command could be used to verify the dimensions of the vectors.

56 Software toolkit: MATLAB

Exercise 3: Vector manipulation
Try the following vector operations and write down the results. Ensure that the dimensions of x
and y are appropriate for the operations attempted. Note that some of the operators are different
from scalar operators.

Operation Operator Example Notes

Plus + x+y↵ Must be same dimension

Minus – x–y↵ Must be same dimension

Multiply * x*y↵ Must be appropriate dimension

Multiply element by element .* x.*y↵ Must be same dimension

Divide element by element: second vector

elements by first vector elements

./ x./y↵ Must be same dimension

Divide element by element: first vector

elements by second vector elements

.\ x.\y↵ Must be same dimension

Explain in words the three operations: .*, ./ and .\.
Think of an example where we might need this type of operation.

Remark Note that if we put a semi-colon (;) at the end of a MATLAB command, MATLAB does not return
the values to the window. Try:

a=[1 2 3]; ↵
b=[-2 -3 4]; ↵
c=a+b ↵
c=a-b↵

3.6 Polynomials

We can enter the coefficients of a polynomial as a row vector. The coefficients should be
entered in descending order of the powers of x. For example

p(x) = x2 + 10x + 3

can be represented by

p = [1 10 3]; ↵

How would we enter the following polynomial, q: q(t) = 6t3 + 4t2 + 3t + 1?
MATLAB can interpret a vector of length n + 1 as the coefficients of an nth order poly-

nomial. Thus, if the polynomial is missing any coefficients, we must enter zeros in the
appropriate place in the vector. For example

y(s) = 6s4 + 1

would be represented in MATLAB as:

y = [6 0 0 0 1]↵

3.6 Polynomials 57

Finding roots: Use the following command:

roots([6 0 0 0 1])↵ or roots(y)↵

How would we represent the following polynomial: m(s) = 4s4 + s3 + 2s?
Determine the roots of m(s) = 0.

Multiplying/dividing polynomials: The product of two polynomials is found by taking
the convolution of their coefficients. The function conv will do this for us.

Polynomial: X(s) = s + 2 MATLAB representation: x = [1 2];↵
Polynomial: Y(s) = s2 + 4s + 8 MATLAB representation: y = [1 4 8];↵
Polynomial: Z(s) = (s + 2)(s2 + 4s + 8) MATLAB representation: z = conv(x,y)↵

= X(s)*Y(s)

Dividing two polynomials is just as easy. If Z(s) = Q(s)Y(s) + R(s), then given Z(s) and Y(s)
the deconv function will return the result, Q, as well as the remainder, R. Note that if there
is more than one output for a function, they should be put inside square brackets and be
separated by commas. Try to divide Z(x) by Y(x):

[Q, R] = deconv(z,y)↵

How do we check the result?

Exercise 4: Polynomials
We wish to plot a second-order polynomial y(t) = 4t2 + 2t – 3 as a function of time and check the
roots of the equation. We can do this in two ways.

1. We can enter the polynomial coefficients as a vector and use the roots command.

2. We can plot the function y against time and note the points where the function crosses the
time axis (that is, points where y = 0). To do this, follow these steps.

(a) Create a vector t which has values evenly spaced from –5 to 5, in steps of 0.5.

(b) Calculate y(t) = 4t2 + 2t – 3 for all values of the time vector, t. Since t is a vector, think care-
fully how you will calculate 4t2 + 2t – 3.

(c) Request a plot using plot(t,y). Find the roots on the graph. Are the roots on the graph
similar to the answer in Item 1 above?

3.7 Matrices

Entering matrices into MATLAB is the same as entering a vector, except that each row of
elements is separated by a semicolon. Try:

B = [1 2 3 4;5 6 7 8;9 10 11 12] ↵

Matrices in MATLAB can be manipulated in many ways. For example, we can find the
transpose of a matrix using the apostrophe key ('). Try:

C = B’↵

Remember that the order of multiplication is important when dealing with matrices.
Would the following operations be allowed?

58 Software toolkit: MATLAB

D = B + C↵ Yes/No

D = B + C'↵ Yes/No

D = C * B ↵ Yes/No

D = B * C↵ Yes/No

E = B^3 ↵ (Power of a matrix) Yes/No

X = inv(B) ↵ (Inverse of a matrix) Yes/No

Exercise 5: Matrices
Find the solution of the following set of linear equations:

2x1 + 5x2 – 3x3 = 6

3x1 – 2x2 + 4x3 = –2

x1 + 6x2 – 4x3 = 3

Hint: We write this in the matrix form, that is, AX = B, where

A is the matrix of coefficients of x1, x2 and x3
X is the column vector which will contain the solutions x1, x2 and x3
B is the column vector of values on the right-hand side

Answer: X = A–1B = ?

3.8 Functions

MATLAB includes many standard functions (and constants). Each function is a block of
code that accomplishes a specific task.

Common functions
sin, cos, log (loge), log10 (log10), exp, sqrt, mean, std (standard deviation)

Common constants
pi = π returns 3.1416. The variables i or j represent the square root of –1 (complex
numbers).

Try the following sine function:

x = sin(pi/4)↵ Result =?

We wish to plot the sine wave of frequency 3 rad/s and amplitude 1 over a period of time
between 0 to 20 seconds (in steps of 0.1 seconds):

(a) Write down the sine wave expression: y(t) = ?

(b) Calculate the vector y for the values of time given. Graph the results using an
appropriate plot command.

3.8 Functions 59

Function inputs and outputs
Each function in MATLAB has a number of inputs and output variables. We should define
all the necessary inputs before we use a function. We can use the help function to check
the inputs and outputs of any function we are going to use. For example, if we wanted to
find out about the use of the abs function, we could type

help abs↵

MATLAB returns:

ABS Absolute value.
ABS(X) is the absolute value of the elements of X. When
X is complex, ABS(X) is the complex modulus (magnitude) of
the elements of X.

Therefore by typing

y=abs(x);

the variable y would hold the absolute values of x.
If we want to find the modulus and the angle of a complex number, we can enter the

following:

s = j*pi/4↵ define complex number s
g = 1/s↵ define complex function g
mag=abs(g)↵ find the magnitude: output: mag input: g
ang=angle(g)↵ find the angle: output: ang input: g

Once we have defined the output variables, they will be stored in MATLAB workspace
and we can manipulate them as we wish.

Exercise 6: Functions
A sine wave of amplitude 5 and frequency 0.1 Hz is applied to the input of an analogue device,
which has a constant gain of 1.5 over all frequencies. Calculate the output signal for the interval 0
to 10 seconds in increments of 0.1 seconds.

Use the command plot(t,y)↵ to see a graph of this signal. What is the frequency of the sine
wave on the plot? (Use the grid command to help work this out (approximately)).

Does it agree with the frequency of 0.1 Hz given in the question?

3.9 Help window/tips

To determine the usage of any function, enter:

help function name

Try

help sin↵

To see the help window, type:

helpwin↵

60 Software toolkit: MATLAB

It lists the directories for help for many of the other toolboxes that come with MATLAB
that we may use later in this book.

For example, click on MATLAB\elfun to see some basic functions. With more practice we
can even write special MATLAB files (M-files) to save re-typing the same commands.

Tips 1. MATLAB variables are case-sensitive, that is, temp and Temp would be two different
variables.

2. We can use the command who to see the variables in the MATLAB workspace.

3. We can get the value of a particular variable at any time by typing its name. Use who to
list all the variables in the workspace. Type the name of one of these variables to show
its current value.

4. We can use clear all to clear all the variables from the workspace or clear (variable
name) to clear only a single variable.

5. We can also have more than one statement on a single line, so long as we separate them
with either a semicolon or comma. Try:

gain = 20*log10(2), ang=angle(0.5*i);↵

Now, enter gain ↵ and ang ↵ to see the results.

6. If we do not assign a variable to a specific operation or result, MATLAB will store the
outcome of the operation in a temporary variable called ans. For example:

3+6↵
ans

= 9

Exercise 7: Help/tips

(a) Enter the complex number 3 + j4.

(b) Find the modulus and angle of this complex number.

(c) Change the value of magnitude calculated to dB and change the value of angle to degrees.

Write down the MATLAB commands that were entered.

3.10 Plotting

It is easy to create plots in MATLAB. Suppose we make a time vector and then compute
the sine values of the vector at each time point.

t=0:0.05:10; ↵
y = sin(t); ↵
plot(t,y) ↵

Basic plotting is very easy in MATLAB, and the plot command has extensive add-on capa-
bilities. Some useful features are given here.

3.10 Plotting 61

3.10.1 figure command
When we plot a graph, MATLAB opens a window called the Figure Window. Every time
we plot a graph, this figure window is updated. If we want to keep the old graphs, we can
open a new window by using the command:

figure↵

Try:

plot(t,y) ↵
figure↵
plot(t,2*y)↵

3.10.2 Plotting several responses on same axis
Plot the first response graph required and then enter the command:

hold on↵

Try these commands:

figure(2); ↵
plot(t,y) ↵
hold on ↵
plot(t,2*y) ↵
plot(t,0.5*y) ↵

Enter hold off to return to the default mode.

3.10.3 Finding the coordinates of a point on a graph
For graphs using the plot command, use

ginput(N)

N is the number of points at which coordinates may be found.
This command will give a cursor which we can move to a point on the figure using the

mouse, and then press the left-hand button to see the coordinates in MATLAB windows.
Alternatively, click on any point on the graph and a text window pops up with the coordi-
nates’ values.

Example Type the following:

t=0:0.05:10; ↵
y = sin(t); ↵
plot(t,y) ↵
ginput(1) ↵

Use the mouse to click on the maximum value of the sine response. Look in the MATLAB
Command Window to see the values of x and y.

3.10.4 Labelling plots and axes
We can use the Insert pull-down menu to place text, labels and lines on a graph (Figure
3.3).

We use the sine wave as previously generated:

t=0:0.05:10; y = sin(t); plot(t,y) ↵

62 Software toolkit: MATLAB

1. Go to Insert and then choose X Label. A text box will appear under the x-axis. Type
‘Time (sec)’ and then click on any point on the Figure Window.

2. Go to Insert and then choose Y Label. A text box will appear along the y-axis. Type
‘Amplitude’ and then click on any point on the Figure Window.

3. Go to Insert and then choose Title. A text box will appear on the top of the graph box.
Type ‘Sine Wave Plot’ and then click on any point on the Figure Window.

4. Go to Insert and then choose Text. A text box will appear on the graph. Type ‘Example
of using labels’ and then click on any point on the Figure Window. Click on the text
box and move it to the top right-hand corner.

5. Go to Insert and then choose Line. The mouse cursor changes to a cross. Click on zero
and then click on the point (0,10). A line will appear parallel to the x-axis at the y = 0
level.

The resulting plot should look like Figure 3.4.

3.10.5 Frequency response graphs
The command semilogx is the same as plot except that a logarithmic (base 10) scale is
used for the x-axis. This command is used in the exercise below.

Exercise 8: Plotting
The input–output relationship of an RC circuit can be represented by the following
complex function:

where K is the gain and τ is the time constant.

3.10 Plotting 63

Figure 3.3 Example of Insert command (MATLAB v6).

w
tw

= =
+

o

i
(j)

j 1
V K

g
V

(a) For K = 10 and τ = 5, calculate the gain and phase of Vo/Vi for ω= 0.01, 0.05, 0.1, 2, 5, 10
(rad/s).

(b) Plot the gain and phase using the semilogx command.

Hints:

1. Enter the values K and τ as K and tau. Define a frequency vector, w.

2. Calculate g=K ./ (j*tau*w+1). Note the operation ./.

3. Calculate the gain in dB and the phase in degrees.

4. Plot the response using semilogx(w,gain)↵ and semilogx(w,phase).

5. Label the axes and insert a title for the plot.

3.11 Transfer functions in MATLAB

A transfer function can be entered into MATLAB using different commands.

Method 1

1. We can use the command tf(num,den), where num and den are vectors of coefficients of
the numerator and denominator polynomials, respectively. Enter the transfer
function:

64 Software toolkit: MATLAB

0 1 2 3 4 5 6 7 8 9 10
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1
Sine Wave Plot

Time (seconds)

Example of using labels

Figure 3.4 Result of labelling and annotating a graph.

1 2
3 1

3 2

s
g

s s

+
=

+ +

num = [3 1]↵
den = [1 3 2] ↵
g1 = tf(num,den) ↵ enter the transfer function

2. Alternatively, we can define s as a transfer function and then use it to ‘write’ the
transfer function directly.

s=tf('s') ↵
g1= (3*s+1)/(s^2+3*s+2) ↵

Method 2

1. We can use the command zpk(zeros,poles,gain), where zeros, poles and gain are
vectors of the zeros, poles and gain of the transfer function. For example, we can enter
the following transfer function in the form:

zeros = [-5]↵
poles = [-3 –10] ↵
gain = 4 ↵
g2 = zpk(zeros,poles,gain)↵ enter the transfer function

or equivalently

g2 = zpk([-5],[-3 –10],4) ↵

2. Alternatively, we can define s as a transfer function and then use it to ‘write’ the
transfer function directly:

s=zpk(' s') ↵
g2= 4*(s+5)/((s+3)*(s+10)) ↵

If we have a factor with complex poles in the transfer function,

the complex roots of the denominator can be entered easily as:

g3=4*(s+5)/((s+2+3*j)*(s+2-3*j)) ↵

Try entering the following transfer functions:

3.11.1 Transfer function manipulation
Once various transfer functions have been entered, we can combine them together.

Use the transfer functions

3.11 Transfer functions in MATLAB 65

2
4(5)

(3)(10)
s

g
s s

+
=

+ +

3 2
4(5) 4(5)

(2 3j)(2 3j) (4 13)

s s
g

s s s s

+ +
= =

+ + + - + +

4 5
12(3 2) 2(8)

(3 7j)(3 7j) (3)(0.1)(4 6)
s s

g g
s s s s s

+ +
= =

+ + + - + + +

6 7
1 5

and
2 3

g g
s s

= =
+ +

to complete the following table.

Operation Result

Addition g6 + g7

Subtraction g6 – g7

Multiplication g6 * g7

Division g6/g7

Combination of operations g6/(1 + g6)

Now that we have entered various transfer functions, it is easy to use some of the
control analysis commands available from the various MATLAB toolboxes. The
following commands represent some of the common control analysis operations that we
will meet in this book.

3.11.2 Time responses
If g represents a system transfer function, then:

1. For a unit impulse response use the command: impulse(g)↵

2. For a unit step response, use the command: step(g)↵

3. For a step response of magnitude K, simply multiply
the transfer function, g, by the numerical value of K: step(K*g)↵

For some functions, such as step or bode, MATLAB graphs are automatically generated.
For these graphs, we can use the cursor to find the coordinates of different points.

Example Type the following:

s=tf('s') ↵
g=1/(s+1) ↵
step(g) ↵

Click on a point on the graph. A cursor will appear as shown in Figure 3.5. We can hold the cursor
using the mouse and move over the graph to see the coordinates at different points. In MATLAB
v6, if we release the mouse the text window containing the coordinates will remain on the graph.
We can delete the text window by clicking on it using the right-hand mouse button.

3.11.3 Poles and zeros

1. To see the roots of the numerator (called the zeros)
of g(s) use the command: zero(g)↵

2. For the roots of the denominator (called the poles) of
a transfer function use the command: pole(g)↵

3. For a pole–zero map use the command: pzmap(g) ↵

66 Software toolkit: MATLAB

3.11.4 Feedback control
To determine the closed-loop control transfer function from a system with negative feed-
back we can use the command:

g=feedback(g,h) ↵

where g is the forward transfer function and h represents the transfer function of the
components in the feedback path. If positive feedback is required then the following
command can be used:

g=feedback(g, h, 1) ↵

A general quick-reference MATLAB help sheet to functions that we will meet
throughout this book is included at the end of this chapter.

Exercise 9: Transfer functions
Given the following transfer functions:

(a) Enter g1(s) using row vectors.

(b) Enter g2(s) using the s=tf('s') notation.

Record from the screen the MATLAB commands that were entered.

(c) Find the roots of the numerator and denominator polynomials using the roots command.

(d) Compare with the results using the zero and pole commands.

(e) Examine where the roots are using the pzmap function.

3.11 Transfer functions in MATLAB 67

Figure 3.5 Finding coordinates using the cursor.

1 22 3
3(1) 2 3

() , ()
3 1 1

s s
g s g s

s s s

+ +
= =

+ + +

3.12 MATLAB environment

We return now to examining the MATLAB window environment. This can be achieved by
choosing View, Desktop Layout and then Default. The default Desktop windows are
displayed once more.

Launch Pad: We use this window (Figure 3.6) to execute MATLAB demos and programs. It
has a tree structure similar to Windows Explorer. Double-clicking on a displayed icon
runs the program associated with the icon.

Workspace window: This shows the name, size, bytes and class of any variable we define
in MATLAB environment. For example, in Figure 3.7 we can find that we have used a vari-
able x in the command window and the variable x is a double array of size 1×3. We can
therefore check the size of variables or the names of variables that we have been using.

If we double-click on the name of the variable, the array editor window appears (Figure
3.8). We can change the format of the data, for example from integer to floating point, and
the size of the array. We can do this by changing the options in the window.

68 Software toolkit: MATLAB

Figure 3.6 Launch Pad window.

Figure 3.7 Example of entries in the Workspace.

Command History window: This window (Figure 3.9) contains a record of all the
commands that we type in the command window. By double-clicking on any command,
we can execute it again.

Current Directory window: This window (Figure 3.10) shows the directory on the hard
disk which we use to run or save our programs. The default directory is the \MATLAB\work

3.12 MATLAB environment 69

Figure 3.9 Command History window.

Figure 3.10 Current Directory window.

Figure 3.8 Array editor window.

directory. We can change this directory to our own directory on the hard disk or a floppy
drive by typing the name in the pull-down window.

Although these are the windows immediately available on the desktop, we also intro-
duce the Help window. This can be activated by choosing Help from View menu. We can
use this window (Figure 3.11) to search for help on any commands or functions.

3.13 M-files and functions

We often repeat sequences of commands, or need to enter large amounts of data that we
may need to alter. We can create files that contain MATLAB code that save us rewriting
the commands. These files are called M-files. We can create M-files using the MATLAB
editor or any other text editor. Using the MATLAB editor has the advantage that it can
also be used as a debugger to find any possible errors in our programs.

The MATLAB editor can be invoked by selecting File from the pull-down menu, then
New and then M-file, as shown in Figure 3.12. The editor window will open and we can
type in our program.

After typing the program, we should save it on the hard disk. If we select File from
the pull-down menu on the editor window, and then Save, the program will be saved in
the current directory. If we want to save the file in a specific directory, we should change
the working directory of MATLAB using the Directory window and then save the
program.

M-files can be run like any MATLAB commands or functions by typing the name of the
file and the input data if needed in the MATLAB Command window and then pressing
return.

70 Software toolkit: MATLAB

Figure 3.11 Help window (MATLAB v6).

We can write two types of M-file:

1. Programs that do not need any input or output arguments. They operate on the data in
the workspace.

2. Functions which require input data and return output arguments. Any internal data in
the function will then be local to the function and cannot be accessed from the
workspace.

Example Write an M-file which enters the following transfer function, plots the two step responses corres-
ponding to k = 1 and k = 2 on the same plot and titles the plot:

G s
k

s1 1
() =

+

Select File, New and the M-file to open the editor.
Enter the following code

s=tf('s');
k=1;
g=k/(s+1);
step(g);
hold;
k=2;

3.13 M-files and functions 71

Figure 3.12 Opening an M-file from the MATLAB Command window.

g=k/(s+1);
step(g);
title ('Step response for k=1 and k=2');

Now select File, Save As and save the file as twoplot.m in the working or your own directory.
Return to the MATLAB Command window. By typing

twoplot

at the MATLAB prompt the file should run and produce the plot. If it does not run, the most likely
error, apart from a typing error, is that the directory you have saved the file into is not in the
MATLAB path. If you save to MATLAB\work, then the file will be found. Alternatively you can add
your own working directory to the MATLAB path.

Example We would like to write a MATLAB program to add four sine waves of amplitudes A1 = 1, A2 = 0.5,
A3 = 0.333 and A4 = 0.25 and frequencies in rad/s of ω1 = 1, ω2 = 2, ω3 = 3 and ω4 = 4, respec-
tively and then plot the result for the time horizon t = 0 to t = 10 seconds with a sample time of
0.01 s.

We first write a function to automate the process of calculating the sine wave given its ampli-
tude, A, its frequency w rad/s, the time period T and the sample interval DT.

We can then call this function four times to produce the final program we required.

Creating the function for the sine wave calculation
Select File, New and the M-file to open the editor.

Writing a function
Functions are defined by writing an M-file with a specific format. The first line of the M-file must be
of the form:

function [x1out, x2out, ...] = function-name(data1, data2, ..., datan)

where

x1out, x2out, ... are the names of the variables that will be returned from the function

function-name is the name of the function that can be used from the command line (or a script
M-file). It must also be the name of the M-file that the function is saved as.

data1, data2, ..., datan are input variables that should be entered at the command line and are
required by the function to complete the calculation.

After the first line, a function M-file is written as a regular script M-file.

Remarks 1. The function name should be different from any used by MATLAB and its toolboxes.

2. We can add comments to an M-file by typing %. Anything on the same line after the % will be
ignored by MATLAB when executing the M-file. In the MATLAB Editor, comments are
coloured green.

Type in the program shown in the MATLAB Editor window (Figure 13.13) and then save it as
myexample.m.

We can now test the function by typing in the following commands:

t = 0:0.01:2;

72 Software toolkit: MATLAB

y1=myexample(1,10,t);
plot(t,y1)

This should give the response in Figure 3.14.

Writing the main programs
We have to define all the data in the main programs and then call the function myexample.m four
times and add the results. We can then plot the response of the sum of the sine waves.

Type in the program shown in the command window of Figure 3.15 and save it as mytest.m.
Run mytest to obtain the response in Figure 3.16.

3.13 M-files and functions 73

Figure 13.13 Function for calculating sine wave response.

Figure 3.14 Output of function myexample.

74 Software toolkit: MATLAB

Figure 3.15 Program to sum four sine waves.

Figure 3.16 Sum of four sine waves; output of program mytest.

3.14 SISO Design Tool: rltool

MATLAB includes an interactive design tool called SISO Design Tool which is activated
by typing rltool in the MATLAB command window. This provides a convenient method
for linking time, frequency and root locus design together. We briefly describe its use here
and will return to it in the appropriate sections throughout the text. By typing rltool in
the MATLAB window, the SISO Design Tool window (Figure 3.17) appears.

We can import models into the design tool by clicking on the File menu and then
choosing Import. The Import System Data window will appear (Figure 3.18).

3.14 SISO Design Tool: rltool 75

Figure 3.17 SISO Design Tool window.

Figure 3.18 Import System Data window.

We find that on the left-hand side we can choose which area we would wish to import
our data from. If we choose the Workspace, we find a list of SISO models in our workspace
which we could import. On the right-hand side we see that there is a basic feedback loop
with transfer function blocks representing the plant or process, G, the sensors or
measurement, H, the compensator or controller, C, and a prefilter, F, which acts on the
reference input.

We can highlight one of the SISO models listed. Then, by clicking on the arrow opposite
G and then OK the model will be imported and the SISO Design Tool window will change
to that shown in Figure 3.19.

Note that the models should be entered into the MATLAB environment before we can
import them into the design tool.

We can either import the compensator (controller) or enter it using the red cross (pole)
or the circle (zero) on the top left-hand corner of the SISO design tool window.

By choosing the Tools menu and Loop responses, we can display the Step, Impulse,
Bode, Nyquist or Nichols plots for the system, as listed in Figure 3.20.

There are several features which can be examined by clicking on various points:

1. By clicking on any point on the graph, we can see the loop gain in the text box at the
bottom of the rltool window.

2. By clicking on the small red box, we can also see the damping and the natural
frequency of the closed-loop system.

3. We can display the various plots, such as Bode or step response. By right clicking on
each plot, we can find the values of various characteristics that are associated with
each of the individual plots.

We will discuss the SISO Design Tool in more detail in Chapter 13.

76 Software toolkit: MATLAB

Figure 3.19 File imported to SISO Design Tool window.

What we have learnt

� To enter numbers vectors, matrices and transfer functions easily into the package.

� To perform several mathematical calculations and operations on different variables.

� To plot graphs of results.

� To form a step response of a transfer function and plot the output response.

� To write M-files and M-functions.

3.14 SISO Design Tool: rltool 77

Figure 3.20 Response available from SISO design tool.

General MATLAB commands

78 Software toolkit: MATLAB

MATLAB command Usage Description

' x' Transpose

.* x.*y Element by element multiplication

./ x./y Element by element division

log10 b=log10(a) b = log10a

Plotting

plot plot(t,y)

plot(t,x(:,2))

Plots y against t

Plots second column of matrix x against t

hold hold on

hold off

hold is a toggle switch which will hold or release plot

on current figure

ginput ginput(n) LH mouse click n times on graph and n pairs of (x,y)

coordinates are given

zoom LH mouse click on graph to zoom in, RH mouse click to

return to original

gtext gtext('text') LH mouse click on graph to place ‘text’

figure figure(n) Changes (or creates) current figure as figure number n

close close(n) Closes figure number n

Transfer functions

tf g=tf(num,den)

s=tf(‘s’)

Creates transfer function from numerator and denomi-

nator coefficient vectors

Creates the Laplace transform s, which can be used to

write the transfer function directly

zpk [num,den]=zpk(zeros,poles,

gain)

s=zpk(‘s’)

Creates transfer function from vectors of zeros and

poles and the multiplying gain

Creates the Laplace transform s, which can be used to

write the transfer function directly

feedback gcl=feedback(g,h) gcl is closed loop transfer function if unity feedback

used and g is forward transfer function and h is feed-

back transfer function

conv n3=conv(n1,n2) n3 creates the numerator coefficient vector of the multi-

plication of two numerator polynomials n1 and n2

deconv [xx,R]=deconv(z,y) Divides polynomial given by z by polynomial y, puts

answer in xx and remainder in R

General MATLAB commands 79

pole pole(g) Provides poles of transfer function g

zero zero(g) Provides zeros of transfer function g

roots roots(den) Provides roots of polynomial equation den(s)=0

pzmap pzmap(g) Pole–zero map of transfer function g

Time response

step step(g)

step(num,den)

step(K*g)

Plots the step response of transfer function g

Plots the step response of transfer function given by

numerator and denominator

Plots the step response of transfer function K*g

InputDelay set(g,'InputDelay',3) Sets the time delay of the transfer function g to 3

seconds

Bode plots

max (min) [xmax,i]= max(x) Give maximum (minimum) output of vector x at position

i in vector

margin margin(g)

margin(num,den)

Gives gain margin and phase margin

Gives gain margin and phase margin

bode bode(g)

bode(num,den)

[mag,phase,w] = bode(g)

[mag,phase,w]= bode(num,den)

Plots frequency response plot of transfer function g

Plots frequency response plot of transfer function given

by numerator (num) and denominator (den)

Magnitude (in absolute value) and phase (degrees) and

frequency vector of frequency response plot

Magnitude (in absolute value) and phase (degrees) and

frequency vector of frequency response plot

Nichols

nichols nichols(g)

[mag,phase,w]=nichols(g)

Plots Nichols plot of transfer function g

Magnitude (in absolute value) and phase (degrees) and

frequency vector of frequency response plot

ngrid ngrid Plots the Nichols chart on the Nichols plot

Root locus

rlocus rlocus(g) Produces a root locus plot for transfer function g

sgrid sgrid Overlays the lines of constant damping and natural

frequency on the root locus plot

General MATLAB commands (continued)

Multiple choice

80 Software toolkit: MATLAB

M3.1 Find the correct expression to enter matrix
A into MATLAB.

(a) A=[1 2 3, 0 –1 1, 1 0 2]
(b) A=[1 2 3; 0 –1 1;1 0 2]
(c) A=(1 2 3;0 –1 1;1 0 2)
(d) A=[1; 0; 1; 2; –1; 0; 3; 1; 2]

M3.2 Which MATLAB expression can be calcu-
lated for the vectors x=[1 2] and y=[1; 2]?
(a) y/x
(b) x*.y
(c) y*.x
(d) x*y

M3.3 Find the correct expression to enter transfer
function g(s) into MATLAB.

(a) g(s)=((s+1)/(s+2))*(s+3)
(b) g(s)=((s+1)/(s+2)(s+3))
(c) g=((s+1)/(s+2))*(s+3)
(d) g=(s+1)/((s+2)*(s+3))

M3.4 A function is useful to simplify:
(a) Repeated calculation
(b) Difficult expressions
(c) Large matrices
(d) (a) and (b)

M3.5 The correct expression for entering the
function y(t) = (3t3 + 1) is:
(a) y(t)=(3t3 + 1)
(b) y=(3t3 + 1)
(c) y=(3*t.*t.*t + 1)
(d) y=(3*t^3 + 1)

M3.6 To find the step response of transfer func-
tion g(s) and H(s), we use:
(a) step(g(s),H(s))
(b) step(H(s),G(s))
(c) step(g,H)
(d) step(g,s)

M3.7 If a transfer function G(s) is entered as
g= 1/(s+1)

the command to find the frequency response of the
system G(s) is:

(a) bode(G)
(b) bode(g)
(c) BODE(g)
(d) Bode(G)

M3.8 If we have complex poles in the transfer
function:

the transfer function can be entered easily as:
(a) g3=4*(s+5)/((s+2+3*j)*(s+2-3*j))
(b) g3=4*(s+5)/((s+2+3j)*(s+2-3j))
(c) g3=4*(j+5)/((s+2+3*j)*(s+2-3*j))
(d) g3=4(s+5)/((s+2+3*j)*(s+2-3*j))

M3.9 To enter the transfer function:

we can use:
(a) num = [3 1]; den = [1 3 2];

g1 = tf(num,den);
(b) num = [3 1]; den = [1 3 2];

g1 = tf(den,num);
(c) num = [3; 1]; den = [1 3 2];

g1 = tf(num,den);
(d) num = (3 1); den = (1 3 2);

g1 = tf(num,den);

M3.10 Which expression would produce a sine
wave plot?
(a) t=0:0.25:10; y = sin(t); plot(t,y)
(b) t=0:0.25:10; y = sin(t); plot(y,t)
(c) y=0:0.25:10; t = sin(y); plot(t,y)
(d) t=10:0.25:0; y = sin(t); plot(ty)

È ˘
Í ˙= -Í ˙
Í ˙Î ˚

1 2 3

0 1 1

1 0 2

A

(1)
()

(2)(3)
s

g s
s s

+
=

+ +

3
4(5)

(2 3j)(2 3j)
s

g
s s

+
=

+ + + -

1 2
3 1

3 2

s
g

s s

+
=

+ +

Questions: practical skills

Q3.1 Create a time vector t with points spaced at 0.1 seconds between 0 and 10 seconds. Plot the
function y = 2 sin t + 3 cos t and use the max function to find the maximum value of the function. Verify
using the cursor.

Q3.2 Find the roots of the following polynomial equations:
(a) s3 + 2s2 + 1 = 0
(b) p3 + 1 = 0
(c) –3s2 – 5 + 2 = 0

Q3.3 For the following transfer function descriptions, enter the MATLAB commands to provide the
appropriate transfer function expression.
(a) System GA has a unity gain at ω= 0 rad/s, a pole at –3 and a zero at –4.
(b) System GB has a gain of 10 at ω= 0 rad/s, a zero at –1 and two poles at –1 + j0.5 and –1 – j0.5.
(c) System GC has an infinite gain at ω= 0 rad/s, a zero at –6 , two poles at the origin and a pole at

–4.

Q3.4 For the following system, where G1(s) = 1/(τ s + 1), and U(s) is a unit step input, write an M-file to
plot the output y(t) for the three cases τ = 2 , τ = 4 and τ = 6 seconds. Plot the three responses on
the same graph.

Q3.5 Given the following transfer functions:

(a) Enter g1(s) using row vectors.
(b) Enter g2(s) using the s=tf('s') notation.

Record from the screen the MATLAB commands that were entered.
(c) Find the zeros of the numerator and denominator of g1(s) using the roots command.
(d) Compare with the results using the zero and pole commands.

Examine where the roots are using the pzmap function.
(e) Find the zeros and poles of g2(s) using appropriate commands. Use the pzmap function to ascer-

tain if the system is stable (poles must lie in the left-half plane).

Q3.6 Write an M-file to solve the following set of equations.

Q3.7 The Laplace transform of a time delay is e–Ts. The following transfer function has a time delay of
2 seconds.

(a) Enter a transfer function g1 which represents g(s) without the time delay.
(b) Enter get(g1); we see in the list of attributes of g1 that InputDelay is zero.
(c) Use the following commands to enter g(s):

Practical skills 81

U s()
G1()s

Y s()

+ + -
= =

+ + + + +

2 2

1 23 2 3 2
2 1 2 3

() , ()
3 1 (1)(1)

s s s
g s g s

s s s s s

2 1 0 0 1

1 2 1 0 1

0 1 2 1 1

0 0 1 2 2

x
y
z
t

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙

-Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

210e
()

5 1

s
g s

s

-
=

+

g=g1;
set (g,'InputDelay',2)

(d) Plot the step response of the system with and without the time delay and compare the result.

Problems

P3.1 Write a MATLAB function to check whether the number N is prime. (Hint: investigate the mod
function.)

P3.2 The input–output relationship of a servo system can be represented by the following complex
function:

where K is the gain and τ is the time constant.
(a) For K = 10 and τ = 2.5, calculate the gain and phase of θ/Vi for ω= 0.01, 0.05, 0.1, 2, 5, 10 (rad/s).
(b) Plot the gain and phase using the semilogx command.

P3.3 Write an M-file to find and plot the response of the following system to an input signal of R(s) = 10/s.

P3.4 Plot the frequency response of the following system for K = 1.

G s
K

s s
()

()
=

+
10

5

(a) Determine the frequency at which the magnitude plot crosses the 0 dB line.
(b) What value of K would ensure that the magnitude plot crosses 0 dB at 5 rad/s?

82 Software toolkit: MATLAB

i
(j)

j (j 1)
K

g
V
q

w
w tw

= =
+

0.1
s

1
s+ 1

+

–

R(s) Y s()

Software toolkit: Simulink

What is Simulink?

Simulink is a software package with a graphical user interface for modelling, simulating
and analysing dynamical systems. We can implement the block diagrams of the models
and the control systems we study in this book and see how see how they perform. Firstly
we run a Simulink model and show how a model can be used to give us information about
the behaviour of a system.

4.1 Using Simulink for analysis

By typing Simulink in the MATLAB command window we display the Simulink menu,
from which we can create a new model or open an existing one. We can also click on the
Simulink icon shown in Figure 4.1.

The Simulink Library Browser will pop up and we can load a previous Simulink model
by clicking on the icon shown on the top left-hand corner of the Simulink window in
Figure 4.2. We will open a model which represents a house heating system. It is a simpli-
fied and modified version of one of the Simulink demos: ‘Thermodynamic Model for a
House’. It can be downloaded from http://www.palgrave.com/science/engineering/
wilkie/ and stored in your own directory. The file can then be opened from the Simulink
command window.

In the model (Figure 4.3), the internal temperature, Ti, will vary depending on the heat
input from the house heating system and the external temperature To. The mathematical
equations which represent the dynamics of the house are ‘hidden’ from us at the moment;
we could access them by double-clicking on the House icon, and we will do so later in this
chapter. In the meantime, we use Figure 4.3 to identify some components of this system:

1. The House icon containing the dynamics explaining how the house heats up and cools
down.

4

Simulink library browser icon

Figure 4.1 MATLAB command window showing Simulink icon.

2. The Set point block, comparator and thermostat block. The set point indicates the
desired temperature for the system. The comparator compares the set point with the
temperature of the house and the thermostat switches the heating on when the house
temperature falls below the set point.

3. The Outdoor temperature, which acts as a disturbance and which will affect the
House temperature.

84 Software toolkit: Simulink

Click here to
open a model

Figure 4.2 Simulink library.

Ti

To

Thermostat

20
Set point

Scope

Mux

Mux
House

Outdoor
temp.

Disturbance

Indoor temp.

Outdoor temp.

Terr
+
–

Figure 4.3 Simulink model of house heating system.

4. The Mux and Scope blocks. The Mux block takes the two signals (Outdoor tempera-
ture and House temperature) and displays them on the ‘Scope’.

Exercise 1: Temperature set point and control
We would like to change the temperature reference of the system.

To change the set point follow these steps:

1. Double-click on the set point box and the window shown in Figure 4.4 appears.

2. Move the pointer to the white box and click the left mouse button.

3. Use backspace to clear 20.

4. Type in the new set point, say 18.

5. Close the window.

6. Use the pull-down menus headed Simulation and click on Start to run the simulation.

7. Double-click on the Scope to produce a running plot showing how the House temperature and
Outdoor temperature are changing.

Questions:
1. Which line corresponds to the outdoor temperature and which to the indoor temperature?

2. Can you explain the behaviour of the House temperature?

An important feature of simulation is to be able to predict what would happen given certain input
conditions.

3. How would the House temperature behave if the average Outdoor temperature was higher
than the current value? Lower than the current value?

We can check our predictions by double-clicking on the Outdoor temperature block. This
produces a slightly more complex model:

4.1 Using Simulink for analysis 85

Set point

20 °C

Figure 4.4 Pop-up box for changing the set point.

We note that the original average daily temperature was 10 °C. We can double-click on this and
change it to a higher value and re-run the Simulation to see how this would affect the House
temperature.

We can do several test runs in this manner. For real industrial processes, it is often impossible
to play with the system and simulations are necessary for engineers to test out their control
designs before applying them to the real process.

On finishing running the simulation, we close all the models by choosing Close from the file
menu.

Although we can use a Simulink model without knowing what components make up the
individual icons, very often we have to derive our own models and then do the analysis.
The next section presents the House model in detail. All modelling requires some engi-
neering knowledge, and here we use models of each component in transfer function form
(using the Laplace transforms of Chapter 2).

4.2 Detailed house model

This example shows how Simulink uses icons to represent common systems and signals
in control engineering. The example in Figure 4.5 is a model of the thermodynamic
behaviour of a house whose interior temperature changes due to heat supplied by the
heating system. The house temperature is also affected by external environmental
changes, such as the change in daily temperature.

When we enter a simulation model of a system, we must use some form of representa-
tion, or model, for each of the systems or subsystems. These models may already have
been provided from previous analysis or information from other engineers. However, the
production of a model may require some preliminary analysis. For the house heating
system, we can derive a representation using Laplace transforms.

86 Software toolkit: Simulink

T i

To

Parameters:
House volume: V m3

Specific heat: cp J kg–1K–1

Central heating efficiency: Kch %
Air density: ra kg m–3

Variables
Central heating input: Q i J
Outdoor temperature: To °C
Indoor temperature: T i °C

Figure 4.5 House model and parameters.

1

Outdoor temp.

Daily temp. variation

10

Avg. outdoor temp.

+

+

4.2.1 Simple house model
Equation for conservation of heat energy:

Rate of change of heat content = heat from central heating
+ heat loss to environment

d
d
Q
t

= KchQi + Qe

We note that the heat content, Q, is given by:

Q = cpVTiρa

and that the heat loss to the environment can be expressed as

Qe = Ke(To – Ti)

where Ke is the parameter which represents the energy loss per °C difference in outdoor
and indoor temperature. (This equation shows that if the outdoor temperature is greater
than the indoor temperature, then there is a net heat gain (Qe is positive). Similarly, if
To < Ti, there is a net heat loss, Qe < 0.)

The conservation equation can now be written as

ρa p
id

d
c V

T
t

= KchQi + Ke(To – Ti)

Manipulating this equation gives:

ρa p

e

id
d

c V

K
T
t

=
K
K

ch

e
Qi + (To – Ti)

or

ρa p

e

id
d

c V

K
T
t

+ Ti =
K
K

ch

e
Qi + To

This is a first-order differential equation and can be written in Laplace transforms as:

(τ s + 1)Ti(s) = KQi(s) + To(s)

or

Ti(s) =
K
s()τ +1

Qi(s) +
1

1()τ s+
To(s)

where τ ρ= a p ec V K/ and K = Kch/Ke.
The equation shows how the indoor temperature is affected by both the heat input due

to the central heating system and the outdoor temperature. This can be shown as a block
diagram (Figure 4.6).

4.2 Detailed house model 87

House model

Outdoor
temperature, To

Heat input, Q i

Indoor
temperature, Ti

Figure 4.6 Block diagram of simple house model.

4.2.2 Simulink model of house heating control system
The house model and the control for the heating system can be modelled in Simulink as
shown in Figure 4.7.

This Simulink model of the thermodynamic behaviour of a house can be divided into
four subsystems:

A The House model, which contains:
(i) the effect of the central heating system on the indoor temperature
(ii) the effect of the outdoor temperature on the indoor temperature

B The Disturbance, which models the variation of the outdoor temperature

C The Thermostat, which provides the control for the central heating system based on
the reading of the indoor temperature

D The Display output, which produces a graph against time of the indoor and outdoor
temperatures.

A The house model

(i) The effect of a heat source on indoor temperature
The house is heated by a central heating system or a heater whose output energy is repre-
sented by Qi. As we have seen from our simple house model analysis, we can model the
effect of the heat source on the indoor temperature of the house as a first-order system
with system gain of K and a time constant of τ minutes.

(ii) The effect of the outdoor temperature on the indoor temperature
We model the indoor temperature of the house as the summation of the outdoor effect
(outdoor temperature) and the heat supplied by the heat source. From the house model

88 Software toolkit: Simulink

20 +
–

Set point

Relay (on/off)
heating control

HOUSE
MODEL

Outdoor
temp.

DISTURBANCE

Indoor temp.

Outdoor temp.

THERMOSTAT
Scope

Mux

Mux
Indoor temp.

DISPLAY OUTPUT

Figure 4.7 Block diagram for house and control system.

K
st +1

Heat energy,
Q i

Indoor
temperature, Ti

analysis, the effect of the outdoor temperature on energy supplied to the building has
first-order dynamics, unity system gain and a time constant of τ minutes.

Total change in indoor temperature
We can now connect this block to the indoor temperature block and create a new icon to
represent the combined house model.

B The outdoor temperature
We assume that the outdoor temperature varies about an average value:

A representation of this model in Simulink is:

4.2 Detailed house model 89

1
1ts+

Outdoor
temperature, To

Indoor temperature change due
to outdoor environment

becomes
K
st +1

1
1ts+

Indoor
temperature Ti

Heat input , Qi ,
due to
heating system

HOUSE
MODEL

Outdoor
temperature, To

+

+

Outdoor
temperature
variation

Average outdoor
temperature (10 °C)

+

+
Outdoor temperature,
To

Disturbance model

1
Outdoor temp.

Daily temp. variation

10

Avg. outdoor temp.
Outdoor temp.

Disturbance

+

+

Simulink has the capability to group the sub-blocks of this model into a new block for
better visualisation of the overall structure of the complicated models.

C The thermostat
The control of the heating system is performed by a thermostat which produces an on–off
signal depending on the size of the incoming signal. This is implemented using a relay:

We usually set a desired temperature (the reference temperature) on the thermostat.
This value is compared with the measured level of indoor temperature. If the indoor
temperature is too low, the error is positive and the thermostat switches on the heater.
When the error reduces below a certain threshold, the thermostat switches off the heater.

Note that most thermostats have a sensor to measure the temperature and a knob or
dial to set the reference. For simplicity, we have assumed that the sensor has unity gain
and the reference is as shown in the block diagram.

The overall model
The overall model brings together the above component models (A, B and C) and has the
structure shown in Figure 4.8.

90 Software toolkit: Simulink

20 +
–

Set point

Relay (on/off)
heating control

Measured
indoor temp.

Thermostat

Indoor temperature transducer
(Gain =1) Indoor temp.

Q i , heat output

K
st +1

1
1ts+

Relay

Indoor
temperature Ti

Outdoor
temperature
variation

Average outdoor
temperature (10 °C)

Set point

Heat
input
(Qi)

+

+

+

+

Thermostat

+

Outdoor
temperature, To

Figure 4.8 Overall model.

These three subsystems (A, B and C) provide the model for the simulation. However,
we add the fourth subsystem (display output) in order that we can monitor the change in
indoor and outdoor temperatures visually on a plot.

D Display output
When running a simulation, we usually monitor several variables, such as the indoor and
outdoor temperatures, so that we can determine if the simulation model is working. To
do this we use a ‘multiplexing’ unit which, in this example, receives two signals and
produces a single vector, containing these signals, as the output. This output vector is
used as the input to a scope which can show graphs against time of the input signals.

The resulting Simulink diagram looks like that in Figure 4.9.

The house heating system contains several components. We start to construct
Simulink models by considering how to build a simpler example of a system: a simple
feedback loop.

4.3 Building a simple Simulink model

We use the example in this section to build a model using many of the model building
icons available in Simulink. The block diagram of the model is shown in Figure 4.10. This
is the model of a first-order system with a proportional controller of gain Kp.

4.3.1 Simulink libraries
To construct a Simulink simulation for the closed-loop system, we use the following
steps.

4.3 Building a simple Simulink model 91

20

Set point

ScopeRelay1

Mux

Mux
House

Outdoor
temp.

Disturbance

Indoor temp.

Outdoor temp.

Terr

+
–

Figure 4.9 High-level model of house heating system.

error
Controller Process

Y s()U s()
Set point
R s()

–

+
KpK

ts+1

Figure 4.10 Simple feedback system.

1. Type Simulink in the MATLAB command window to display the Simulink library
browser. The Simulink library browser window looks like this:

2. Double-click on Simulink and a number of Simulink Libraries appear, which can be
used to build a model.

3. Double-click on Continuous and a number of specific Simulink blocks will appear.

92 Software toolkit: Simulink

4. To open a modelling window (called untitled), click on:

5. Click on Transfer Fcn, hold the mouse and drag the block onto the modelling window
and release the mouse. The transfer function block will appear on the window.

Example Each signal and block of the control system can be represented by one of the Simulink blocks.
There are many Simulink blocks that we can use, but for this example we need only the blocks
shown in the following figure. The libraries where the blocks can be found have also been shown
in Figure 4.11.

4.3 Building a simple Simulink model 93

Kp

1
)(

+t
=

s
K

sG

Set point, ()r t
error

Output, ()y tController Process

Constant
block in
Sources

Gain block
in Math Transfer function

block in Continuous

Sum Block
in Math

The Scope
block in Sinks

+

–

Figure 4.11 Simulink blocks.

The blocks needed are summarised here.

1. Constant block in the Sources library

2. Sum block in the Math library

3. Gain block in the Math library

4. Transfer function block in the Continuous library

5. The Scope block in the Sinks library

We need to copy all these blocks into the untitled window. Follow these steps to copy the blocks.

1. Open the Sources library to access the Constant block. To open a block library, double-click
on the library menu. Simulink displays a list that contains all the blocks in the library.

2. To copy the Constant block, click over the Constant block, then press and hold down the
mouse button.

3. Now, drag the block into the model window.

4. When the pointer is where you want the block to be in the model window, release the mouse
button. A copy of the Constant block is now in the model window. Close the Sources window.

5. In the same way copy the rest of the blocks in the model window. The model window should
contain these components:

Note that a block can be moved from one place in the model window to another using the same
technique that was used to copy the block.

The addition or subtraction operations for the Sum symbol can be changed by double-clicking
on the icon. The default values are given as ‘| + +’, which can be changed to ‘| + –’ to provide the
comparator needed in the example for negative feedback. The string provides the number and
entry positions (anticlockwise) for the incoming signals on the summation icon, with the ‘|’ symbol
indicating no entry point. For example, entering the string ‘+ | – +’ produces the following icon:

The summation symbol can also be changed to a rectangular shape by choosing the appro-
priate option after double-clicking on the summation icon.

If we examine the block icons, we can see an angle bracket on the right of the Gain block or two
on the left of the Sum block. The > symbol pointing to a block is an input port; if the symbol points
out of a block, it is an output port. A signal travels out from an output port and to the input port of
another block through a connecting line.

When the blocks are connected, the port symbol disappears.

Connecting the blocks
To connect the Constant block to the top input port of the Sum block, we use the following steps:

94 Software toolkit: Simulink

Transfer Fcn ScopeGain

1

Constant

1

Sum

1
s + 1

Sum

1. Position the pointer over the output port on the right side of the Constant block. Note that the
cursor shape changes to cross hairs.

2. Hold down the mouse button and move the cursor to the input port of the Sum block.

3. Release the mouse button. The blocks are connected.

Now connect the other blocks as follows:

1. Output port of the Sum block to the input port of the Gain block.

2. Output port of the Gain block to the input port of the Transfer function block.

3. Output port of the Transfer function block to the input port of the Scope block.

4. To connect the feedback path, follow these steps:

(a) Position the pointer on the line between the Transfer function block and the Scope block.

(b) Press and hold down the Ctrl key while pressing the left-hand mouse button (or, alterna-
tively, do not use the Ctrl key, but hold down the right-hand mouse button).

(c) Drag the pointer down for about 2 cm.

(d) Release the mouse button, and line No. 1 appears.

(e) Starting from the end of line No. 1, draw line No. 2. Use the same technique.

(f) Draw line No. 3.

(g) Draw line No. 4. The feedback loop is now connected (Figure 4.12).

Model data
The block diagram of the simulation model is now complete. Before running the model, we need to
enter the model parameters for all blocks. Follow these steps:

1. Double-click on the Constant block: change 1 to 10. Close the window.

2. Double-click on the Sum block: change | + + to | + –. Note that ‘–’ is for the negative feedback.

3. Double-click on the Gain block: change 1 to 2. Close the window.

4. Double-click on the Transfer function: change the numerator polynomial to [0.5]. This is the
gain K. Change the denominator to [10 1]. This is for τ s + 1. Close the window.

5. Double-click on the Scope block. Change Ymax to 10 and Ymin to 0. Close window.

4.3 Building a simple Simulink model 95

1
s + 1

Transfer FcnSum Scope

1

Gain

1
Constant

1

2

3

4

Figure 4.12 Connecting up the feedback loop.

Simulation
From the Simulation menu choose Parameters. Change Stop time to 10. Close the
window. To run the simulation, choose Start from the Simulation menu and run the
simulation. When the simulation is completed, click on the scope. We can now examine
how the system output, y(t), tracks the set point, r(t), in the Scope block.

Exercise 2
Using the block diagram that we have just entered, we will change the controller gains and
examine the effect on the output response.

For the controller gains given in the table, measure the time constant and the steady state error
of the closed-loop system. Discuss the effect of changing the controller gain on the system output
response.

Controller gain 1 3 5 7 9 10

Time constant

SS error

4.4 Development and analysis of the house heating model

Open the house model in Simulink.

4.4.1 Analysis: Effect of thermostat parameters
The thermostat block represents the controller used to control the indoor temperature.
To see how the controller is implemented, double-click on the thermostat block. The
heating control is a relay. The input signal to the relay is the deviation, or error, from the
temperature set point and the output signal is the output energy from the heating system
which works on an on–off switch. Hence the thermostat switches the heating system on
and off depending on the input and the relay parameters.

Exercise 3

(a) Run the simulation and explain the behaviour of the room temperature in terms of the varying
outdoor temperature signal.

(b) Double-click on the Relay block and change the limits to ±5. Run the simulation and comment
on the difference with the previous response.

4.4.2 Analysis: Effect of disturbance (outdoor temperature)
The temperature of the house is affected by the outside temperature, which varies by
applying a sine wave with amplitude of 8 °C to a base temperature of 15 °C. This simu-
lates daily temperature fluctuations. To see how this is implemented, follow these steps.

96 Software toolkit: Simulink

Exercise 4

(a) Double-click on the Disturbance block. The following window will open.

(b) Double-click on the Daily Temp Variation to see how the sine wave is generated.

(c) Change the value of the frequency of the sine wave by a factor of 2. Close the window.

(d) Run the simulation to see the effect of the changes made.

(e) Close the Disturbance window.

The following exercise can be done if you have covered the material in the chapters on modelling
of systems and block diagrams.

Exercise 5: Modelling diagrams

(a) Draw the block diagram of the house model section of the simulation model.

(b) Identify the controller, the actuator and the process. Is there a temperature transducer in the
diagram? If there is, what does it measure? Note that the thermostat effectively contains a
temperature transducer and an on–off controller.

We can save the model by choosing Save from the file menu.

Exercise 6: Control system study
A pacemaker to regulate the speed of a human heart has a block diagram as shown in Figure 4.13.

(a) Implement the model in Simulink.

(b) The overshoot of a second-order system is related to the damping by the following equation:

By changing the value of K in the Simulink model, find a value for which the closed-loop
response has a damping factor of 0.35.

4.4 Development and analysis of the house heating model 97

1

Outdoor Temp

Daily Temp Variation

15

Avg Outdoor Temp

+

+

K
0.05s +1

1
s

R(s)
Desired heart rate

Y s()
Actual heart
rate

Pacemaker Heart

+

–

Figure 4.13 Pacemaker system.

2
OS(%) 100 exp

1

pz

z

Ê ˆ-Á ˜= ¥
Á ˜-Ë ¯

(c) Use transfer function analysis to verify that the value of K found in (b) does give a closed-loop
response with a damping factor of 0.35.

Throughout this book we will be illustrating some of the examples with results taken
from Simulink models. The simulation package becomes easy to use and enables us to
obtain a plot of a system output, which we can then analyse using the tools in MATLAB.
In this way both MATLAB and Simulink become commonplace software tools for the
control engineer.

What we have learnt

� How to run a system simulation to predict a system’s behaviour.

� How easy it is to build a simple Simulink simulation.

� How to analyse and interpret the results that we obtain in simulation runs.

� How simulations are often structured in layers and that although the top layer looks
simple, it often hides some careful modelling analysis.

Multiple choice

98 Software toolkit: Simulink

M4.1 Simulink is a tool for:
(a) Dynamic simulation
(b) Control design
(c) Data collection
(d) (b) and (c)

M4.2 Simulink files have the extension:
(a) .m
(b) .mdl
(c) .mld
(d) .dlm

M4.3 The data in the MATLAB workspace:
(a) can be used in Simulink blocks
(b) cannot be used in Simulink blocks
(c) can be used if they are re-entered in the

MATLAB Command window
(d) can be use if they are re-entered in the

Simulink window

M4.4 The name of the Simulink block for multi-
plying two signals is:
(a) Multiply
(b) Times
(c) Product
(d) Transfer Function

M4.5 The blocks in Sources in the Simulink library
can be used to provide:
(a) the system inputs
(b) the system outputs
(c) the system inputs and outputs
(d) none of the above

M4.6 Implementing a controller, K(s), in Simulink:
(a) requires the Sources block
(b) requires the Sinks block
(c) requires the Transfer function block
(d) cannot be done

M4.7 The output of a Simulink model can be
viewed:
(a) on the scope
(b) in the workspace
(c) as a plot in a figure
(d) all of the above

M4.8 To change the simulation time horizon in a
Simulink model:
(a) we change the parameter of a transfer func-

tion in the model
(b) we change the Simulation Parameters under

the Simulation menu
(c) we cannot change this parameter
(d) the model should be scaled accordingly

Questions: practical skills

Practical skills 99

M4.9 To create a vector of signals in Simulink:
(a) we use MATLAB commands
(b) we use a multiplexer block
(c) we cannot implement vectors in Simulink
(d) we can use both (a) and (b)

M4.10 To implement the trigonometric functions in
Simulink, we can use:
(a) the Transfer Function block
(b) the Signal Generator block
(c) the Function block
(d) (b) or (c)

Q4.1 Consider a system described by the following differential equations:

Y1(s) =
2

3 1s +
U1(s)

Y2(s) = 6Y1(s) +
5

6 1s +
U2(s)

(a) Implement the model in Simulink.
(b) Plot y2(t) for u1(t) = u2(t) = 1.

Q4.2 A simplified block diagram of a ship autopilot control system is shown below:

(a) Implement the model in Simulink for K = 1 and φr of 30°. Use a ‘slider gain’ to implement K.
(b) Change the value of K to give 10° overshoot.

Q4.3 A tank system is represented by the following first-order differential equation:

115. �() () ()h t h t q t+ =

where h(t) is the liquid level and q(t) is the input flow rate in m3/min.
(a) Develop a Laplace transform model for the system.
(b) Use Simulink to find the response of h(t) to a step change of 1 m3/min, but where there is a

slowly varying frequency on the input signal of amplitude 0.1 and frequency 0.05 Hertz.

Q4.4 Stefan’s Law states that the rate of change of temperature of a body due to radiation of heat is

d
d
T
t

k T T= − −()4
0
4

where T is the temperature of the body and T0 is the temperature of the surrounding medium in K.
(a) Implement the nonlinear model in Simulink. Hint: use the function block ‘Fcn’, and ‘Transfer Fcn

with initial states’ (from Simulink Extras).
(b) Assuming T0 = 280 K, k = 1.0 × 10–11 and the initial temperature T(0) = 600 K, how long does it

take for the body temperature to reach steady state?

)122(

1

+ssK

Yaw angle, f()t
Rudder angle
d()tSet point, fr

Autopilot Ship

+

Problems

P4.1 Simple on/off control
The following model shows how a simple on-off controller can be implemented and tested in
Simulink:

(a) Set the transport delay to 1 second, the relay on/off points to ±1 and the relay output to ±2. Run
the simulation for a step input of 5.0. Observe the highly oscillatory response.

(b) Double the step input size to 10 units to see the oscillations disappear.

P4.2 Three-term control: demonstration of effect of integral action
Implement the following model in Simulink which shows a process transfer function with a
controller which is formed by a gain and an integrator-plus-slider-gain.

Run the simulation for values of integral gain from zero to 1.0 in steps of 0.1.
Note the change in error between the reference signal and the output.

100 Software toolkit: Simulink

Transport
delay

t

Time

Sum3

Step

+
–

12.5
s + s + 6.252

Second-order processRelay
Output

Control
signal

Clock

y1

1

2s + 1

Transfer fcn

t

Unit step

0

Slider
gain

y

Output

s
1

Integrator

1

+
+
+–

Gain

Clock

P4.3 The following model shows how a proportional controller can be tuned using Simulink.

(a) Increase the gain from 30 in steps of 1 until the response becomes oscillatory. Call this gain the
ultimate gain, Ku.

(b) Set the value of proportional gain to be Kp = 0.45Ku.
(c) Use this value in the simulation and investigate the closed-loop response.

P4.4 The block diagram of the angular velocity of a d.c. motor is:

where
Ra is the resistance of the motor armature (ohms) = 1.75
La is the inductance of the motor armature (H) = 2.83 × 10–3

kv is the velocity constant (V sec/rad) = 0.093
kt is the torque constant (Nm/A) = 0.0924
J is the inertia seen by the motor (includes inertia of the load) (kg m2) = 30 × 10–4

B is the mechanical damping coefficient associated with rotation (Nm s) = 5.0 × 10–3

(a) Implement the model in Simulink.
(b) From a step response test, determine the time for the step response to increase from 10% to 90%

of its final value.
(c) The angular position is obtained by integrating the angular velocity. Implement this in the model.
(d) Implement a closed-loop position controller assuming a proportional controller of gain Kp. (Hint:

1. add a reference input signal for angular position
2. add a summing block which calculates the error between the angular position reference and

the measured angular position
3. multiply this error by the gain Kp and let this signal be the applied voltage V.)

(e) Find the value of Kp for the system to be critically damped, that is, when the system response is
approximately at the point of reducing the overshoot value to zero.

Problems 101

1

5s +15.5s +11.5s+13 2

Transfer fcn

t

Step

y

Output

30+
–

Gain

Clock

kt
BJs +

1

w angular
velocity

V applied
voltage

kv

1

R L sa a+

+

–

Modelling for control engineering5

Help? Time to readGaining confidence Skill sectionGoing deeper

Chemical engineering example
Liquid level system

Modelling
Process: Tank filling
Transducer: Pressure transducer
Actuator: Valve

Simulation
Investigate change in level for
step change in input current.

Mechanical engineering example
Shaker table

Modelling
Process: Second order system
Transducer: Accelerometer
Actuator: Electromagnetic coil

Simulation
Investigate response to
sinusoidal input current

Manufacturing engineering example
Conveyor belt system

Modelling
Process: Rotational system
Transducer: Optical encoder
Actuator: d.c. motor

Simulation
Investigate output response for
changes in inertia and damping

Block diagrams

Actuator–Process–Transducer model

Control engineering systems, whether containing chemical, mechanical or electrical sub-
processes, are of varying sizes and complexity. We would like to use a standard schematic form to
represent all the different systems. We will then be able to examine common features and develop
a general framework and understanding of control systems.

Learning objectives

� To identify control inputs and outputs of subsystems.

� To construct simple control block diagrams.

� To recognise the actuator, process and measurement subsystems and create an
actuator–process–transducer block diagram.

� To develop simple system models from mathematical equations or technical information.

� To form Laplace transform representations from simple system models.

� To implement simple Laplace transform representations in Simulink.

5.1 Signals, systems and block diagrams

The common form of representation in control systems is to use block diagrams; the
system is represented by a box or block and the signals of temperature, voltage, flow etc.
are represented by directed lines. Figure 5.1 shows a simple block diagram representation
of a hot water heating system. The inlet water temperature causes the temperature of the
radiator to rise which causes convection currents of warm air which in turn cause the
temperature of the room to change.

Note that the lines do not actually represent hard-wired connections; they represent
the flow of signals in the system diagram. We can define the block diagram structure
more formally as follows.

5.1.1 Single-input single-output system block
We define a system in a general sense as a cause and effect relationship between one or
more input signals and one or more output signals. A simple system structure is the single-
input single-output (SISO) system. This simple system is described as the operation which
transforms one input signal to produce one output signal, as shown in Figure 5.2.

5.1 Signals, systems and block diagrams 103

Radiator
heating system

Temperature
of inlet water
temperature

Temperature
of room

Figure 5.1 Hot water heating system.

System

Input Output

u t() y t()

Figure 5.2 Single-input single-output block diagram.

This block diagram represents a cause and effect relationship between the input signal,
u(t), and the output signal, y(t). It is usual in our control engineering field to find that the
input u(t) is a control input; that is, a signal that can be altered or manipulated to achieve
a desired system behaviour. The output signal y(t) in this context is a variable that can be
measured and is often a system variable to be controlled in some desired manner.

Very often the system blocks may represent quite complex processes. The system may
have more than one input and more than one output, in which case it is referred to as a
multi-input multi-output (MIMO) system. We can also then define SIMO and MISO
systems as single-input multi-output and multi-input single-output systems,
respectively.

We can study system representation by examining some simple general block diagram
representations. We start by looking at the Constant gain block.

The Constant gain block
One simple example of a SISO system is a constant gain multiplier which we represent as
a SISO block diagram.

Input signal: u(t)
Output signal: y(t)
Multiplier operation: y(t) = Ku(t)

It is important to remember that the gain, K, has
physical units:

K’s units =
y’s units
u’s units

: [K] =
[y]
[u]

Remark Note that there is often an unusual mix of units associated with the constant gain multiplier.
This is a common phenomenon which will be met in control systems work when defining input–
output quantities for a system. For example, if there was a voltage-controlled heater causing
the room temperature to rise, the units of the process gain would be °C/volt.

Processes containing more than one system block
Industrial processes may contain many subsystems, each of which could be represented
by a SISO block. We must learn how to manipulate the signals and systems within our
existing block diagram framework to enable us to deal with multiple blocks and many
signals. Figure 5.3 shows a diagram where K1 and K2 represent two processes; the first
may represent a control valve and the second may represent a heating system. The valve
controls the flow of liquid which physically connects the two systems. Let signal u(t) be

104 Modelling for control engineering

K

Input Output

u t() y t()

u t() y1()t
Physical
representationy2()t

Valve
Heating
system

u t() y1()t
Symbolic
representationy2()t

K1 K2

Figure 5.3 Cascaded systems.

the input to the first process, y1(t) the output from the first process (and the input to the
second process) and signal y2(t) be the output of the total process. We refer to these
systems as cascaded systems, or that K1 is in cascade with K2.

We often wish to combine blocks to form a simpler diagram. For the simple linear
blocks that we will be mainly dealing with in this text, we can evaluate the output of the
system as follows. We often start at the output signals and work back to the input signals:

For the second process: y2(t) = K2y1(t)

For the first process: y1(t) = K1 u(t)

Combining both: y2(t) = K2K1u(t)

or

y2(t) = Gu(t) where G = K2K1

Hence the system can be re-drawn as Figure 5.4.

5.1.2 Adding and subtracting signals: the summation symbol
Some processes, such as the mixing of two fluid streams, or the effect of a disturbance in
temperature to a heating system, require the addition and subtraction of signals. These
operations may be described as follows:

(i) Addition operation

Example:

Input signals: x(t) and y(t)
Output signal: z(t)

Addition operation:

z(t) = x(t) + y(t)

Representation:

z = x + y

(ii) Subtraction operation

Example:

Input signals: x(t) and y(t)
Output signal: z(t)

Subtraction operation:

z(t) = y(t) – x(t)

Representation:

z = y – x

5.1 Signals, systems and block diagrams 105

Input water
temperature Valve and

heating
system

Output room
temperature Physical

representation

u t()

G

y2()t Symbolic
representation

Figure 5.4 Combined block diagram.

x

y z

+

+

x

y z

–

+

Signals, x, y and z must be the same type and have the same units. For example, x and y
might both represent velocity, but we cannot add them directly if one is measured in ms–1

and the other in miles/hr.

General usage
The use of the summation symbol to represent the addition or subtraction of signals of
consistent type and units is fairly straightforward. The addition or subtraction operation
is set up so that the summation has only one output or resulting signal. The symbol is
then used as follows:

We now introduce the structure for a typical process description: the Actuator–
Process–Transducer diagram.

5.2 Actuator–Process–Transducer system structure

Many of the examples we have looked at can be generalised into the structure shown in
Figure 5.6, with three basic elements: the actuator system, the process and the
transducer.

5.2.1 The process and the process model
The process or plant (from process plant) is represented by a mathematical model which
shows how the input signal u(t) affects the output y(t). The input signal u(t) is often called
the manipulated variable, since it is this value that is changed ultimately by the control
system to produce a corresponding output y(t).

The mathematical model may be derived from differential equations relating the
inputs and outputs of the process. These models can be tested against process data to

106 Modelling for control engineering

Input signal
side

Output signal
side

+

+

+

Summation
symbol

Figure 5.5 Summation sign.

ACTUATOR
system

Controller
output, uc()t

Manipulated
variable, ()u t

PROCESS

Measured
output, ym()t

Process
output, ()y t

TRANSDUCER

Figure 5.6 Actuator–Process–Transducer structure.

confirm their suitability. Alternatively, if experimental input–output data is available,
the process model can be identified from this data.

5.2.2 The transducer
Different industrial processes require different measurements. If we consider the typical
measurements in the food industry, we may need to measure temperature, moisture,
flow, weight, and level, or even pressure, force, pH, humidity, density and colour. The
measurements are taken for the following reasons.

1. Monitoring
Processes or sensor outputs are monitored for alarm/warning purposes, quality control
aims, mandatory legal and technical requirements, or calibration of the measuring
instruments themselves.

2. Control
By measuring a variable, we can find out how the process is behaving and take correc-
tive action if necessary; the output signals are therefore monitored for control
purposes.

Thus the output signals of any system may have to be monitored, displayed, recorded or
used by the control system. All these considerations require that the measured output
(measurand) of the system is as true a representation of the signal as is possible. The rela-
tionship is shown in Figure 5.7.

The device used to sense any changes in the output is called a sensor. The output of the
sensor is usually linked to other, often electrical or electronic, equipment to provide a
signal which can be used for control or monitoring purposes. Sometimes, additional
filtering or processing of the measured signal is needed (Figure 5.8). The sensor and asso-
ciated electrical interface are called the transducer.

The transducing equipment itself may cause errors and therefore the measured value
and the true value will not be exactly the same. These errors may occur by digitally
sampling a signal or from environmental effects on the transducer such as temperature

5.2 Actuator–Process–Transducer system structure 107

PROCESS Measurement
system

Observer

True value Measured value

Figure 5.7 True and measured value.

transducer
Signal
conditioner

Physical
variable Signal

Signal

Sensor/

for
/monitoringcontrol

Figure 5.8 The transducer block diagram.

changes having an effect on electrical resistance. It may also take additional time for the
transducer to sample the process and produce an output. It is therefore useful to model
the transducer as a separate system block.

Very often the transducer can be modelled by a simple gain block. This is because the
time taken for the measurement to take place is often far smaller than the time periods
involved in the actual process. By this we mean that although a temperature transducer
may take 0.5 seconds to respond, this can often be neglected if the process is slow; for
example, of the order of hours. Transducers that sense and transmit a change in a physical
variable, such as pressure or temperature, can often be scaled to reflect the range of the
signal being monitored. This will alter the gain of the transducer as follows.

Transducer span
The span of a signal is the range of that signal. Although transducers may have fixed
maximum output ranges such as 0–10 bar or 4–20 mA, very often the transducer gain is
scaled to accommodate the range of the actual measurement signal. The gain K can then
be calculated as

K = 100%/span

where ‘span’ is the range of the input signal. This equation states that the output signal
will change by 100% for the full span of the input signal. For example, if a transducer
were calibrated for a range of 0–5 bar, then the transducer gain would be 20%/bar. The
transducer would then pass through 20% of its output range for one bar change in
measurement signal.

5.2.3 The actuator system
The actuator system can also be subdivided into two components: the actuating equip-
ment and the final controlling element (Figure 5.9(a)).

From the control input, uc(t), the actuating equipment produces a change in the final
controlling element. The signal manipulated by the final controlling element is the input
signal, u(t), to the process. For example, as shown in Figure 5.9(b), a current to pressure
converter attached to a pneumatic control valve will firstly convert the input control
signal in mA to an equivalent pressure, which will ultimately open or close a valve,
altering the flow of liquid or gas to the process. The valve is the final controlling element
in this particular example.

We can see that the actuator system has two purposes:

1. to translate the output of the controller signal into one that can be applied to the piece
of equipment, such as a valve or a heating implement

108 Modelling for control engineering

Actuating
equipment

Final
controlling
element

uc u

Current-to-
pressure
converter

Valve
Current Pressure Flow

(a)

(b)

Figure 5.9 Actuator structure.

2. to apply this signal to the piece of equipment that directly changes the manipulated
variable, u(t).

Example: An actuator system for flight control
Actuator system:
The hydraulic system which changes the angle of the control surfaces

Input to actuator system:
Output signal (in volts) from the controller

Output from actuator system:
A hydraulic ram or piston position (in mm) that causes a change in control surface angle

5.2.4 Complete block diagram representation for the Actuator–Process–
Transducer system

Figure 5.10 represents an Actuator–Process–Transducer system using standard control
system notation:

Actuator system: system block Ga
Process: system block G
Transducer: system block H
Control signal: uc(t)
Manipulated signal: u(t)
True output signal: y(t)
Measured output signal: ym(t)

We shall continue the analysis of systems and their signals by examining examples
from different engineering disciplines. Before we proceed with the examples, it is useful
to provide a summary of what we have covered.

5.3 Modelling summary

For any system, whether it be mechanical, electrical or chemically based, we will follow
the same procedure: we need to determine:

5.3 Modelling summary 109

Controller
output signal Hydraulic

actuation
system

Volts

Piston
position

mm

uc()t

ym()t

y t()u t()
Ga G

H

Figure 5.10 Actuator–Process–Transducer system.

1. the process model

2. the description of the transducer

3. the description of the actuator system

Block diagram description
For each component of the system (process, measurement, actuator) we need to:

1. draw the block diagram representing the sub-system

2. determine what the input and output signals for each component block are

Laplace transform models
To form a Laplace transform model, we need to remind ourselves of the following.

Laplace transform rules:

Transform of a derivative:
d
d
y
t

⎛
⎝
⎜

⎞
⎠
⎟ = sY(s) – y(0)

Transform of a combination of signals: (ax(t) + by(t)) = aX(s) + bY(s)

We now examine three case studies, one based on chemical process engineering, one
based on a mechanical system and one describing part of a manufacturing process. We
note, however that most control systems cannot be modelled solely by referring to one
discipline; control systems contain many components from electrical transducers to
mechanical valves to chemical reactors, and the control engineer has to have a good
understanding of the actual system.

5.4 Chemical process engineering: liquid level control

Fluid flow systems are very common in process control. These types of system involve
components such as

� Process: mixing or blending processes, liquid-holding tanks

� Actuators: valves, pumps

� Measured values: level, flow, composition

Figure 5.11 shows a tank containing liquid. The flow of liquid into the tank is
controlled by a valve. The control input signal to the valve is a current signal in mA
which is converted into a pressure signal. This pressure is applied to a valve and changes
the valve stem position (in mm). The valve position dictates the amount of flow passing
through the valve into the tank. The height of liquid in the tank is measured by a trans-
ducer (gauge pressure) which produces an output in mA. The parameters of the system are
given in Table 5.1.

� Process: The process is the change in level of the liquid in the tank. The input signal is
the flow into the tank, qi(t) (in m3/s). The output signal is the height of liquid in the
tank. Combining these give the process block diagram of Figure 5.12.

110 Modelling for control engineering

 � Transducer: We are interested in measuring the height of liquid in the tank. The
transducer does not measure level directly, but measures pressure. From physics,
pressure = density × g × head of liquid, and therefore a value for the head, or level of
liquid, can be calculated. The pressure measurement transducer converts the gauge
pressure reading (pressure reading relative to atmospheric) to an equivalent electrical
current signal (in mA). The transducer block diagram is shown in Figure 5.13.

5.4 Chemical process engineering: liquid level control 111

Flow out
qo()t

Height/level
h t()

Flow in
qi()t

Control signal
uc()t

Figure 5.11 Liquid level process.

Physical and design parameters

Height of tank 4 m

Maximum fill level 3 m

Radius of tank 2 m

Tank capacity (volume) 37.68 m3

Process valve position 0–25 mm

Pressure input signal 0–6 bar

Exit pipe restrictance parameter: 140 s/m2

Table 5.1 Parameters of liquid level system.

Tank

In flow,
m3/s

Liquid level,
m

qi()t h t()

Figure 5.12 Process block diagram.

Measurement
transducer

Height,
m

Measured height
mA

h t() hm()t

Figure 5.13 Measurement transducer.

� Actuator: The actuation system takes the control signal uc(t), a current in mA and
applies this to a current to pressure transducer which in turn produces a valve position,
(in mm). The position of the valve stem determines the flow (in m3/s). The actuator
block diagram is given in Figure 5.14

By combining the Actuator–Process–Transducer block diagrams we find the total
process block diagram can be represented by Figure 5.15.

Summarising the above:

� Process: a liquid level process

� Transducer: a gauge pressure transducer

� Actuator system: a process valve controlled by a current signal through a current to
pressure transducer

We now need to introduce some models for the processes within our blocks.

5.4.1 Actuator–Process–Transducer: the Process block
Modelling of systems requires us to determine the relationship between input and output
signals. In the case of the liquid level process (Figure 5.11), we must determine the relation-
ship between the input flow and the output level. The liquid level system shows the liquid
inflow as qi(t), and the outflow as qo(t). The height is given by h(t) and the constant cross-
sectional area of the tank by A. In control systems we often refer to the process input signal
as u(t) and the process output signal to be controlled as y(t) (Figure 5.16). As we have only one
manipulated input, qi(t), and one controlled output, h(t), we classify this as a SISO system.

112 Modelling for control engineering

Process
valve

Control input,
mA

Flow out of valve,
m3/s

uc()t qi()t

Figure 5.14 Actuator block.

Tank

In flow,
m3/s

Liquid level,
m

qi()t h t()

Pressure
transducer

Process
valve

Measured height,
mA

hm()t

Control input,
mA

uc()t

Figure 5.15 Combined block diagram for liquid level process.

u(
Liquid level
and tank
process

t q ti) ()= y t h(t())

Liquid inflow:

System

qi()t
Liquid outflow: qo()t
Liquid level height: h t()
Constant cross-sectional area of tank: A

Figure 5.16 Block diagram of liquid level system.

We model the system using physical principles. The physical equation governing the
change in liquid volume is:

rate of change of volume of liquid = inflow – outflow

Thus, if the inflow was equal to the outflow then there would be no change in the volume
of liquid retained by the tank. We have, using the above physical principle:

d
dt

(h(t)A) = qi(t) – qo(t)

We will assume

1. a constant cross-sectional area for the tank (A)

2. the outflow is proportional to the height of liquid: qo(t) = h(t)/R, where R represents a
parameter due to pipe restrictance.

Applying these assumptions to the differential equation for rate of change of volume
gives:

A
d
d
h
t

= qi(t) – qo(t) = qi(t) –
h t
R
()

or

RA
d
d
h
t

+ h(t) = Rqi(t)

We have an equation with one first-order derivative, dh/dt; hence the system is modelled
by a first-order differential equation. Letting AR = τ and K = R, then we can write the
equation in a standard form:

τ
d
d
h
t

+ h(t) = Kqi(t)

This system equation has two parameters associated with it: K and τ . K is referred to as
the system gain and τ is called the time constant for the system with units of time.

Using the information on the properties of the tank, we can work out the values of K
and τ :

K = R = 140 s/m2

τ = AR = πr2R = 12.6 × 140 = 1758 s = 29.3 min

Key result: Laplace transformation of process equations

We can apply Laplace transforms to the first-order differential equation

τ
d
d
h
t

+ h(t) = Kqi(t)

This gives

L τ
d
d
h
t

h t+⎧
⎨
⎩

⎫
⎬
⎭

() = {Kqi(t)}

5.4 Chemical process engineering: liquid level control 113

τ

τ

L + L L
d
d i

o i

h
t

h t Kq t

sH s h H s KQ

⎧
⎨
⎩

⎫
⎬
⎭

=

− + =

{ ()} { ()}

(()) () ()s

Assuming in this example that the tank level starts at zero (ho = 0) and rearranging gives

H s
K
s

Q s G s Q s() () () ()=
+

=
τ 1 i p i

In block diagram format it can be written as:

where Gp(s) = K/(τ s + 1)

5.4.2 Actuator–Process–Transducer: the Transducer block
Level transducers can take many forms:

� Measuring the differential pressure or gauge pressure (pressure relative to atmospheric)
in a vessel will give an indication of level.

� Ultrasonic meters can detect depth by measuring the time taken for the ultrasonic
beam to be deflected from the boundaries in the medium, for example from an air/
liquid surface.

� Capacitive level transducers will change their output voltage depending on the change
in overlap area of the capacitive plates, in the separation of the plates or in the dielec-
tric material (here, liquid) between the plates.

We will discuss the pressure transducer in greater detail and provide the system block
diagram for this form of level measurement.

Pressure gauge transducer
Figure 5.17 shows a tank containing a liquid of density ρ. The pressure, p(t), at the
measurement transducer is dependent on the head of liquid, h(t), above the transducer.
Since the transducer is conveniently placed at the base of the tank, the head will directly
represent the level in the tank. The output of the electrical transducer is given by a
current in mA, hm(t), which represents the measurement of liquid head.

114 Modelling for control engineering

Gp()s

H s()Q i()s

Atmospheric
pressure

Pressure
transducer

Head of
pressure, ()h t

Tank

Figure 5.17 Gauge pressure transducer.

Transducer modelling
To model this transducer, we need to consider:

1. the relationship between the level in the tank and the pressure, and

2. the relationship between the pressure and the current signal

We can represent this measurement system by the block diagram of Figure 5.18.

The values, G1 and G2 represent the relationship between the signals of level and pres-
sure, or pressure and current, respectively. Since the component blocks are linear repre-
sentations, the total transducer block is given by Gm, where Gm = G2G1.

First Transducer block: G1 (relationship between level and pressure)
Consider the physical law relating the input head of liquid to the output pressure:

pressure = density × gravitational constant × head

or, assuming the density remains constant,

pp(t) = ρgh(t)

where pp(t) is the pressure in pascals. For water, the value of ρ is approximately 1000 kg/
m3. Hence, for a liquid level system with water as the liquid, the model required is:

pp(t) = 1000 × 9.81 h(t) = 9810 h(t)

The units of pressure are pascals; however, since 105 Pa ≈ 1 bar,

p(t) = 0.0981 h(t)

and the pressure p(t) is in bar. Hence the first transducer block can be represented by
Figure 5.19.

We can see that the value of G1 has been given by G1 = 0.0981. We can determine the
dimensional units of G1 by considering the units of the input and output signals:

[]
[]
[

G1 =
units of output signal
units of input signal

bar
m]

[()]
[()]
p t
h t

=

Therefore G1 = 0.0981 bar/m.

5.4 Chemical process engineering: liquid level control 115

G1

Pressure, barHead or level, m

h t()
G2

Current, mA

p t() hm()t

Gm
h t() hm()t

Level, m Current, mA

Figure 5.18 Transducer block diagram.

0.0981

Pressure, barHead or level, m

h t() p t()

Figure 5.19 First Transducer block.

Second Transducer block: G2 (relationship between pressure and current)
To calculate the value of G2 we consider the range (span) of the input and output signals.
This is given by the technical specification for the pressure transducer (Table 5.2). The
technical specification provides some functional information on the type of signal and
ranges of signals, while the performance specification provides an indication for an
instrument engineer of the accuracy of the readings and any effects that temperature will
have on the output.

The functional specification confirms that the output signal range is 4–20 mA
(the industrial standard current range) and tells us that, for this transducer, we can
have a maximum input range of 1.3 bar (which would correspond to approximately
h(t) = p(t)/ρg = 13.3 m in our example). However, the output span on the instrument can be
set to be between –1 and 1.3 bar. (The negative allows for systems which may require
readings below atmospheric pressure.) For a maximum head in our system of 3 m
(Table 5.1), we can set the lower and upper limits of the instrument to be:

lower limit: 0 bar 4 mA

upper limit: (1.3/13.3) × 3 = 0.294 bar 20 mA

To calculate the value of gain, G2, we look at the table of input and output signals:

Control block inputs and outputs Physical variable Range Physical units

System input, u(t) = p(t) pressure 0–0.294 bar

System output, y(t) = hm(t) current 4–20 mA

The measurement gain, G2, is found by considering the ratio of the change in output
signal to the change in input signal:

G
y t
u t

i t
p t2

20 4
0 294 0

544= = =
−
−

=
()
()

()
() .

.
mA
bar

mA
bar

116 Modelling for control engineering

Functional specification

Output signal 4 to 20 mA

Span limit (max) 130 kPa (1.3 bar)

Range limit –100 to 130 kPa (–1 to 1.3 bar)

Performance specifications

Accuracy rating Spans greater than 10% of FS

± 0.1% of span

Temperature effect Zero shift: ± 0.5%

Total effect: ± 1%

Step response Time constant 0.2 s

Dead time ≈ 0.3 s

Table 5.2 Technical specification for pressure transducer.

The two component blocks of the transducer can be cascaded together, as shown in
Figure 5.20.

The equations for the transducer can be written as

hm(t) = G2p(t) p(t) = G1h(t)

Therefore

hm(t) = G2G1h(t) = 54.4 × 0.0981h(t)

hm(t) = Gmh(t) = 5.34 h(t)

and Gm = 5.34 with units of

[Gm] =
[()]
[()]
h t
h t
m = (mA)/m

Laplace transformation of measurement system
In Laplace transforms, the block diagram becomes:

The Laplace equations become:

Y(s) = GmU(s) with Gm = 5.34 mA/m

5.4.3 Actuator–Process–Transducer: the Actuator block
The main actuators used in process systems are valves (to regulate flow) and pumps (to
inject materials). In this example, we shall look at a diaphragm valve which controls the
flow of liquid in to the tank in our liquid level system.

Figure 5.21 is a diagram of a process valve. The valve is inserted into the pipework such
that liquid flows through the body of the valve. The size of opening that the liquid flows
through is given by the position of the valve stem. This is controlled by changing the pres-
sure on one side of the diaphragm which causes a change in the position of the plug. The
pressure signal can be electrically actuated by means of a current-to-pressure transducer.

5.4 Chemical process engineering: liquid level control 117

G1

Level, m

p t()h t()

Pressure, bar

G2

Pressure, bar

hm()tp t()

Current, mA

0.0981

Pressure, barLevel, m

h t()
54.4

Current, mA

p t() hm()t

5.34
h t() hm()t

Level Current

Figure 5.20 Cascaded transducer block diagram.

Gm

Level Current

H s() Hm()s
Gm

U s() Y s()

Symbolic representation

Actuator block diagram
The actuator can be represented by the cascaded block diagram of Figure 5.22.

The values G3, G4 and G5 represent the relationship between the signals of current,
pressure, valve stem position and flow, respectively.

First actuator block: G3 (current-to–pressure converter)
A typical current-to-pressure specification may give the following information on the
range of input and output signals:

Control block inputs and outputs Physical variable Range Physical units

System input, u(t) = ic(t) current 4–20 mA

System output, y(t) = pc(t) pressure 0–6 bar

Hence the gain, G3, is given by:

G3 =
p t
i t

c

c

()
()

=
−
−

6 0
20 4

= 0.375 mA/bar

Second actuator block: G4 (relationship between pressure and valve stem position)
We can relate the pressure on the diaphragm to the valve stem position by equating the
forces on either side of the diaphragm:

pressure × diaphragm area = spring stiffness constant × change in stem position

pc(t)Ad = Ksx(t)

Hence

118 Modelling for control engineering

Fluid

Valve stem

Diaphragm

Pressure

Spring

Opening

Fluid

Figure 5.21 Process valve.

G4

Pressure,
bar

Stem position,
mm

pc()t x t()

G5G3

Flow,
m3/s

qi()t

Current,
mA

ic()t
Converter Valve stem Valve opening

Figure 5.22 Actuator block diagram.

x(t) =
A
K

d

s
pc(t)

Let the diameter of the diaphragm be 100 mm and the spring stiffness, Ks, be 188 400
kg/m; then we can calculate G4 as

G4 =
π× (.)0 05
188400

2
= 4.17 × 10–8 m/N ≈ 4.17 mm/bar

Third actuator block: G5 (relationship between valve stem position and flow)
The flow, f(t), that passes through a valve is given by:

f(t) = α(t)Cv
Δp t()
ρ

where

α(t) is the fractional opening of the valve
Cv is the flow coefficient of the valve (a number that relates to the design

of the valve)
Δp is the pressure drop across the valve
ρ is the density of the liquid

For a linear valve, the value of α is the stem position, x(t), of the valve. If we assume in this
example that there is a constant pressure drop across the valve (which would mean that
the flow had negligible effect on the stem position of the valve), then the flow through the
valve is linearly related to the valve stem position. Hence the process valve model is
given by

qi(t) = G5x(t)

with the units of the gain, G5, as:

[G5] =
[]
[]
y
u

=
[/]
[]
m s
mm

3

For a valve that has a linear characteristic over its operating range, the value of the valve
gain becomes

G5 = Rated flow/100% change in input

For example, for a rated flow of 200 m3/hr = 0.056 m3/s,

G5 = 0.56 × 10–3 m3/s for 1% change in input signal

In our example, the stem position is not given in percentage change of input but in change
in mm. By knowing the full range of input (say 0–25 mm), we can determine the valve
gain for a change of 1 mm (= 4% of input range) in stem position:

G5 = 0.56 × 10–3 m3/s for 1% change in input

= 2.24 × 10–3 m3/s for 1 mm (4%) change in input

= 0.00224 m3/s/mm

Total actuator block diagram
The full actuator block diagram given in Figure 5.22 can be reduced to Figure 5.23.

5.4 Chemical process engineering: liquid level control 119

The equations for the actuator system can be written as:

q(t) = G5x(t) x(t) = G4pc(t) pc(t)= G3ic(t)

Therefore

q(t) = G5G4G3ic(t) = 0.0022 × 4.17 × 0.375 ic(t)= 0.0034 ic(t)

q(t) = Gvic(t)

and Gv = 0.0034 with units of

[Gv] =
[()]
[()]
q t
i tc

= m3/s/mA

Laplace transformation of actuator system
In Laplace transforms, the block diagram becomes:

The Laplace equations become:

Y(s) = GvU(s) with Gv = 0.0034 m3/s/mA

5.4.4 Complete Actuator–Process–Transducer block diagram
We can combine all our blocks to provide an overall model for the liquid level system
(Figure 5.24).

120 Modelling for control engineering

0.0034
Ic(s) Q i(s)

Current Flow
G v

U s() Y s()
Symbolic representation

G T =
K

t s + 1

In flow,
m3/s

Liquid level,
m

q i()t h t()
GmGv

Measured height,
mA

hm()t

Control input,
mA

uc()t

140
1758s + 1

In flow,
m3/s

Liquid level,
m

Q i()s H s()
5.340.0034

Measured height,
mA

Hm()s

Control input,
mA

Uc()s

Figure 5.24 Actuator–Process–Transducer for liquid level system.

G4

Pressure,
bar

Stem position,
mm

pc()t x t()

G5G3

Flow,
m3/s

qi()t

Current,
mA

ic(t) 0.375 4.17 0.00224

Gv

Current

q t()ic()t

Flow

Figure 5.23 Actuator block diagram.

5.4.5 Simulink representation of liquid level system
The liquid level system shown in Figure 5.24 can now be implemented in a Simulink
model (Figure 5.25). We use a first-order transfer function block to represent the first-
order differential equation which represents the tank level process. The actuator and
measurement blocks are, in this example, simple gain blocks which can be added to the
model. The Simulink model requires an input signal block; we have used a step change
signal for the input current, uc(t).

One of the advantages of using Simulink is that we can examine signals within the
model which are not actually measured in practice. In this study, we have written vari-
ables q(t), h(t) and hm(t) to the workspace in order that we can examine the signals. We
can inject a step change of 1 mA in the input signal and we can see (Figure 5.26) that the
change in level in the tank is 0.476 m. The process input signal actually lies in the range

5.4 Chemical process engineering: liquid level control 121

h

Level, m

uc

Input signal, mA

q

Flow, m^3/s

140

1758s + 1

Tank

5.34

Measurement
gain

hm

Measured
level, mA

Input signal
step change, mA

0.0034

Actuator
gain

Figure 5.25 Simulink representation of liquid level system.

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Level, metres

Time, hours

Final change in value: 0.476 m

Figure 5.26 Response of liquid level to step change in input current of 1 mA.

4–20 mA. If we wished to monitor the actual level, we would need to add the offset to the
signal. However, it is very common in control systems to examine the change in system
behaviour from a steady operating condition. The reason for this is that we often assume
that the system behaves in a linear manner for small movements around its steady oper-
ating condition – this allows us to use linear models and to use many analysis and control
design techniques which are suitable for linear systems.

If we monitor the measured output, given by hm(t) in mA (Figure 5.27), we see in this
example that the measured output signal has the same form of response as the actual
level since there is only a constant gain difference between the two. Once again, it is
important to note that the magnitude of the change in current is 2.54 mA maximum. This
is the change in current which would register a change of 0.476 m. The actual current
being measured lies in the range 4–20 mA, and therefore there would be an offset of 4 mA
to be added if we were to read the value from a real process.

5.5 Mechanical systems: model of a shaker table

Mechanical systems tend to be characterised by the movement (linear or rotational) of
solid components. This movement may result in position, velocity or acceleration
changes, or indeed in changes to the output force or torque on an object. In this example
we will examine a shaker table system which can be set to vibrate and then used to cali-
brate measurement instruments or to test the resilience of manufactured products.

A shaker table system
Consider that an object, for example a camera, is placed on a shaker table and an input
force applied through an electromagnetic coil (which has a current input). The effect of
this force is to cause a vertical displacement and acceleration, x(t) and ��()x t , of the

122 Modelling for control engineering

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

Measured level, change in mA

Time, hours

Figure 5.27 Measured level, change in mA.

combined shaker table and camera mass (Figure 5.28). The acceleration of the actual table
is measured by an accelerometer, which provides an output signal in mV.

First of all we shall determine the overall process diagram by examining the individual
process, measurement and actuator blocks.

� Process: The process is represented by the dynamic behaviour of the combined shaker
table and test object. The input signal is a force, fi(t) and the output we are interested in
is the resultant acceleration of the shaker table (Figure 5.29).

� Transducer: The transducer is an accelerometer which produces a representation of
acceleration in mV (Figure 5.30).

� Actuator: The actuator which drives the shaker table is an electromagnetic coil. This
provides an oscillating force on the table. The input to the coil is a control signal in
amps (Figure 5.31).

The combined shaker table process is shown in Figure 5.32.

5.5 Mechanical systems: model of a shaker table 123

Shaker table, mass M

Input force: fi

Input current to
coil, uc

Output
acceleration, yo

Camera being
tested

m

Figure 5.28 Shaker table with camera being tested.

Shaker table

Force,
N

Acceleration
m s–2

f i()t y t()

Figure 5.29 Process block.

Measurement
transducer

Acceleration,
m s–2

Measured acceleration,
mV

y t() ym()t

Figure 5.30 Measurement block.

Actuator

Control signal,
amps

Force,
N

uc()t f i()t

Figure 5.31 Actuator block.

We now take a closer look at the modelling of mechanical systems. Since mechanical

process systems are often modelled as a combination of springs, masses and dampers, we
will discuss these representations first.

5.5.1 Actuator–Process–Transducer: the Process block
We start by examining the representations for two mechanical elements: the spring
element and the damper element.

Key result: A spring element

A spring element (Figure 5.33) behaves as a linear mechanical device if the spring restoring
force fs(t) is related to the extension x(t) by the law

fs(t) = –Ksx(t) Ks is called the spring constant.

If a mass, m, is hung on the end of the spring, it provides an input force, fi(t). The system
forces in balance would be:

fi(t) + fs(t) = 0 or mg – Ksx(t) = 0

A damper element
As the name implies, a damper is a mechanical element used to damp out mechanical
motion. A very simple example is the common door closure damper where the restoring
force is used to close a door smoothly and quietly. A common industrial example employs
the damper principle to dampen out unwanted machinery vibrations.

The damper, or dashpot as it is sometimes called, is an oil-filled piston arrangement
(Figure 5.34). The applied force fd(t) is resisted by a force caused by the oil flowing from
one side of the piston to the other. The viscous oil will pass through orifices in the piston,
or around the circumference of the piston.

124 Modelling for control engineering

Process

Force,
N

Acceleration
m s–2

f i()t y t()
TransducerActuator

Measured acceleration
mV

ym()t

Control input,
amps

uc()t

Figure 5.32 Shaker table block diagram.

Spring restoring force:
fs()t = –Ksx t() Sign conventions

Displacement:
x t()

Force: fi()t

Figure 5.33 Spring element.

Key result: A damper element

The linear damper law is

f t Bx td() �()= −

where fd(t) is the damper force, �()x t is the rate of change of displacement of fd(t) and B is the
viscous friction constant.

Model of shaker table system
The spring and damper elements enable us to develop a simple model of the shaker table.
The model usefully turns out to be that of a second-order system.

A camera, mass m, is placed on a shaker table and an input force applied through a sole-
noid valve (Figure 5.35). The input force is given by fi(t), and this is resisted by the spring
force, fs(t), and the damper force fd(t). The net effect of these forces is a vertical displace-
ment and acceleration, x(t) and ��()x t , of the combined shaker table and camera mass.

The physical principles are:

Input force from coil: fi(t)

Spring force: fs(t) = –Ksx(t)

Damper force: fd(t) = –B �x

and these are all drawn together using Newton’s second law of motion:

5.5 Mechanical systems: model of a shaker table 125

f

fd

Oil flow
Piston

Figure 5.34 Damper element.

Shaker table, mass M

Damper force: fd
Spring force: fs

Input force: f i

Displacement: x

Sign
conventions

Force: f

Input current to
coil, uc

Output
acceleration, yo

Camera being
tested

m

Figure 5.35 Shaker table and forces acting on it.

hence

giving

Dividing through by the spring constant, Ks gives

This is a second-order differential equation whose input is fi(t) and whose output is a
resultant vertical displacement of the shaker table (Figure 5.36). By differentiating (twice)
the displacement signal, x(t), we can determine the acceleration of the table, xa(t).

We can calculate the parameters given the information on the system in Table 5.3.

If the maximum acceleration that we wish the table to experience is, for example,
1000m/s2, then the maximum force (neglecting the mass of the accelerometer) is given by
F = ma = 2750 N.

The second-order modelling equation can be written in a standard second-order form

where u(t) represents the input, y(t) the output and K, ζ and ωn represent the model
parameters. The general block diagram has the form:

126 Modelling for control engineering

2

s id2
d

() () () ()
d

x
M m f t f t f t

t
+ - - =

2

s i2
d d

() () ()
dd

x x
M m B K x t f t

tt
+ + + =

2

i2
s s s

() d d 1
() ()

dd

M m x B x
x t f t

K K t Kt

+
+ + =

Shaker
table

Input System Output

f i(): input forcet x t(): displacement

xa() =t ��x : acceleration

Figure 5.36 Shaker table modelling block.

Mass of shaker table, M 2.5 kg

Mass of camera, m 250 g

Stiffness constant, Ks 1.1 × 107 N/m

System damping, B 1100 N/m s–1

Table 5.3 Physical parameters for shaker table system.

2

2 2
nn

1 d () 2 d ()
() ()

dd

y t y t
y t Ku t

tt

z
ww

+ + =

+ = + +
2

i sd2
d

() () () ()
d

x
M m f t f t f t

t

The model parameters K, ζ and ωn, are related to the system’s physical parameters:
such as mass, viscous friction constant and spring constant, or resistance, capacitance
and inductance. We will soon discover that ωn represents the natural frequency
(undamped) of a system, ζ represents the damping ratio and K represents the system gain.
In some textbooks we find ζ referred to colloquially as the damping factor. However, the
damping factor is more correctly defined as the product ζωn.

In our first-order model description (for the single tank level system) we found a general
first-order model with two parameters, K and τ . For our second-order general model we
have increased the number of parameters to three: K, ζ and ωn.

Laplace transformation of process equations
Second-order equation:

Assuming zero initial conditions for the position and velocity of the shaker table gives

which can be rearranged to give the transfer function between force and position:

The transfer function between force and acceleration is given by

Using the parameters for our system this becomes

5.5.2 Actuator–Process–Transducer: the Transducer block
The measurement device for the shaker table system is an accelerometer which provides
a measurement, xm(t), of the acceleration signal, xa(t). The accelerometer is, in an ideal
case, another example of a mechanical oscillating system (Figure 5.37). The measure-
ment of the displacement is picked up by a piezoelectric device. This is a crystal lattice
where the displacement, z(t), of the atoms is proportional to the force, F(t). The piezoelec-
tric sensor itself has a second-order dynamic equation. However the damping ratio ζ is
small and the natural frequency of the device chosen to be much higher than the
frequency range we are interested in. Hence, in steady state,

F(t) = ksz(t)

where:

5.5 Mechanical systems: model of a shaker table 127

2

i2
s s s

() d d 1
() ()

dd

M m x B x
x t f t

K K t Kt

+
+ + =

2
i

s s s

() 1
() () () ()

M m B
s X s sX s X s F s

K K K
+

+ + =

s
2

i s s

() 1/
() [() /] (/) 1

X s K
F s M m K s B K s

=
+ + +

2
A s

2
i s s

() /
() [() /] (/) 1

X s s K
F s M m K s B K s

=
+ + +

8 2
A

7 2 4
i

() 9.1 10
() 2.5 10 1.0 10 1

X s s
F s s s

-

- -
¥

=
¥ + ¥ +

Second-order system model

u t() y t()

Input Output

F(t) is the applied force
ks is the stiffness of piezoelectric sensor (typical value ~2 × 109 Nm–1)
z(t) is the displacement due to applied force

The crystal acquires a net charge q(t) which is proportional to z(t):

q(t) = Kqz(t) =
K

k
q

s
z(t)

with Kq being the constant of proportionality. This gives a direct electrical output which
can be measured by appropriate electrical circuitry.

As a general rule the accelerometer mass should be no more than one tenth of the
dynamic mass of the vibrating part to which it is attached. A general purpose accelerom-
eter will measure down to 0.01 m s–2 (limited due to electrical noise from connecting
cables) and up to 50 000 to 100 000 m s–2. It also has a linear output within the working
range of interest. A typical meter would also use amplifiers and filters within the
measurement to reduce the component of error in the system.

A specification for our accelerometer is given in Table 5.4.

A block diagram representation for the transducer is given in Figure 5.38.

128 Modelling for control engineering

Electrical output
proportional to
acceleration

Piezoelectric
element

Mass

Base

Pre-loading
spring

Vibratory
force

Figure 5.37 Compression type accelerometer.

Accelerometer specification

Voltage range 0–1.7 volts

Max. acceleration 1000 m s–2

Weight 50 g

Frequency range 0–12 000 Hz

Table 5.4 Accelerometer specification.

To calculate the value of gain, Gm, we examine the input and output signals:

Control block inputs and outputs Physical variable Range Physical units

System input, u(t) = xa(t) acceleration 0–1000 m s–2

System output, y(t) = xm(t) current 0–1.7 V

The transducer gain, Gm (Figure 5.39), is found by considering the ratio of output to input
signals.

Gm =
y t
u t

()
()

=
17 0

1000 0 2
. −

− −
V

m s
= 0.017 V/m s–2

The equations can be written as

xm(t) = Gmx(t)

Laplace transformation of measurement system
In Laplace transforms, the block diagram becomes:

The Laplace equations become:

Xm(s) = GmX(s), with Gm = 0.017

5.5.3 Actuator–Process–Transducer: the Actuator block
The actuator for the shaker table is an electromagnetic coil (Figure 5.40). Current is
supplied to the coil, which is wound round the pole of a permanent magnet. The electro-
magnetic force induced causes the coil to move up and down. The end of the coil is
attached to the shaker table to pass the force. By modulating the current to be, for
example, uc(t) = A sin ω t, the input force to the shaker table would be an equivalent oscil-
lating force.

The block diagram for this system is shown in Figure 5.41. Although the electromag-
netic coil is a complex system, we can represent it for control purposes here by a simple
gain block, GA.

5.5 Mechanical systems: model of a shaker table 129

0.017
x t() xma ()t

Acceleration,
m s–2

Measured acceleration,
V

Figure 5.39 Transducer block diagram.

0.017
xa()t xm()t

Acceleration,
m s–2

Measured
acceleration,
V

Gm
Xa()s Xm(s)

Symbolic representation

Gm

Acceleration,
m s–2

Measured acceleration,
mV

xa()t xm()t

Figure 5.38 Transducer block diagram.

To find the value of GA, we examine the input and output ranges for this actuator.

Control block inputs and outputs Physical variable Range Physical units

System input, u(t) = uc(t) current 0–10 amps

System output, y(t) = fi(t) force 0–2750 N

Hence the gain GA is given by:

GA =
2750 0
10 0

−
−

N
amps

= 275 N/amp

The equation for the actuator system is

fi(t) = 275uc(t)

Laplace transformation of actuator system
Actuator system equation:

fi(t) = 275uc(t)

Actuator system equation in Laplace transforms:

Fi(s) = 275Uc(s)

or

Fi(s) = GAUc(s) with GA = 275

The block diagram becomes:

130 Modelling for control engineering

S N N

Permanent
magnet

Coil

Movement

S

Figure 5.40 Electromagnetic coil.

275
uc()t f i()t

Current,
amps

Force,
N

GA
Uc()s Y s()

Symbolic representation

GA

Control signal,
amps

Force,
N

uc()t f i()t

Figure 5.41 Actuator block diagram.

5.5.4 Complete Actuator–Process–Transducer block diagram
The individual actuator, process and transducer blocks are:

Actuator:

Process:

Transducer:

This gives the final model as

5.5.5 Simulink representation of shaker table system
The Simulink model (Figure 5.42) shows an input sinusoid being passed into the actuator
gain block (which represents the electromagnetic coil). The force signal output from this
block drives the shaker table (whose Laplace transform representation is given). The
output acceleration signal of the shaker table is measured using the accelerometer to
provide an output in volts. The advantage of using a Simulink model is that we have
access to some of the signals which we do not measure on the real system, for example the
force, fi(t) and the actual acceleration in m s–2, xa(t).

5.5 Mechanical systems: model of a shaker table 131

275
uc()t f i()t

Current,
amps

Force,
N

1100.1105.2
101.9

)(
)(

427

28

+¥+¥
¥

= --

-

ss
s

sF
sX

i

A

f i()t xa()t

Force,
N

Acceleration,
m s–2

0.017
xa()t xm()t

Acceleration,
m s–2

Measured
acceleration,
V

Acceleration
m s–2

y t()
0.017

Measured acceleration
V

ym()t

9.1×10–8 s2

2.5×10–7s2 +1.0×10–4s+1
275

Control input,
amps

Force,
N

uc()t

Sinusoidal input
current, A

9.09×10 s–8 2

2.5×10 s + 1.0×10 s + 1–7 2 –4

Shaker table

0.017

Measurement
gain

Measured
acceleration, V

Force, N

275

Actuator
gain

Acceleration,
ms–2

xafi

xm

Figure 5.42 Simulink representation of shaker table system.

Alternative Simulink model
However, we can also model this system in Simulink in an alternative manner by using
the differential equations that represent the process:

or

We remember that velocity is the integration of acceleration and displacement is the
integration of velocity. Therefore, once we have determined the acceleration, we can
integrate to find the velocity and position. An integrator block in Simulink is given by
the Laplace representation: 1/s. Figure 5.43 shows this Simulink representation. Once
again we can use the features of Simulink to examine signal behaviour of signals that are
not actually monitored in the real system.

Simulation test: response to sinusoidal input
If we inject a sinusoidal input signal of 5 amps at 200 rad s–1, we can use MATLAB to plot
any of the signals we have written to the workspace. For example, let us look at the posi-
tion of the shaker table, x(t), in Figure 5.44. We notice that the output position is very
small, less than ± 0.15 mm. This is correct, since the movement of the shaker table is not
designed to be large. The table is designed to oscillate and test the object (camera) on the
table at different frequencies to determine how it responds when stimulated near its reso-
nant frequency.

This is a good example to show how you must still apply some intuition to the results
output from a Simulink model. If we look at the acceleration and position together

132 Modelling for control engineering

2

s i2
d d

() () ()
dd

x x
M m B K x t f t

tt
+ + + =

2

i s2
d 1 d

() ()
() dd

x x
f t B K x t

M m tt

Ê ˆ= - -Á ˜Ë ¯+

t

time, seconds

Velocity,

Sum

+

–

–

x

Position,
metres

0.017

Measurement
gain

Measured
acceleration, V

11e6

Ks

s
1Integrator 2

s
1Integrator 1

Input signal
current, A

Force, N

Clock

1100

B

275

Actuator
gain

Acceleration,

1/2.75

1/(M+m)

xm

xv

xa

m s–2

m s–1

f i

Figure 5.43 Alternative Simulink representation: Simulink representation from differential equations.

(Figure 5.45: the acceleration has been scaled by a factor of 10–4 to enable them to be
shown together), we see that the acceleration appears very oscillatory. This would not be
expected, since if the displacement followed pure sinusoidal behaviour, the velocity and
acceleration would do likewise:

y = sin ω t

The velocity and acceleration are given by

d
d
y
t

= ωcos ω t
d
d

2y
t2 = –ω 2 sin ω t

5.5 Mechanical systems: model of a shaker table 133

0 0.02 0.04 0.06 0.08 0.1
–1.5

–1

–0.5

0

0.5

1

1.5
× 10–4

Time, seconds

Position, metres

Figure 5.44 Position of shaker table.

0 0.02 0.04 0.06 0.08 0.1
–4

–3

–2

–1

0

1

2

3

4

5
×10–3

Time, seconds

Acceleration × 10–4

Position

Figure 5.45 Acceleration and position of shaker table.

If we refer to Figure 5.46, we would expect the velocity to be zero when the shaker table
is at its maximum position (and changing direction) and the acceleration to be at a
maximum value but in the opposite direction. We do see this clearly in Figure 5.45 as
time progresses. The initial large oscillations in Figure 5.45 are the natural transient
response of the system to the input signal. The initial transient decays, leaving the under-
lying sinusoidal behaviour. We can verify this using MATLAB to determine the approxi-
mate damped frequency of oscillation of the system.

1. Measuring the damped frequency of oscillation from the plot
By using the function ginput(2) and clicking twice on two consecutive peaks on the
MATLAB plot (Figure 5.45), we find that the approximate time for one cycle is (0.0135
– 0.0103) = 0.0032 seconds. The number of cycles/second (Hertz) is given by 1/0.0032 =
312.5 Hz. Finally, the answer in rad s–1 is given as

Damped frequency of oscillation: 312.5 × 2π = 1963 rad s–1.

2. Using Laplace transform analysis to find the roots of the denominator of the transfer
function:

we enter the denominator polynomial as a vector of coefficients, den, and then request
the roots.

134 Modelling for control engineering

0 20 40 60 80 100 120
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Position

Normalised amplitude

Time, seconds

Acceleration

Velocity

Figure 5.46 Position, velocity and acceleration.

1100.1105.2
101.9

)(
)(

427

28

+¥+¥
¥

= --

-

ss
s

sF
sX

i

A

f i()t xa()t

Force,
N

Acceleration,
ms–2

den = [2.5e-7 1.0e-4 1];
p = roots (den)

ans =
1.0e+003 *
-0.2000 + 1.9900i
-0.2000 – 1.9900i

This gives us two complex roots. The real part gives the rate of decay, ζωn, and the imagi-
nary part gives the value of the damped oscillation, ω d. In this case ω d = 1990 rad s–1.
Bearing in mind the precision with which we might have used the cursor on the MATLAB
graph and the simulation step size, it does seem that the initial oscillations were due to
the dynamics within the shaker system. With more detailed and accurate analysis, the
two results for the damped oscillation could become closer.

5.6 Modelling of a manufacturing process component

Manufacturing systems often include conveyor belts, ‘pick and place’ systems and robot
systems. Almost all will use some form of motor to drive, or actuate, the process. The
measurements will vary depending on the process requirement, for example for accurate
positioning in robotic welding and for accurate velocity in conveyor systems. As with our
other process systems, the first important task is to be able to evaluate what the inputs
and outputs of any particular system are and to be able to produce a process diagram.

Conveying system
Manufacturing systems use conveyor systems to transport goods from different areas of the
production facility: from processing to filling to labelling to packaging and so on. A typical
conveyor system (Figure 5.47) may use a belt on rollers to carry products. The rollers are
driven by motors. The velocity of the system would have to be kept constant to optimise
the process. The speed of the conveyor belt may be determined using a tachogenerator or an
optical encoding system. The physical parameters are given in Table 5.5.

We can represent this system in a control block diagram format. Firstly, determine the
process, measurement and actuator components.

� Process: In this example, the process is represented by the rotating shaft which moves
the load (the conveyor belt and products). The input signal is the torque, q(t), (in N m),
from the motor which drives the load. The output signal is the rotational or angular
velocity of the system (Figure 5.48).

5.6 Modelling of a manufacturing process component 135

Encoder
R

Motor

Conveyor
system

Roller

Roller

Shaft

Figure 5.47 Conveying system.

� Transducer: We are interested in measuring the rotational velocity of the drive shafts
to ensure accurate control of the conveying system. The measurement of the velocity
of the rotating shaft is being performed by an optical encoder which produces a number
of pulses per second, ωm(t) (Figure 5.49).

� Actuator: The shaft is driven by a d.c. servo motor. The input to the motor is a control
signal, uc(t), in volts. The motor provides an output torque, q(t), which drives the
system (Figure 5.50).

By combining the Actuator–Process–Transducer block diagrams we find that the total
process block diagram can be represented by Figure 5.51.

136 Modelling for control engineering

Physical and design parameters

Combined inertias (relative to drive shaft), J 0.1 kg m2

Friction factor, B 0.5 N m s–1

Roller diameter 200 mm

Max. belt speed 1 m s–1

Max. angular velocity 10 rad s–1

Maximum applied torque 10 N m

Table 5.5 Conveyor parameters.

Optical
encoder

Angular velocity,
rad s–1

Measured angular
velocity, pulses s–1

w(t) wm()t

Figure 5.49 Conveyor Transducer block.

d.c. motor

Control input,
V

Torque,
N m

uc()t q t()

Figure 5.50 Conveyor Actuator block.

Conveyor load

Torque,
N m

Angular velocity,
rad s–1

q t() w()t
Optical
encoderd.c. motor

Measured velocity,
pulses s–1

wm()t

Control input,
V

uc()t

Figure 5.51 Model of conveyor belt system.

Conveyor belt
and load

Torque,
N m

Angular velocity,
rad s–1

q t() w()t

Figure 5.48 Conveyor Process block.

5.6.1 Actuator–Process–Transducer: the Process block
As with the mechanical system, which was modelled by a spring–mass–damper system,
the modelling of a rotational system comprises three similar components: a torsional
spring, a rotational inertia and a frictional torque effect. The total applied torque, TA, on
the shaft can be expressed as:

TA(t) = Ts(t) + Ti(t) + Tf(t)

The three components, Ts(t), Ti(t) and Tf(t) arise from the following:

� a torsional spring effect arising from a stiffness factor Ks which is associated with the
mechanical property that the shaft twists through an angle θs(t) under applied rota-
tional load or torque

� a torque arising from the sums of inertias, J, (referred to the motor shaft) and the related
angular acceleration, d2θ/dt2 or �� ()θ t , of the shaft.

� frictional effects leading to a damping constant or friction constant, B, which is associ-
ated with the rotating load (angular velocity dθ/dt or � ()θ t or ω (t))

In this conveyor system, we will assume that

(a) the torque produced by the motor passes directly to the load

(b) the drive shaft is very stiff and therefore the value of θs(t) is negligible

This results in an equation for the applied torque, TA(t):

TA(t) = J
d
d

2

2
θ()t
t

+ B
d
d
θ()t
t

This is a second-order differential equation. We can use our standard control notation and
define inputs and outputs of the system:

input signal u(t): applied torque, TA(t)

output signals y1(t), y2(t): position and velocity of shaft, θ(t) and dθ/dt

The differential equation can be written in a control system block diagram:

Laplace transformation of process equation
Second-order differential equation: T t J t B tA() ��() � ()= +θ θ .

Assuming that the initial conditions on position and velocity are zero (θ(0) = 0, � ()θ 0 0=),
this can be written in Laplace transforms as:

TA(s) = Js2θ(s) + Bs θ(s)

Hence the relationship between the input applied torque and the shaft position is given
by

θ()
() ()
s

T s s Js BA
=

+
1

5.6 Modelling of a manufacturing process component 137

Torque

Angular velocity, y2()t
u t()

Displacement, y1()t

Shaft and load

The velocity can be written as ω (t) = dθ/dt, and ω (s) = sθ(s) in Laplace transforms. Hence
the torque to velocity transfer function can be written as:

Ω()
()
s

T s Js BA
=

+
1

Using the information in the system properties table (Table 5.5), the transfer function can
be written as

Ω()
() . .
s

T s sA
=

+
1

01 0 5

The block diagram for the process is then given by

5.6.2 Actuator–Process–Transducer: the Transducer block, an optical encoder
Shaft encoders are often used in manufacturing and robotics to provide a measurement of
angular movement, such as angular displacment or angular velocity. The encoder is
mounted on the drive shaft and rotates at the same velocity as the shaft. A simple rotary
encoder, which is used to measure angular velocity, is shown in Figure 5.52.

A fixed source of light is provided on one side of the disc and a means of monitoring this
light, such as a photodiode, is placed on the opposite side of the encoder disc. This disc is
marked with a precise circular pattern of alternating clear and opaque segments. As the
disc rotates, light falls on the photodiode in a distorted sinusoidal manner. The
photodiode therefore produces a sinusoidal electrical output signal. By passing this
through an electrical circuit, (a Schmitt trigger circuit), the signal can be converted into a
square wave. This square wave can be converted electrically into a series of pulses (Figure
5.53) which will be directly proportional to the shaft velocity. Sometimes it is necessary
to determine the direction of the shaft rotation, and in this case two photodiodes can be
used, with an auxiliary grating system on the encoder.

138 Modelling for control engineering

1
0.1s + 0.5

Torque,
N m

TA()s

Angular velocity,
rad s–1

W(s)

Circular grating
Light source

Objective lens

Photodiode

Figure 5.52 Rotary encoder.

By examining the table of inputs and outputs for the system, we find that the measure-
ment gain, Gm, relates the measured electrical pulses to the input angular velocity.

Control block inputs and outputs Physical variable Physical units

System input, u(t) = w(t) angular velocity rad s–1

System output, y(t) = wm(t) electrical pulses pulse s–1

The value of the transducer gain, Gm, is found from the parameters of the encoder
disc. The encoder disc in our example gives 1000 pulses/revolution, or equivalently,
1000 pulses/2π radians, which gives 159.2 pulse/rad. This value is the value of Gm. There-
fore the transducer block diagram is given by:

Laplace transformation of transducer equations
In Laplace transforms, the transducer block diagram becomes:

The Laplace equations become:

Ω m(s) = GmΩ (s) with Gm = 159.2 pulse/rad

5.6.3 Actuator–Process–Transducer: the Actuator block, a field controlled d.c.
motor

The operation of electric motors is based on the following principles:

1. If a current-carrying conductor is placed in a magnetic field, there will be a force
exerted on the conductor.

5.6 Modelling of a manufacturing process component 139

Output of
photodiode

Output of
Schmitt trigger

Pulse sequence

Figure 5.53 Output of encoder and electrical circuitry.

159.2

Measured angular
velocity, pulse s–1

w()t wm()t

Optical encoderAngular velocity,
rad s–1

159.2

Measured angular
velocity, pulse s–1

W(s) Wm()s

Optical encoderAngular velocity,
rad s–1

2. If a conductor is moved through a magnetic field there will be a voltage induced in the
conductor.

Electric motors can be classified according to their electrical configuration. This
produces two main categories: d.c. motors and a.c. motors. The d.c. motor consists of a
rotating cylinder called the armature which is placed in the magnetic field between two
stationary magnetic poles, called the field. The a.c. motor consists of a rotating cylinder
called the rotor which rotates in the rotating magnetic field produced by the windings of
the stationary stator.

Traditionally, a.c. motors with no additional speed control were used primarily for
operations that require a constant single operating speed. Single-phase motors are used
for low-power applications, with three-phase motors being used for applications
requiring greater power. D.c. motors have traditionally been used for variable-speed
applications, since the control circuits for varying a.c. motor speed are more complex.
However, with the application of modern electronic circuits to a.c. motor control, vari-
able-speed a.c. drives have become more attractive.

Variable-speed d.c. motor
There are two methods of controlling the speed of a d.c. motor:

1. Field control: hold the armature current constant and control the torque via the field
voltage.

2. Armature control: hold the field constant and control the torque via the armature
voltage.

In this example (Figure 5.54), we control the field voltage Vf(t) in order to control the
speed and position of the output rotating shaft. The motor variables and parameters are
given in Table 5.6.

140 Modelling for control engineering

Motor variables Motor parameters

Vf(t): Field voltage Rf: Field winding resistance = 2 Ω

if(t): Field current Lf: Field winding inductance = 0.5 H

ia(t): Armature current

Table 5.6 D.c. motor variables and parameters.

d.c. motor

q w,

Vf

R f

L f

ia

i f

Load

Figure 5.54 D.c. motor schematic.

In a d.c. motor, the field provides the magnetic flux and the armature circuit is provided
with a constant current ia(t) by a supply voltage, Va(t). By supplying the field windings
with a varying voltage, the magnetic field varies and this provides, through the motor, the
changing torque.

1. Field circuit

Vf(t) = Rfif(t) + Lf
d

d
fi t
t
()

2. A mechanical effect in the form of an applied rotational torque, TA(t), where

TA(t) = K1φ ia(t)

3. However, since the armature current is constant, the torque is proportional to the flux,
and the magnetic flux satisfies

φ(t) = K2if(t)

Combining these gives the torque as

TA(t) = (K1K2Ia)if(t)

The maximum applied torque is 10 N m for a field current of 5 A, and therefore this gives
the combined constants of proportionality, K1K2Ia, equal to 2 N m/A.

We can now express the d.c. motor as a system with appropriate input and outputs:

input signal, uc(t): field voltage, Vf(t)

output signal, y(t): applied torque, TA(t)

The control block diagram is:

Laplace transformation of d.c. motor equations

Field circuit: Vf(t) = Rfif(t) + Lf
d

d
fi t
t
()

Applied torque: TA(t) = (K1K2Ia)if(t)

Assuming zero initial conditions for the field current and voltage gives

Vf(s) = (Rf + sLf)If(s)

and

TA(s) = K3If(s) where K3 = K1K2Ia

This gives the transfer function as:

T s
V s

K
R sL

A

f f f

()
() ()

=
+

3

Given the system parameters in Figure 5.54, the transfer function can be written as:

5.6 Modelling of a manufacturing process component 141

Voltage

TA()tu t()

Torque
d.c. motor

T s
V s s

A

f

()
() (.)

=
+

2
2 0 5

and the Laplace block diagram representation is given by:

5.6.4 Complete Actuator–Process–Transducer block diagram
Actuator block diagram:

Process block diagram:

Transducer block diagram:

The combined block diagram for the conveyor belt system is given in Figure 5.55.

5.6.5 Simulink representation of conveyor belt system
This can be represented in a Simulink block diagram as shown in Figure 5.56. The motor
and drive shaft and load are represented by two first-order systems (in Laplace trans-
forms) and the measurement is given by a gain block. In Simulink (which does not use
Greek letters and subscripts), the measured value is indicated by wm and we can also
monitor the input voltage, uc, the input torque, q and the actual velocity, w. The input
signal is a step change in voltage to the d.c. motor.

We can therefore examine how this system behaves for a change in input voltage or for
changes of system parameters. Figure 5.57 shows three responses. In each case, the plot
represents the change in angular velocity, ω (t), of the system for a step change of 1 V in
input signal to the drive motor. However, in the second and third cases the nominal

142 Modelling for control engineering

2

Voltage,
V

V s()

Torque,
N m

TA(s)

d.c. motor

0.5 +2s

1
0.1s+ 0.5

Torque,
N m

Angular velocity,
rad s–1

TA()s W(s)

Shaft and load

159.2

Measured angular
velocity, pulse s–1

W()s Wm()s

Optical encoderAngular velocity,
rad s–1

1
0.1s+ 0.5

Torque,
N m

Angular velocity,
rad s–1

q t() (w t)
159.22

Measured velocity,
pulses s–1

m()t

Control input,
V

uc()t w0.5 +2s

Figure 5.55 Final block diagram of conveyor belt system.

2
0.5 +2s

Voltage,
V

V s()

Torque,
N m

TA(s)

d.c. motor

parameter values have been changed. By changing the inertia value J we see that the speed
of response is slower, though the drive shaft does reach the same angular velocity eventu-
ally. By increasing the friction constant, B, we find that the steady state angular velocity
attained is less than the original. Simulink has provided us with a means for determining
the system behaviour for a range of parameter values. This could be useful when
designing systems or experimenting with different system components.

Although engineering systems may often look complex, many can be broken into
subsystems which can be approximated by simple linear block models. In this chapter we
have examined three such systems from different disciplines, a liquid level system, a
shaker table and a manufacturing conveying system. All the systems use a combination
of knowledge from different areas: chemical, mechanical, manufacturing and electrical.
We now summarise what we have covered in this chapter.

5.6 Modelling of a manufacturing process component 143

q

Torque, N m

uc

Input signal, V

2

0.5s+2

d.c. motor

w

Angular velocity,
rad/s

159.2

Measurement
gain

wm

Measured angular
velocity, pulses/s

Input signal
step change, V

1

0.1s+0.5

Conveyor shaft
and load

Figure 5.56 Simulink representation of conveyor system.

0 1 2 3
0

0.5

1

–1

1.5

2

Increase by 20%B

Increase by 100%J

Original step response

Time, seconds

Angular velocity, rad s

Figure 5.57 Angular velocity of shaft of conveying system.

What we have learnt

� To recognise the control inputs and outputs of a system.

� To represent a process by a block diagram, with control inputs and outputs as
directed lines.

� To model a simple gain block within a control system.

� To examine a control system and to recognise the Actuator–Process–Transducer
units within it.

� To develop simple models for actuator, process and measurement units.

� To produce a Laplace transform representation of the complete system.

� To simulate the system using Simulink and provide a first simple analysis of results.

Multiple choice

144 Modelling for control engineering

M5.1 In a control block diagram, signals are
represented by
(a) Boxes
(b) Arrows
(c) Directed lines
(d) No symbol, just their letters

M5.2 The common control notations for the input
and output signals of a process block are,
respectively:
(a) p(t), y(t)
(b) u(t), y(t)
(c) u(t), x(t)
(d) x(t), y(t)

M5.3 If a system has the following representation:

which of the following is correct?
(a) U(s) = G1(s)X(s)
(b) Y(s) = X(s)U(s)
(c) U(s) = G1(s)G2(s)Y(s)
(d) Y(s) = G2(s)G1(s)U(s)

M5.4 If u(t) has units of °C and y(t) has units of
mm, what are the units of K in the following
diagram?

(a) °C
(b) mm
(c) mm/°C
(d) °C/mm

M5.5 For the following diagram, which statement
is correct?

(a) z(t) = a(t) + b(t) – c(t) + d(t)
(b) z(t) = a(t) + b(t) + c(t) + d(t)
(c) z(t) = –(a(t) + c(t)) + (b(t) + d(t))
(d) z(t) = –a(t) – b(t) – c(t) + d(t)

M5.6 Which statement describes the purpose of
an actuator?
(a) equipment which measures the controller

signal
(b) equipment which converts the controller

signal into an action on the process
(c) equipment whose sole purpose is to amplify

the controller signal before being applied to
the process

(d) equipment used to measure the output of
the process

M5.7 The Laplace transform of dy/dt is
(a) sY(s) – yo
(b) sY(s) + yo
(c) Y(s) – yo
(d) Y(s) + yo

G1()s G2()s
U s() X s() Y s()

K
u t() y t()

a t()

z t()b t()

c t() d t()

_

_

+

+

Questions: practical skills

Q5.1 For the following transducer descriptions, what are the values of the simple gain and the units of
the gain?
(a) a flow meter: for every litre of liquid that flows it records a change of 2 V
(b) a pressure transducer: for every 0.75 bar change it records a change of 1 mA
(c) a temperature transducer: for every +2 °C change in temperature, the output changes by 80 μV

Q5.2 What is the Laplace transform of the following differential equations?

(a) 4
d
d
y
t

+ 3y(t) = 10q(t) y(t) is output, q(t) is input, y(0) = 0

(b) 6
d
d
m
t

+ m(t) = 2p(t) m(t) is output, p(t) is input, m(0) = 3

(c) τ
d
d
y
t

+ y(t) = Ku(t) y(t) is output, u(t) is input, y(0) = y0

Q5.3 The following two differential equations represent second-order equations of motion in linear and
rotational forms. What is the Laplace transform of the differential equations? Note the similarities in
the general equations.

(a) M
d
d

2

2
y

t
+ B

d
d
y
t

+ Ksy(t) = Kf(t)

y(t) is output position, f(t) is input force, y(0) = 0, �()y 0 0= .

(b) J
d
d

2

2
θ

t
+ B

d
d
θ
t

+ Ksθ(t) = KT(t)

θ(t) is output angular position, T(t) is input torque, θ(0) = 0, � ()θ 0 2= rad / s.

Problems

P5.1 Given the following information about a system, find the complete block diagram description using
Laplace transforms.

A tank system is represented by the following first order differential equation:

τ �() () ()h t h t Kq t+ =

Practical skills 145

M5.8 The output of a measurement transducer:
(a) can suffer from environmental effects
(b) will have the same units as the output of the

process
(c) is always calculated using a simple gain

block
(d) gives the exact value of the process output

M5.9 A damper is an element:
(a) that amplifies the output of a process
(b) used in the modelling of mechanical

components
(c) used to stop the conveyor belt in a manu-

facturing system
(d) used in chemical process engineering

M5.10 Modelling refers to the process of:
(a) defining a set of mathematical equations for

a process
(b) finding a block diagram representation for a

system
(c) finding an input–output relationship for a

system
(d) all of the above

where h(t) is the liquid level in m and q(t) is the input flow rate in m3/s. K is given as 0.01 s/m2 and
τ = 15 minutes. The output signal comes from a measurement transducer whose gain is 5 V/m. The
pump controlling the flow in is driven by a current and has a gain of 2 m3/s/A.

P5.2 A picture of a mechanical accelerometer is shown. The position and acceleration of the housing
are given by z(t) and d2z/dt2. The position and acceleration of the mass inside the housing are given
by x(t) and d2x/dt2. Find the equation that relates the relative displacement of the mass to the housing
to the acceleration of the housing.

P5.3 The following description represents a temperature monitoring system.

A thermocouple with a gain of 40 μV/°C is connected to an amplifier which has a nominal setting of
100. This voltage drives a chart recorder which produces 0.01 mm change for 0.5 mV. The chart
recorder is also fairly slow and can be represented by the following first-order differential equation:

3
d
d
x
t

+ x(t) = Kva(t)

where x(t) is the position, K is the chart recorder gain and va(t) is the input driving voltage in mV. The
maximum length of paper is 300 mm.
(a) Produce a block diagram for the system.
(b) If the temperature changes by up to 35 °C, investigate the maximum value of the amplifier gain

such that the chart recorder position remains within the boundary of the paper.

P5.4 A process contains a storage vat, v1, which is fed by the outflow of a vat, v2, of similar dimensions.
The cross-sectional area of both vats is constant at 15 m2. The output flow from v1 is measured by a
flow transducer which provides an output of 1.2 V for a change of 1 m3/s in flow. The input to vat v2 is
controlled by a pump which produces a flow of 2 m3/s for every 1 A. The gravity outflow from the first
tank is controlled by a variable restriction, K, on the outlet pipe.
(a) Produce a schematic diagram for the system.
(b) Develop the modelling equations for the process.
(c) Write down the block diagram using Laplace transform notation for the mathematics.

146 Modelling for control engineering

Acceleration
d2z
dt2

Accelerometer

Displacement: z

Ks

M

Displacement: ()x t

B

Simple systems: first-order behaviour6

Help? Time to readGaining confidence Skill sectionGoing deeper

K and explainedt

First-order system behaviour

Step response Steady state value,
Time constant,

K
t

Finding andK t

General first-order system time response Free response: () = 0, (0) 0
Forced response: () 0

u t y
u t

π
π

Simulink model

Simulink model

Transfer function representations

Speed of system response

Process time delays

Padé approximation

Systems behave differently, as do humans. Some people respond quickly to changing informa-
tion, others take much longer to react. Some people are more extrovert and quickly become over-
excited, while others take any change to their life in their stride. If we inject different input signals
to systems, we also see that the system behaviour changes – some systems respond quickly,
others respond more slowly; some become over-excited and ‘bounce’ around, while others slug-
gishly follow the input signals. What determines their behaviour is referred to as the ‘dynamics’ of
the system. Although the dynamics of many systems are quite complex, we can often approximate
complicated system dynamics by simpler representations (which are often quite sufficient for
control design).

In our studies we will be examining the response of systems to an input signal which is usually a
step change in input level. We find a wide variety of responses such as those shown in Figure 6.1,
and these responses depend on the nature of the physical process and its model. In particular, we
are interested in the responses of first-order and second-order process models, and we examine
these in detail in Chapters 6 and 7.

However, regardless of the particular model, we need to be able to identify different parts of the
response; in particular, the regions called the transient and steady state portions of the response.
Transient behaviour in a step response is the early part of the response, which is possibly still
rapidly changing before the response settles to its final steady state level (or steady state oscilla-
tion). Figure 6.2 shows the regions for a slowly responding process and a process which oscil-
lates in response to a step change in input signal.

148 Simple systems: first-order behaviour

0
0

Time

Slowly rising response to steady level

0
0

Time

Fast response, but large
oscillations, taking time to decay

0
0

Time

Output does not exceed final value, no
oscillations, response not too slow

0
0

Time

Fast response, not such a large
peak, oscillations decay quickly

Figure 6.1 Typical system responses.

Therefore, in this chapter and the following one we will examine first-order and second-order
systems, so called because the systems are described by first- and second-order differential
equations. In fact, we will limit our detailed study to the following categories:

Models and behaviour of simple systems

Chapter 6 Chapter 7

First-order system

First-order lag plus deadtime

Second-order systems:

Underdamped

Critically damped

Overdamped

Second-order system plus

deadtime

Learning objectives

� To become familiar with first-order system behaviour.

� To find parameters K and τ from a first-order time response graph.

� To use MATLAB/Simulink to investigate system responses.

� To recognise how the parameter τ affects the speed of response of the system.

� To introduce the idea of deadtime in a system.

� To illustrate the step response of a first-order lag-plus-deadtime system.

Simple systems: first-order behaviour 149

0
0

y t()

t

Transient
region

Steady state
region

0
0

y t()

t

Transient
region

Steady state
region

Figure 6.2 Steady state and transient regions of a response.

6.1 First-order system model

Two different process systems are shown in Figures 6.3(a) and (b).

(a) In the first system, the level of liquid in the tank is dependent on the flow into the
tank.

(b) In the second system, the voltage across the capacitor is altered by changing the input
voltage.

Both these systems can be represented by first-order differential equations.

The equations and their input and output signals are shown in Table 6.1.

Both these systems can be written in the form

150 Simple systems: first-order behaviour

System Liquid level system Electrical RC circuit

Input signal Flow qi(t) Input voltage vi(t)

Output signal Height h(t) Output voltage vo(t)

Differential equation RA
d
d
h
t

+ h(t) = Rqi(t) RC
d
d

ov
t

+ vo(t) = vi(t)

General differential equation τ
d
d
y
t

+ y(t) = Ku(t) τ
d
d
y
t

+ y(t) = Ku(t)

Parameter K K = R = 140 K = 1

Parameter τ τ = RA = 29 minutes τ = RC = 0.3 seconds

Table 6.1 First-order system descriptions.

Flow out:
qo()t

Height/level
h t()

Flow in:
qi()t

Control signal:(a)
uc()t

vo()t

(b)

vR()t
v i()t

C

R

Figure 6.3 Liquid level system and electrical RC circuit.

Key result: First-order parameters

K is referred to as the system gain and τ is called the time constant for the system.

Laplace transform of first-order differential equation
The Laplace transform for this equation can be found as follows:

τ
d
d
y
t

y t+⎧
⎨
⎩

⎫
⎬
⎭

() = {Ku(t)}

τ (sY(s) – yo) + Y(s) = KU(s)

where yo is the initial value of signal y(t).

(τ s + 1)Y(s) = KU(s) + τyo

Y(s) =
K
sτ +1

U(s) +
τ

τ s+1
yo

U(s) is the Laplace transform of the input signal, u(t), and Y(s) is the Laplace transform of
the output signal, y(t). The value of yo is the initial value of the output (the level in the
tank or the voltage across the capacitor). This initial value is often zero, and with this
assumption the systems can both be written in block diagram format as

where G(s) = K/(τ s + 1).

6.2 First-order step response

Let us look at giving a step change in input signal to a general first-order system. We often
use a unit step, or we can inject a step of size ro. If we inject a step of size ro to a first-order
system (with a time constant of τ = 10) we find that the graph of the output y(t) against
time is as shown in Figure 6.4.

The important points that can be read from this graph are the steady state (or infinite
time) level of the output, yss, and the time constant, τ .

Key result: Values from first-order response plot

Steady state value of output: the value of the output reaches a constant level, yss (steady state
value). This value is equal to

yss = Kro

Value of output at the time constant: The time constant represents the time taken for the
output to rise to 63% of the change in output. In the plot, the output changes from zero to a
steady state value of Kro. The change is then given by (Kro – 0) = Kro. The value of the system
output when the time reaches the value of the time constant, yτ

yτ= 0.63Kro

6.2 First-order step response 151

()G s

Y s()U s()

The exponential rise of the system resembles the typical response for all first-order
(linear) systems. Hence if you can put the system in the form given by

Y(s) =
K
sτ +1

U(s)

where we know the values of K and τ , and we know the step size, ro, of the input signal,
we can sketch the output response.

Skill section Finding K and from system plots

We can also work in reverse: given an unknown system, we can inject a step into the system of
value ro and record the output response. If the output plot resembles that in Figure 6.4 and we
make the assumption that it is a first-order response, we can use the plot to determine the values
of K and τ .

Example Examine the graph given in Figure 6.5. This plot represents the output level in a tank given
that the input signal undergoes a step change of value ro = 2.

Calculation of system gain, K: Read off the steady state value of yss from the graph. Given the
intput step size ro, use the equation yss = Kro to work out the system gain, K.

From the figure we can estimate that yss = 280. Given the fact that ro = 2, we find that K = 140.

Calculation of time constant, τ : Calculate the value of yτ (63% of the change in output). Mark
the value on the vertical axis. From the vertical (y-axis) track across to the output curve. Descend
to the time axis to determine the time taken for the output to have altered by 63% of its change in
value.

From the figure, we can calculate that yτ = 0.63 (280 – 0) = 176.4. Find this point on the y-axis
and track across to the output curve. From this intersection, track down to the time axis to find the
time taken to reach this point: approximately 29 minutes. Hence τ = 29.

152 Simple systems: first-order behaviour

0 10 20 30 40 50 60
0

yss= Kro

t: time constant

yt= 0.63 * Kro

Time

Output: ()y t

First-order response

Steady state value

Figure 6.4 First-order response of system.

The system, G(s), is then given by

G(s) =
140

29 1s +

Remark We note that in these systems:

The system parameters do not change for different input signals.

Therefore, even if the input signal changes, the values of K and τ , which are related to physical
properties of the system, will not alter. Formally, we call these types of system linear time-
invariant systems.

Example Look at the output responses in Figure 6.6. The input step sizes were 0.5, 1.0 and 1.5 respec-
tively. Find the value of K and τ for plots 1, 2 and 3 and compare the values of K and τ for each
plot. (Since the system has not changed, the parameters K and τ should work out to be the same!)

6.2 First-order step response 153

40 60 80 100 120 140 160 180

300

250

200

150

100

50

0
0 20

Output signal

Time (minutes)

0.63 * Kro

Kro

t:

x

time constant

Figure 6.5 Output response of unknown first-order system.

0 20 40 60 80 100 120 140 160 180

250

200

150

100

50

Time (minutes)

Output response

Plot 1

Plot 2

Plot 3

Figure 6.6 Different magnitudes of step size into the same system.

6.3 Positive and negative step signals (‘up and down’ step signals)

Although we often examine the ‘unit step response’, which is customarily taken in a posi-
tive direction, we can also use step signals in a negative direction. We are effectively
injecting input signals which move the process output value up and down from its
starting point. For our linear constant coefficient systems we will find that the values of
K and τ are found in the same manner for a negative step as for a positive step. For more
complex nonlinear systems, the size of step and the direction will result in different
responses.

Example Figure 6.7 shows the output response to a negative step for two different systems:

GA(s) =
K
s
A

Aτ +1
GB(s) =

K
s
B

Bτ +1

The step sizes were –20 and –3 respectively. The calculation of KA and τ A is done for plot A. The
evaluation of KB and τ � for plot B is left as an exercise.

Plot A:

yss = –40 = KAro

Since ro = –20, KA = 2.

yτ = 0.63 × (–40 – 0) = –25.2

Time taken for output to reach –25.2 is t = τ A = 5 seconds.

System A is GA(s) =
2

5 1s +

154 Simple systems: first-order behaviour

0 5 10 15 20 25 30
–50

–45

–40

–35

–30

–25

–20

–15

–10

–5

0

Output response

Time (seconds)

yss

yt

Plot A

Plot B

t

Figure 6.7 Negative step responses.

6.4 Use of Simulink to find the step response

We can use a Simulink representation to help us examine the output response of y(t) for
different sizes of input signal.

Notes:

1. The values of K and τ (tau in the Simulink icon) can be set at the MATLAB command
line.

2. The step size is altered by opening the Step icon and entering the new value there.

3. The output response is plotted by using the command plot(t,y).

It is very convenient that, given any first-order system defined by the parameters K and
τ , we know the shape of the response and vice versa. We now look at the mathematics
behind this and start with the differential equation.

6.5 General first-order system time response

We consider a first-order model which can be represented by the first-order differential
equation:

τ
d
d
y
t

y t Ku t+ =() ()

where

y(t) represents a varying quantity in the system
u(t) represents an input
τ and K represent model parameters (they depend on physical parameters)

The differential equation describes how the system behaves over time given certain
inputs. However, to find the equation for the output signal, y(t), we must ‘solve the differ-
ential equation for y(t)’. We can then plot this signal against time and see how the system
behaves. Complex systems are more difficult to integrate, but in control engineering we
often use first- and second-order systems as approximations. We have just seen that all
first-order systems described by K and τ behave similarly. Let us solve the general first-
order differential equation and explain why.

6.5 General first-order system time response 155

K
tau.s+1

Transfer fcn

t

To Workspace1

y

To WorkspaceStep

Clock

6.5.1 Solution of first-order linear differential equation
We note that the equation is a linear, first-order, constant coefficient, time-invariant
differential equation, and therefore the differential equation can be written as

This differential equation is valid for all the time points t1 where 0 < t1 < t. To solve this
differential equation, we need to integrate it from time 0 to time t.

Common practice for solving differential equations of this form is to introduce an inte-
grating factor, α , given by

We multiply the left-hand side (LHS) and right-hand side (RHS) of the differential equa-
tion by the integrating factor:

We evaluate the LHS and RHS at t = t1, then integrate both sides over the range 0 < t1 < t,
and equate:

This gives

The solution for y(t) depends on two component signals:

1. the input signal u(t)

2. the initial condition y(0); that is, the output at time t = 0

Let us now look at two cases:

A putting a step change of value ro into the model equations:

u(t) = ro, y(0) = 0

B no input signal, but non-zero initial conditions

u(t) = 0, y(0) = yo

A: Output to a step change, ro, in input signal
The general solution is given by

156 Simple systems: first-order behaviour

d ()
()

d
y y t K

u t
t t t

+ =

10
1/ d /e e

t
t tt ta = =Ú

/ / /

/

d () d d
LHS e e (e ()) (integrating factor × output)

d d d

RHS e ()

t t t

t

y y t
y t

t t t
K

u t

t t t

t

t

t

= + = =

=

1 1

1

/ /
1 1 100

/ /
1 10

e () e ()d

e () (0) e ()d

t tt t

tt t

K
y t u t t

K
y t y u t t

t t

t t

t

t

È ˘ =Í ˙Î ˚

fi - =

Ú

Ú

1/ / /
1 1

0

() e (0) e e ()d
t

t t tK
y t y u t tt t t

t
- -= + Ú

We would like to look at the case when the system is at rest (that is y(0) = 0, zero initial
conditions) and we supply an input signal, that is we force the system. The solution in
this case is known as the forced response.

Let u(t) = ro:

Key result: Step response of first-order system

The forced response of the system is given by y(t) = Kro(1 – e–t/τ).

We see that the output rises exponentially to a steady state value and is dependent on the
parameters K and τ and the input signal ro.

We will also consider the case where the response of the system has initial conditions
other than zero. For example, consider the basic steps in boiling up water in a kitchen
kettle. Cold water goes into the kettle at about 4 °C. This is the rest or zero initial condi-
tion for the boiling process. When we switch on the kettle, heat is supplied at a constant
rate by an electrical element. This drives the temperature of the water up to a value of
100 °C. If we plotted this temperature rise we would be looking at the forced response of
the system. After the kettle has been boiling for a few minutes we can safely assume that
all the water is at 100 °C. If we now switch off the kettle, then the system has no forcing
input, and an initial condition of 100 °C. A plot of the water temperature against time as
it cools down from 100 °C would be the free response of the system.

B: Output response for no input signal but non-zero initial conditions
Once again the general solution is given by

The initial condition is given by y(0) = yo and the input signal is zero, u(t) = 0.

6.5 General first-order system time response 157

1/ /
1 1

0

() e e ()d
t

t tK
y t u t tt t

t
-= Ú

t t t t t t

t

t t t
t t t

- - -

-

È ˘= = = -Í ˙Î ˚

= -

Ú 1 1/ / / / / /
o 1 o o

0
0

/
o

() e e d e e e (e)

(1 e)

t tt t t t t t

t

K K K
y t r t r r

Kr

Time

Output
y t()

Time

Input
u t()

ro
Kro y t()

1/ / /
1 1

0

() e (0) e e ()d
t

t t tK
y t y u t tt t t

t
- -= + Ú

1/ / /
1 1

0

() e (0) e e ()d
t

t t tK
y t y u t tt t t

t
- -= + Ú

The general solution becomes

y t y t() /= −
oe τ

and is dependent on τ , but not on K or ro. The graph of this output is shown in the Key
Result below.

Key result Free response of first-order systems

The free response of the system is given by y t y t() /= −
oe τ .

The behaviour of any system is found as the sum of its free response and its forced
response:

y(t) = yfree(t) + yforced(t)

6.6 System parameters and system behaviour

At the beginning of this chapter, we found that the behaviour of the system depended on
the system parameters, K and τ , and that these could be calculated from the response
plots. Let us look at the mathematics for the reason why.

Model parameters, K and
The output response for a step input of magnitude ro and zero initial conditions is given
by:

y(t) = Kro(1 – e–t/τ)

Steady state value
We must find the output y(t) as t →∞ . Clearly as t →∞ , e–t/τ → 0 and

y y t Kr
t

ss o= =
→∞
lim ()

This is what we found from our examples. No matter what the size of ro, the steady state
value was given by yss = Kro.

Time constant
The value τ is called the time constant of the system, with units of time (seconds,
minutes, etc.). The actual value of τ will depend on the particular physical system
parameters.

When the time reaches the value of the time constant, τ , that is t = τ , we can determine
what the output value, y(t = τ), should be. We use the non-unity step response equation:

y(t) = Kro(1 – e–t/τ)

158 Simple systems: first-order behaviour

Time

Output
y t() yo

Then for t = τ :

y(τ) = yτ = Kro(1 – e–1)

and using yss = Kro

yτ = (1 – e–1)Kro = 0.632Kro = 0.632yss

Thus when t = τ , the output has climbed to 63.2% of its final or steady state value, yss.
This is why the figure of 63% appeared in our first examination of the first-order time
responses. The time constant is a measure of speed of response for first-order systems.

Problem: RC circuit
For the circuit given in Figure 6.3(b) we will

(a) model the physical system

(b) derive a Laplace transform model

(c) form a Simulink model

(d) evaluate the responses of the system for different input conditions: Case A: yo = 0, u(t) =
1; Case B: yo = 3, u(t) = 2.

The parameters of our system are given as R = 6 kΩ and C = 50 μF.

Solution (a) Modelling
Voltage law (sum of voltages round a loop = 0):

vi(t) – vR(t) – vo(t) = 0

Hence,

vi(t) = vR(t) + vo(t) = i(t)R + vo(t)

= RC
d
d

ov
t

+ vo(t)

or, by rewriting in terms of vo:

RC
d
d

ov
t

+ vo(t) = vi(t)

Letting RC = τ and K = 1 gives

τ
d
d

ov
t

+ vo(t) = Kvi(t)

Use standard input–output variables: u(t) = vi(t), y(t) = vo(t):

τ
d
d
y
t

y t Ku t+ =() ()

This differential equation represents the RC circuit for different values of τ (= RC).
The value of K for the RC circuit was identified as K = 1. The value of τ is calculated from the

values of R and C to be 0.3 seconds.

(b) Laplace transformation of the system equation
The Laplace transform of the first-order differential equation was derived as:

6.6 System parameters and system behaviour 159

Y(s) =
K
sτ +1

U(s) +
τ

τs
y

+1 o

Given K = 1 and τ = 0.3, the system equation is:

Y(s) =
1

0 3 1. s +
U(s) +

0 3
0 3 1

.
. s +

yo

(c) Simulink model
Since we have initial conditions on the output, y(t), of our model we can use the Simulink block
‘Transfer function with initial outputs’ which is found in the Simulink Extras, ‘Additional Linear’
library. The Simulink representation is quite simple (Figure 6.8).

(d) Response analysis
Let us examine the output of the circuit under the two different sets of conditions:

Case A

(i) No initial voltage on the capacitor so that yo = vo(0) = 0.

(ii) A constant voltage is applied: u(t) = vi(t) = 1 V from time t = 0.

The output response shows the voltage across the capacitor rising to yss = Kro = 1, where K = 1
and ro = 1. The time constant can be read from the graph as 0.3 seconds.

Case B

(i) The capacitor has an initial voltage of 3 V: yo = vo(0) = 3.

(ii) A constant voltage is applied: u(t) = vi(t) = 2 V from time t = 0.

160 Simple systems: first-order behaviour

y

Voltage

1
0.3s+1

Transfer function
(with initial outputs)

t

Time

Step

Clock

Figure 6.8 Simulink representation of RC circuit.

0.8

yss = 1

0.6

0.4

0.2

0
0 0.5 1.0 1.5 2

Voltage output (volts)

Time (seconds)

t

0.63yss

In this case the output is the sum of the free response, due to the initial condition, and the forced
response, due to the step voltage applied. Therefore, the capacitor voltage, which starts at 3 V,
decreases to the value of the step voltage applied to the system.

Remark Simulink response with initial conditions
The Laplace transform of the system with initial conditions can be expressed by:

Y(s) =
K
sτ +1

U(s) +
τ

τs +1
yo

This can be represented by the block diagram of Figure 6.9.

Although we can represent the system in the block diagram, we must be careful when repre-
senting this in Simulink. The input signal, U(s), is often a step signal, U(s) = ro/s, and can be
represented by the step signal block in Simulink. However, in Laplace transforms the initial
condition yo is only active at the initial time, usually t = 0. It is incorrect to represent this by a
step signal or a constant block. It should be represented by an impulse. There is no single icon
block for this and it requires a more complex representation. Therefore, at this stage, for imple-
menting initial conditions on output signals, we recommend using the specific transfer func-
tion block (transfer function with initial outputs) if possible, as shown in the RC circuit
example.

6.6 System parameters and system behaviour 161

0

0.5

1

1.5

2

2.5

3

0 0.5 1.0 1.5 2
Time (seconds)

Output voltage (V)

Step response(forced response)

Initial (free) response

Output response (free + forced response)

K
ts+1

Y s()U s()

t
ts+1

yo

+
+

Figure 6.9 Output response with initial conditions.

Skill section Finding different transfer function representations

We have looked at the first-order example and found that the parameters K and τ provide informa-
tion about the system response. We now examine the different forms of this transfer function and
how the parameter τ provides information on how fast the system responds to an input.

The transfer function we have used so far has the form

G s
K
s

() =
+τ 1

From this we can determine the system gain K, which is the steady state output value to a unit
step input. If we write the denominator polynomial in the form

d(s) = τ s + 1

where the constant term of d(s) is unity, the time constant, τ , can be clearly identified as the coef-
ficient of s.

Problem The transfer function between output Y(s) and input U(s) is given by

G(s) =
10

6 1s +

(a) Identify the system gain and its units.

(b) Identify the time constant and its units.

Solution (a) Since the transfer function is in standard gain–time constant form, we can read off the value
of K as

K = 10

where

(b) The time constant τ is identified as τ = 6. The time constant’s units depend on the physical
definition of τ . However, time constant units will be time units.

Because the gain and time constant can be read easily from the transfer function, this form
is known as the gain–time constant form. The transfer function can be rearranged to be put in
pole–zero form. Although this may look different, there is only some algebraic manipulation
between the two forms and the system behaviour will not change.

Key result: First-order transfer function forms

Gain–time constant form: G s
K
s

() =
+τ 1

Pole–zero form: G s
K

s apz
pz

() =
+

Since both forms may represent the same system, we should be able to find a relationship
between K, τ and Kpz , a. Let us take the gain–time constant form and divide both numerator
and denominator by τ to obtain:

162 Simple systems: first-order behaviour

’s units
units

’s units
Y

K
U

È ˘= Í ˙Î ˚

G s
K
s

K
s

K

s a
()

/
/

=
+

=
+

=
+τ

τ
τ1 1

pz

This is now in the form where we can identify Kpz and a as:

Kpz = K/τ

a = 1/τ

This shows us that each first-order system transfer function can be written in two equivalent
ways using either the (K, τ) format or the (Kpz ,a) format. However, the system gain and the
time constant will remain the same no matter which algebraic form is used for the transfer
function.

Problems Find the open-loop gain and time constants for the following:

(a)
10

4 1s +
(b)

10
4s +

(c)
3

4 6s +

Solutions (a) The first is in the gain–time constant form. We can therefore read off the time constant as 4
and the gain as 10.

(b) The second is in pole–zero form. To put it in the gain–time constant form we need to divide
the numerator and denominator by 4 to ensure that we have a unity constant coefficient on
the denominator, giving τ s + 1 on the denominator. Hence,

G s
s s s

()
/

(/)
.

.
=

+
=

+
=

+
10

4
10 4

1 4 1
2 5

0 25 1

The gain is K = 2.5 and the time constant τ = 0.25.

(c) This is not in pole–zero form (no unity coefficient of s) and not in gain–time constant form (no
unity constant coefficient on denominator); divide numerator and denominator by 6 to obtain
the denominator in the form (τ s + 1):

G s
s s s

()
/

(/)
.

.
=

+
=

+
=

+
3

4 6
3 6

4 6 1
0 5

0 67 1

The time constant τ = 0.67 [= 1/a] and the gain K = 0.5.

6.7 Speed of response

We have found that the model parameter K has an effect on the steady state or final value
of the output, but has no effect on the shape of the response. Only the system time
constant influences the shape or speed of the output response. We consider the following
three systems:

(a) G s
s1
10

1
() =

+
(b) G s

s2
10

2 1
() =

+
(c) G s

s3
10

5 1
() =

+

The time constants of the system transfer functions are given by

τ 1 = 1, τ 2 = 2, τ 3 = 5

6.7 Speed of response 163

If we plot the unit step responses for the three systems we obtain the graph in Figure 6.10.
The steady state output levels for all three systems are the same : yss = Kro = 10. We insert
a line at 0.632yss on the graph so that the time constants are identified.

As τ increases the response becomes slower; that is, it takes longer to reach 63.2% of
the final output. The step response in the time domain is given as

y t Krat() ()= − −1 e o

where again a = 1/τ . A small value for the time constant, for example τ = 0.1, yields a large
negative exponent –a = –1/τ = –10, which in turn provides a large negative exponential
e–10t in the output: one that will decay quickly. Similarly a large value for τ , say τ = 5,
results in a slowly decaying exponential, e–0.2t, in the output. Plotting out the step
responses as in Figure 6.11 shows the speed of responses.

The difference in the speed of response can be seen clearly.
In this section on first-order systems, we have derived a general description for a single-

input single-output first-order system; that is, a system with one input and one output
described by a first-order differential equation. We have shown two simple physical
systems that can be characterised by this model, although there are many other systems
or devices which can have a first-order response, such as some temperature measuring
devices.

164 Simple systems: first-order behaviour

12
Output response

10

8

6

4

2

0
0 5 10 15 20

0.63yss

t3 = 5
t2 = 2

t1 = 1

Time (seconds)

Figure 6.10 Speed of response for different time constants.

0

yss = Kro
y t()

5 10 15 20

yslow() = (1–et –0.2t)Kro

yfast() = (1–et –10t)Kro

Time (seconds)

Figure 6.11 Fast and slow step responses.

6.8 Process time delays

One modelling feature which we should include in our collection of simple models is the
feature known as deadtime or transport delay. Figure 6.12 shows a steel-rolling process.
The rolls in the stand press on the incoming steel slab to reduce its dimension from H to
h. The output strip thickness is measured by an X-ray gaugemeter. However, this is
placed at some distance from the rolling stand. Therefore the information that the trans-
ducers provide does not coincide with the current status of the mill. For example, if the
strip travels at a velocity v and the measurement device is a distance L away from the
stand, the information is delayed by:

Td =
v
L

The variable Td represents the deadtime or delay in a system; in this example it repre-
sents the delay in the measurement system. The measured output of the process will
therefore be delayed by a period of time, Td, called the deadtime or transport delay.

6.8.1 Simulink model of a heating process
We can illustrate the transport delay using an example of a first-order heating process
system. Consider a small vessel which contains liquid which is being heated. The
transfer function for the heating system is a first-order process given by:

G(s) =
3

2 1s+

However, the measurement of the temperature of the liquid flowing out of the vessel is
taken downstream of the vessel (Figure 6.13), causing a delay of 0.5 minutes in the
measurement of the temperature. Therefore temperature measurement Tv2 represents
the temperature Tv1 delayed by 0.5 minutes.

6.8 Process time delays 165

X-ray gauge
measurement of
thickness

Rolling stand

Direction of steel
strip

Strip before and
after rolling

Distance of
measurement from
rolling stand: L

H

h

Velocity of
strip, v

Figure 6.12 Rolling mill process.

The Simulink model of the process is shown in Figure 6.14. The graph of the rise in

temperature due to a step change in input is shown in Figure 6.15.

The transport delay for the first-order system was 0.5 minutes, which can be read
clearly from the output response plot.

166 Simple systems: first-order behaviour

Tv2

Tv1

L

Heating
element

Figure 6.13 Heating system with deadtime in measurement.

Transport
delay

3
2s+1

Heating processStep

y1dead

First-order lag
plus deadtime output

y1

Output first-order lag

t

TimeClock

Figure 6.14 Simulink model of transport delays in system models.

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3
System output

Time (minutes)Deadtime

Original response

Delayed response

Figure 6.15 Step response of first system with deadtime.

6.9 Modelling of deadtime process

The mathematical equation for the modelling of the deadtime process is given by:

Input to process: u(t)
Output from process: y(t)
Output from deadtime: y(t – Td)

Key result: Laplace transform of deadtime model

The Laplace transform for the deadtime model is given by

{y(t – Td} = e d− sT Y s()

Derivation of Laplace transform of deadtime model

Multiply inside the integral by e d+ sT and outside the integral sign by e d− sT . This leaves
the integral expression unchanged.

Let t1 = t – Td. Then dt1 = dt, and

Noting that the right-hand side contains the definition for the transform of y(t1):

Y(s) = y t tst()1 11e d
0

−
∞
∫ , then

6.9.1 First-order lag plus deadtime model
Very often in control we meet what is known as the first-order lag-plus-deadtime model.
This is shown in diagram form as:

6.9 Modelling of deadtime process 167

Process Deadtime
u t() y t() y t T(– d)

d d
0

{ ()} ()e dsty t T y t T t
•

-- = -ÚL

d d()
d d

0

{ ()} e ()e dsT s t Ty t T y t T t
•

- - -- = -ÚL

d 11 1d
0

{ ()} e ()e dsT sty t T y t t
•

- -- = ÚL

d
d{ ()} e ()sTy t T Y s-- =L

K
ts + 1

d–sTe
U s() Y s()

First-order lag Deadtime

These subsystems can be combined to give the total transfer function system representation:

6.9.2 Padé approximation to deadtime model
In our analysis of process systems using linear polynomial Laplace transform representa-
tions, it is sometimes inconvenient to have this exponential representation for the delay.
We can use an approximation to the delay called a Padé Approximation. The approxima-
tion is usually first- or second-order, though can be higher order if required:

e d d

d

− ≈
−
+

sT T s
T s

1 2
1 2

(/)
(/)

first-order approximation

e d
d d

d d

− ≈
− +
+ +

sT T s T s

T s T s

1 2 12

1 2 12

2 2

2 2

(/) () /

(/) () /
second-order approximation

6.10 MATLAB function: pade

The MATLAB function pade will provide the Padé approximation to a specified delay. The
form of the function is

[num,den] = pade(T,order)

where T represents the delay and order is the order of the approximation.

T=0.5;
order = 1;
[n,d]=pade(T,order) % or you can use [n,d] = pade(0.5,1)
n =

–1 4
d =

1 4

This gives the solution

e d− ≈
− +

+
=

−
+

=
−

+
sT s

s
s
s

s

s

4
4

4
4

1

1

1
4
1
4

This is equivalent to the general expression for the above first-order approximation.

What we have learnt

The first-order differential equation with constant coefficients is given by:

τ
d
d
y
t

y t Ku t+ =() ()

168 Simple systems: first-order behaviour

1+ts
Ke d–sTU s() Y s()

First-order lag
plus deadtime

� The general solution of this equation is:

� The solution for a step input of magnitude ro and zero initial conditions is:

y(t) = Kro(1 – e–t/τ) y(0) = 0

� The solution for a step input of magnitude ro and non-zero initial conditions:

y(t) = Kro(1 – e–t/τ) + yoe–t/τ y(0) = yo

� The output equations rely on the two system parameters, K and τ , the initial condi-
tion and the input signal.

� The two equivalent common forms of first-order transfer function are:

Gain–time constant form: G s
K
s

() =
+τ 1

Pole-zero form Gpz(s) =
K

s a
pz

+

� A small value for the time constant, τ , gives a fast response, and a large value
produces a slow response.

� The deadtime in a system represents the pure time delay, Td, within the system:

y(t – Td)

� The Laplace transform for the deadtime model is given by

L{ ()} ()y t T Y ssT− = −
d e d

� A first-order lag-plus-deadtime model is given by

K
s

sTe d−

+τ 1

Multiple choice

Multiple choice 169

M6.1 What are the gains of the following transfer
functions?

G1(s) =
3

4 1s +
G2(s) =

10
4 2s +

(a) 0.75, 10
(b) 3, 10
(c) 3, 5
(d) 0.75, 2.5

M6.2 What are the time constants of the following
transfer functions?

G1(s) =
2

0 5 1. s +
G2(s) =

6
3 2s +

(a) 0.5, 1.5
(b) 0.5, 3
(c) 4, 2
(d) 0.5, 2

t t t
t

- -= + Ú 1/ / /
1 1

0

() e (0) e e ()d
t

t t tK
y t y u t t

170 Simple systems: first-order behaviour

M6.3 What is the gain and time constant of the
following transfer function?

G1(s) =
a

bs c+

(a) a,b
(b) a/b, b/c
(c) a/c, b/c
(d) c/a, c/b

M6.4 The standard first-order linear differential
equation is given by

(a) K
d
d
y
t

+ τ y(t) = u(t)

(b) K
d
d

2y
t2

+ τ = y(t)

(c) τ
d
d
y
t

+ Ky(t) = u(t)

(d) τ
d
d
y
t

+ y(t) = Ku(t)

M6.5 The plot shows the unit step response of a
first-order system. What is the transfer function
of the system?

(a)
2

3 1s +

(b)
1

5 1s +

(c)
2

15 1s +

(d)
1

15 1s +

M6.6 The value of the time constant is found at
what percentage change in output value?
(a) 50%
(b) 66%
(c) 63%
(d) 100%

M6.7 For an input step of ro to a first-order
system of standard form, what is the steady
state level achieved?
(a) ro
(b) K
(c) Kro
(d) K/ro

M6.8 A free response of a system is when:
(a) the value of u(t) is zero
(b) the value of u(t) is constant
(c) the system is allowed to respond freely to

input signals, u(t)
(d) the system has zero initial conditions

M6.9 G1(s), G2(s) and G3(s) have the same gain,
but time constants of 3, 4 and 5 seconds
respectively. Which responds more quickly to a
step input?
(a) They all respond the same since the gain is

the same
(b) G1(s)
(c) G2(s)
(d) G3(s)

M6.10 Another name for a process time delay is:
(a) the time constant
(b) the integration time
(c) the deadtime
(d) the Padé time

Time (seconds)

Step response

A
m

pl
itu

de

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Questions: practical skills

Q6.1 Identify the open-loop gain and time constant of the following first-order system transfer functions:

(a) G s
s1

3
10

() =
+

(b) G s
s2

6
1

() =
+

(c) G s
s3

2
3

() =
+

Q6.2 What is the steady state value of the output from the following systems when a step of magnitude
3 is injected?

(a)
10

2 1s +

(b)
3

4s +

(c)
10

2 3s +

Q6.3 What is the first-order Padé approximation for delays of
(a) 2 seconds
(b) 10 seconds

Q6.4 Sketch the output time response for the system represented by the transfer function:

G(s) =
10

3 1s +

to a step input of magnitude 2. Show clearly the time constant of the system on the sketch.

Q6.5 Use Simulink to produce the output time response for the system represented by the transfer function:

G(s) =
6
3 1

2e−

+

s

s

to a step input of magnitude 1. Show clearly the time constant of the system on the sketch.

Problems

P6.1 First-order systems can be described by a gain and a time constant. A first-order temperature
measuring device has a gain of 2 mm/°C and a time constant of 0.3 seconds. What is the differential
equation defining the system? What are the input and output of the system? Draw a block diagram of
the system, labelling the input and output clearly.

P6.2 The graph shows the response of an RC circuit to a
step in voltage of 10 V. It is known that the capacitance is
50 μF. What is the resistance R for the circuit?

Problems 171

Voltage, V

10

5

0
0 0.5 1.0 t

P6.3 The inflow to a liquid level system changes after 8 min from 0 m3/min to

qi(t) = 20 m3/min

The liquid level system has a gain, K, of 0.5 min/m2 and a time constant of 5 mins. Sketch the
response of the liquid height, assuming the tank is empty at t = 0.

P6.4 A mercury thermometer has a time constant of 0.8 seconds and the oven it is being used with has
a time constant of 3 hours. Will the time constant of the thermometer have an effect on the plot of
temperature against time for the oven?

P6.5 A system comprises a tank of liquid heated by a coil containing saturated steam, as shown in the
figure.

The energy balance is given by:

ρc V
t

T UA T Tp LIQ coil steam LIQ
d
d

() ()= −

where
V = volume of the tank
cp = liquid heat capacity
ρ = liquid density
Acoil = heat transfer area
U = overall heat transfer between steam and liquid respectively.
Tsteam, TLIQ = temperature coefficient of steam and liquid

Explain the energy balance equation on which the model is based.
(a) Determine the purpose of the mixer in this tank
(b) Identify system input and output variables
(c) Identify the associated time constant
(d) The initial liquid temperature is 20 °C, and the steam is supplied at a constant temperature of

200 °C. Explain with suitable sketch graphs the behaviour of the liquid temperature TLIQ.

172 Simple systems: first-order behaviour

Mixer

Inlet

Outlet

Tsteam

Simple systems: second-order
systems

7

Model of trailer suspension system

Second-order system model Parameters , andK z wn

Simulink model of trailer
suspension system

Manipulating transfer
function expressions

General second-order
system solutions

Two real roots

Step response examples

Second-order system
with deadtime

Simulink model: earthquake example

A pair of complex roots

Help? Time to readGaining confidence Skill sectionGoing deeper

Physical systems, like an RC circuit, a liquid level process or a heating process, can be modelled
as first-order systems. The type of step input response we obtain from these systems is a smooth
exponential rise to a steady output value. For such systems we do not observe either overshoots
or oscillations in the output signals. Physical systems which oscillate have models with at least
second-order system dynamics. The fact that a physical process can be represented by at least a
second-order dynamic model indicates that there are at least two physical effects within the
process being described by the model. It is the competition between these two physical effects
which gives rise to oscillations in process variables. In mechanical systems, dominant spring
effects compete against less effective damping effects, leading to oscillating motions. In
hydraulic systems, different liquid levels in interconnected tanks lead to flows between tanks,
resulting in oscillating fluctuations in liquid level measurements. In electrical circuits, adding an
inductance to an RC circuit to form an RLC circuit will lead to oscillation in voltage measure-
ments. In all of these physical systems, second-order dynamics are present.

We have another set of reasons for studying second-order system models. Very few real
systems are exactly second-order; almost all processes are actually of much higher order.
However, for many practical control engineering design studies, second-order systems models
are a useful tool because:

1. Many systems can be approximated by a process with dominant second-order dynamics.

2. There is a whole toolkit of results based on second-order systems available.

3. The mathematics involved in analysing third or higher order systems is more daunting

4. Control design methods will allow for the modelling inaccuracy in using a second-order
approximation to represent a high-order system.

Learning objectives

� To become familiar with second-order system behaviour.

� To use MATLAB/Simulink to investigate system responses.

� To find parameters K, ζ and ω n from a second-order response graph.

� To understand the effect of changes in these three parameters on the step response of
the system.

� To recognise underdamped, overdamped and critically damped system behaviour and
relate the behaviour to the system’s pole positions.

7.1 Second-order systems: model of a trailer suspension system

We introduce second-order systems by way of an example.

7.1.1 System equations
To test the effectiveness of the trailer’s dampers, a force is applied to the stationary
system and the resulting motion examined. The input force is given by fi(t), and this is
resisted by the spring force, fs(t), and the axle damper force, fd(t). It is assumed that the

174 Simple systems: second-order systems

trailer wheel is solid. The net effect of these forces is a vertical displacement, y(t), of the
trailer mass (Figure 7.1).

The physical principles are:

Input force: fi(t)

Spring force from the tyre: fs(t) = –Ksy(t)

Damper force: fd(t) = –B
d
d
y
t

and these are all drawn together using Newton’s second law of motion:

M
d y
dt

f t f t f t
2

2 0− − − =i d s() () ()

Hence

M
y

t
f t f t f t

d
d d s i

2

2 − − =() () ()

giving

M
y

t
B

y
t

y t f t
d
d

d
d i

2

2 + + =() ()

Dividing through by the spring constant, Ks, gives

M
K

y
t

B
K

y
t

y t
K

f t
s s s

i
d
d

d
d

2

2
1

+ + =() ()

This a second-order differential equation whose input is fi(t) and whose output is a resul-
tant vertical displacement of the trailer mass position. The block diagram for this system
would be given by Figure 7.2.

7.1 Second-order systems: model of a trailer suspension system 175

Trailer mass, M

Trailer wheel

Damper force: fdSpring force: fs

Input force: f i

Displacement: y

Sign conventions:
positive direction

Force: f

Figure 7.1 Trailer suspension system.

Trailer
suspension
system

Input

: input force

System Output

f i y: displacement

Figure 7.2 Second-order systems.

The system variables and parameters are summarised in Table 7.1.

This system can be written in the form

M
K

y
t

B
K

y
t

y t
K

f t
s s s

i
d
d

d
d

2

2
1

+ + =() ()

and we can move from here to a more general second-order form:

1 2
2

2

2ω
ζ

ωn n

d
d

d
d

y
t

y
t

y t Ku t+ + =() ()

where u(t) and y(t) represent the input and output signals and where the three parameters
K, ζ and ωn are dependent on system properties. In this case

1
2ω

ω
n s

n
s

M
= ⇒ =

M
K

K

2
2 2

ζ
ω

ζ
ω

n s

n

s s
= ⇒ = =

B
K

B
K

B
K M

K =
1

Ks

K is referred to as the system gain, ζ is referred to as the damping ratio and ωn is the
natural frequency of the system. We note that the units of ζ are given by

Hence the damping ratio is dimensionless.

7.1.2 Laplace transformation of second-order differential equation
The Laplace transform of the general second-order differential equation can be found as
follows:

176 Simple systems: second-order systems

System Trailer suspension system

Differential equation M
K

y

t

B
K

y
t

y t
K

f t
s s s

i
d

d

d
d

2

2
1

+ + =() ()

Input signal Force fi(t)

Output signal Position y(t)

Parameter Ks 80 000 N/m

Parameter B 3464 N/m s–1

Table 7.1 Second-order system description.

z
-

- - -

-
-

È ˘
= = =Í ˙

Í ˙Î ˚

= =

2

1 1 2s

1
1

N 1 kg m s 1
[]

2 N kg/mm s m s kg m s kg/m

1
kg s 1

kg s

B
K M

L
1 2
2

2

2ω
ζ

ωn n

d
d

d
d

y
t

y
t

y t+ +
⎧
⎨
⎩

⎫
⎬
⎭

() = {Ku(t)}

1 2
2

2
ω

ζ
ωn

o o
n

o(() �) (()) () ()s Y s sy y sY s y Y s KU s− − + − + =

where yo is the initial value of signal y(t) and �yo is the initial condition for dy/dt. If we let
the initial conditions be zero (yo = 0, �yo = 0):

1 2
12

2
ω

ζ
ωn n

s s Y s KU s+ +
⎛

⎝
⎜

⎞

⎠
⎟ =() ()

Y s
K

s s
U s()

(/) ()
()=

+ +1 2 12 2ω ζ/ ωn n

where U(s) is the Laplace transform of the input signal and Y(s) is the Laplace transform of the
output signal. The value of yo is the initial value of the output, which in this example is the
position of the trailer. This initial value is often zero and with this assumption, and the fact
that �()y 0 0= since the trailer is at rest, the system can be written in block diagram form as

where G(s) =
K

s s
1 2

12
2

ω
ζ

ωn n
+ +

In a first-order system description we characterised a general first-order model with
two parameters, K and τ . For a second-order general model we need three parameters: K, ζ
and ωn. We now look at each of these parameters individually and examine what effect
they have on the step response of a system.

7.2 Second-order system parameters

7.2.1 System gain, K
If the input signal to the second-order system is a step signal of height ro, then the input
signal transform is U(s) = ro/s. The output signal is given by the transfer function equation

Y(s) = G(s)U(s) =
K

s s

r
s1 2

12
2

ω
ζ

ωn n

o

+ +

The Final Value Theorem (Chapter 2) may be used to determine the steady state value
of the output signal, yss. We have:

y y t sY s sG sU s

s

t s s

s

ss = = =

=

→∞ → →

→

lim () lim () lim () ()

lim

0 0

0

K

s s

r
s1 2

12
2

ω
ζ

ωn n

o

+ +

yss = Kro

Thus, in steady state, the system output will reach a level of Kro. If K < 1, then yss will
reach a numerical level lower than that of the input, ro. If K > 1, the opposite occurs and
the input level will be magnified by a factor of K to reach the increased level of Kro.

7.2 Second-order system parameters 177

()G s
Y s()U s()

7.2.2 Damping ratio,
The damping ratio, ζ, is an indicator of the type of transient behaviour (or basic shape)
expected in a system’s response. The damping ratio is a dimensionless parameter and we
can classify second-order systems depending on its value:

If ζ > 1 then the system is overdamped.
If ζ = 1 then the system is critically damped.
If ζ < 1 then the system is underdamped.

In fact, if ζ = 0, there would be no damping in the system and any oscillations would
continue indefinitely.

178 Simple systems: second-order systems

Damping value Description of output response Output step response

ζ1 = 0.0 No damping: output continues to oscillate about the

steady state level. There is no decay in the magnitude of

the oscillations

ζ2 = 0.2 Underdamped: output has large overshoot on steady

state level, output is oscillatory (though not unstable)

ζ3 = 0.4 Underdamped: output is less oscillatory, but still over-

shoots the steady state level, to a lesser degree

ζ4 = 1.0 Critically damped: output has no overshoot and rises

quickly to steady state level

ζ5 = 4.0 Overdamped: output has no overshoot, the response is

slow and sluggish, takes a longer time to reach the

steady state level

Table 7.2 Range of second-order response for different values of damping.

0

Y

t

0 t

Y

0 t

Y

0 t

Y

0 t

Y

The damping ratio is the ratio of the actual system damping (given by the damping
constant B in the trailer’s physical equations) to the damping required for a critically
damped response. We have found that the damping ratio is sometimes referred to, collo-
quially, as the damping factor. However, we note that in many books, some authors use
damping factor or damping coefficient to refer to the specific term ζωn. We shall refer to ζ
as the damping ratio throughout this text. The terms overdamped, critically damped and
underdamped become clearer through the following example.

Example Consider the system step response (Table 7.2) for five different systems which are described by
the parameters K, ωn and ζ. We will keep K and ωn constant (K = 1, ωn = 1) and vary ζ (ζ1 = 0.0,
ζ2 = 0.2, ζ3 = 0.4, ζ4 = 1.0, ζ5 = 4.0). For ζ = 0.0, the output is oscillatory and the oscillations do
not decay. This is because there is no damping in the system; in practice, although the damping
ratio may be small, it will not be zero. For ζ = 0.2 and ζ = 0.4 the systems show an oscillatory
response. They are both underdamped (ζ <1) and the response oscillates around the final value.
The lower the damping value, the more oscillatory is the system response. As the damping
approaches unity the system no longer oscillates and there is no overshoot visible. When ζ = 1,
the system is critically damped. It does not overshoot the final value.

For values of ζ > 1, the system has a slow response due to the fact that the system is over-
damped. There are no oscillations in this response.

7.2.3 Natural frequency, n
If there were no damping in a system, ζ = 0, the output response would contain oscilla-
tions that did not decay. The frequency of these oscillations would be the natural
frequency (sometimes referred to as the undamped natural frequency) of the system.
Since all systems have some damping, even if they are lightly damped, the frequency of
the oscillations is given by the damped natural frequency, ω d:

ω d = ωn 1 2−ζ

For values of ζ ≤ 0.5, the value of the damped natural frequency approaches that of the
natural frequency. We can see this in Table 7.3, which shows how the value of ω d
becomes closer to ωn = 1 rad s–1 as ζ becomes smaller.

7.2 Second-order system parameters 179

n d = n 1− ζ

0.9 1.0 0.4359

0.7 1.0 0.7141

0.5 1.0 0.8660

0.3 1.0 0.9359

0.1 1.0 0.9950

0.05 1.0 0.9987

Table 7.3 Range of damped natural frequency for different values of damping.

7.2.4 Simulink model of trailer suspension system
We could test the trailer suspension by

(a) applying a test mass to the trailer body and noting the change in the deflection of the
trailer position

(b) applying an initial force to the trailer body which will produce an initial deflection of
the trailer body. When we release the trailer, it will return to its resting position.

The first example provides a step response of the system, whereas the second test shows
us the free response of the system from an initial position.

Both output signals are determined from the model of the system that we have
obtained. The only difference is in the initial conditions and the input signals.

We will examine the initial condition response of the system (test (b)) and examine how
damped the system is.

We use the following Simulink model (Figure 7.3) to analyse the trailer suspension. We
have used the ‘Transfer function with initial outputs’ block from Simulink.

The parameters are given in Table 7.1 and therefore the Laplace transform representa-
tion is given by:

Y s
Ms Bs K

U s
s s

U s()
()

() ()=
+ +

=
+ +

1 1
75 3464 800002 2

s

We have decided to deflect the trailer by 10 mm (= 0.01 m) and monitor the output posi-
tion, y(t). Although we have put the step icon as input signal to the trailer, we have set all
the step parameters to zero since we are only interested in the system’s free response.
Figure 7.4 shows the trailer deflection returning to its resting (‘0’) position.

We note that although the trailer overshoots the resting position, it returns quickly
with no further overshoot. This is typical of a system with a damping ratio of approxi-
mately 0.7. We can check the damping ratio of our system by rearranging the equation to
have a unity constant coefficient in the denominator and then equate terms in powers of
s.

Y s
Ms Bs K

U s
K

M K s B K
U s

K
()

()
()

/
(/) (/)

()
(

=
+ +

=
+ +

=
1 1

12 2
s

s

s s 1 2 12 2/) (/)
()

ω ζ ωn ns s
U s

+ +

Hence

180 Simple systems: second-order systems

1.0

75s + 3464s + 800002

Trailer

t

Time

Step

y

Deflection

Clock

Figure 7.3 Simulink representation of trailer suspension model.

Parameter K:
1

Ks
= 0.0000125 m/N

Parameter ζ:
B
K M2 s

= 0.707

Parameter ωn:
K
M

s = 32.66 rad/s

and we note that the damping ratio is indeed 0.707.

7.3 Second-order transfer function forms
In deriving our physical model for the trailer system, we arrived at a second-order system
model which we then turned into the standard (K, ζ, ωn) second-order transfer function
form. Sometimes, as in the trailer suspension example, it is useful to work with other
forms of second-order model.

Skill section Equivalent transfer function expressions

The three common forms are

General polynomial form G s
b

a s a s a1
2

2
1

() =
+ +

o

o

Unity constant coefficient form G s
K

s s2 2 21 2 1
()

(/) (/)
=

+ +ω ζ ωn n

Unity s2 coefficient form G s
K

s s3

2

2 22
() =

+ +
ω

ζω ω
n

n n

The first transfer function G1(s) is formed from numerator and denominator polynomials.
However, it is the other two forms that we commonly work with. The Unity constant coefficient

7.3 Second-order transfer function forms 181

0 0.5 1 1.5 2

8

10

Deflection (mm)

6

4

2

0

–2

Time (s)

Figure 7.4 Trailer response after release from initial deflection of 10 mm.

form has a ‘1’ as the constant coefficient on the denominator. The Unity s2 coefficient form has
a ‘1’ as the coeffficient of the s2 term in the denominator. Any one of these transfer function forms
can be turned into the other forms by simple algebraic manipulation. You should be able to recog-
nise each form and determine the parameters K, ζ and ω n.

Problems Determine K, ζ and ωn for each of the following transfer functions:

(a) G s
s sA() =

+ +
6

2 3 12

(b) G s
s sB() =

+ +
24
2 362

(c) G s
s sC() =

+ +
6

24 12 482

Solution Consider each example in turn:

(a) The transfer function GA(s) is in the unity constant coefficient form because the constant
term in the denominator is 1. We can determine the values of K, ζ, ωn by comparing the coeffi-
cients of s2, s1 and s0 in the denominator.

Compare

K
s s(/) (/)1 2 12 2ω ζ ωn n+ +

with
6

2 3 12s s+ +

Hence

1
2

2
32ω

ζ
ωn n

= =, and K = 6

This gives

ωn =
1
2

, ζ
ω

= =
3

2
3

2 2
n and K = 6

(b) The transfer function GB(s) is in unity s2 coefficient form.
Compare

K
s s

ω
ζω ω

n

n n

2

2 22+ +
with

24
2 362s s+ +

Hence 2ζωn = 2, ωn
2 36= and Kn nω2 24=

Consequently

ωn = 6, ζ =
1 1

6ωn
= and K =

24 24
362ωn

=

(c) Finally, GC(s) is seen to be of general polynomial form.
Compare

b
a s a s a

o

o2
2

1+ +
with

6
24 12 482s s+ +

It is our experience that fewer errors are made if the general form is converted into the stan-
dard form where the constant term in the denominator is unity. For this particular example, it

182 Simple systems: second-order systems

is necessary to divide all the terms in the numerator and denominator by 48 to give a unit
constant coefficient:

6
24 12 48

6 48
24 48 12 48 48 48

0125
0

2 2s s s s+ +
=

+ +

=

/
(/) (/) (/)

.
. .5 025 12s s+ +

Compare

K
s s(/) (/)1 2 12 2ω ζ ωn n+ +

with
0125

05 025 12
.

. .s s+ +

Hence

1
052ω n

= . ,
2

025
ζ

ωn
= . and K = 0.125

giving ωn= 05. , ζ = 0.1768 and K = 0.125.
This example showed how to re-scale the transfer function to be able to extract K, ζ and ωn

correctly. Once these are known they can be used to predict the general shape of a second-
order system’s step response.

7.4 Solving general second-order equations
Control engineers do not in general solve differential equations in the manner taught in
mathematics classes. We use the Laplace transform tables technique to make it simpler.
An excerpt from the Laplace transform tables showing the second-order time and Laplace
transform functions as well as the transforms for a second-order systems with a step (1/s)
input is given in Table 7.4.

7.4 Solving general second-order equations 183

Laplace transform Time domain function

Second-order (overdamped) 1
()()s a s b+ +

1
b a

at bt
−

−− −()e e

Second-order system with step signal

input (overdamped)

1
s s a s b()()+ +

1
ab

e e1−
−

+
−

⎛
⎝
⎜ ⎞

⎠
⎟− −b

b a
a

b a
at bt

Second-order (critically damped) 1
2()s a+

t ate−

Second-order system with step signal

input (critically damped)

1
2s s a()+

1
12a

atat at()− −− −e e

Second-order (underdamped,

oscillatory)

ω
ζω ω

ζn
2

n ns

2

22
1

+ +
<

s

ω

ζ
ω

ω ω ζ

ζω

=

n n d

d n

1
e

−

−

−
2

21

t tsin()

Second-order system with step signal

input (underdamped, oscillatory)

ω
ζω ω

ζn
2

n ns(s

2

22
1

+ +
<

s)
1

1

1

1
1

2

1
2

2

−
−

+

=
−

−

−

−

ζ
ω φ

φ
ζ

ζ
ω ω ζ

ζω

=

e n d

d n

t tsin()

tan ,

Table 7.4 Excerpt from Laplace transform tables.

The solution procedure for a general second-order linear differential equation with
constant coefficients:

a
y

t
b

y
t

cy Ku t
d
d

d
d

2

2 + + = ()

entails finding the auxiliary or characteristic equation and solving it to find the roots
which are then used as the exponential rate constants in the solutions. Table 7.5 shows
the equations required, both in typical mathematical notation and in the engineering
notation we use in this book.

The solution to the second-order equation is dependent on the two roots of the auxil-
iary or characteristic equation. The two roots (p1 and p2) will either be two real numbers
or a complex conjugate pair, depending on whether (ζ2 – 1) is greater or less than zero; or
equivalently, whether ζ is greater or less than 1 (Table 7.6).

You should note the link between the auxiliary equation and the equation which repre-
sents the denominator of the transfer function/Laplace transform of the signal or system.
For overdamped systems, the roots of the auxiliary equation provide the exponential rate
constant in the solution of the differential equation. In underdamped systems (complex
roots), the real part of the roots gives the exponential rate constant. In control engi-
neering terms we refer to the roots of the denominator of the transfer function as poles.

Problem: Two real roots
Given the second-order differential equation

1
4

3
2

2
d
d

d
d

y
t

y
t

y u t+ + = ()

184 Simple systems: second-order systems

Roots, p1, p2 Value of System damping

Two real roots ζ > 1 Overdamped

Two equal real roots ζ = 1 Critically damped

Two complex roots ζ < 1 Underdamped

Table 7.6 Roots of characteristic equation and relation to system damping.

General mathematical form Engineering equations

General second-order equation
a

y
t

b
y
t

cy Ku t
d
d

d
d

2

2 + + = ()
1 2
2

2

2ω
ζ

ωn

d
d

d
dn

y
t

y
t

y Ku t+ + = ()

Auxiliary equation (or character-

istic equation)
ap2 + bp + c = 0 1 2

1 02
2

ω
ζ

ωn n
p p+ + =

Roots of auxiliary equation
p1,2 =

− ± −b b ac
a

2 4
2

p12
2 1, = − ± −ζω ω ζn n

Table 7.5 Summary of equations required in solution of second-order linear differential equa-
tion with constant coefficients.

find the output step response of the system to a unit step change in input signal: u(t) = 1, where
y(0) = 0 and �()y 0 0= .

Solution Firstly we form the Laplace transform expression for this system:

Y(s) =
10

025 3 12
.

. s s+ +
U(s)

Since the input signal is a step, we find that the output Y(s) is given by

Y(s) =
10

025 3 12
.

(.)s s s+ +

We note that the transfer function is the unity constant coefficient form and that

K = 1

1 2/ ωn = 0.25, ωn = 2

2ζ/ωn = 3, ζ = 3

Since ζ > 1:

(i) the system is overdamped, and

(ii) we can therefore expect two real roots from the characteristic equation.

The output response of the system to a step input is:

y(t) = –1{Y(s)} = L−
+ +

⎧
⎨
⎩

⎫
⎬
⎭

1
2
10

025 3 1
.

(.)s s s

From transform tables we find

–1{Y(s)} = L−
+ +

⎧
⎨
⎩

⎫
⎬
⎭

1 1
s s a s b()()

= y(t) =
1

1
ab

b
b a

a
b a

at bt−
−

+
−

⎛
⎝
⎜

⎞
⎠
⎟− −e e

We can rewrite the transfer function to give a unity coefficient in front of the s2 term.

10
025 3 1

10
025 3 025 1 0252 2

.
(.)

.
. [(/ .) (/ .)]s s s s s s+ +

=
+ +

=
40
12 42
.

()s s s+ +

The roots of the denominator of the transfer function are given by

s(s – a)(s – b) = 0

giving

a = –11.66 and b = –0.34

These will give rise to components in the step response of the form e–11.66t and e–0.34t.

y(t) = (1 + 0.03e–11.66t – 1.03e–0.34t)

The overdamped output response is shown in Figure 7.5.

Problem: two complex roots
Using the Laplace transform expression for the second-order response to a unit step input, write
down the output signal, y(t), for the following system:

7.4 Solving general second-order equations 185

011 02 6
2

2. . ()
d
d

d
d

y
t

y
t

y u t+ + =

where we assume y(0) = 0 and �()y 0 0= .

Solution Once again we find that the Laplace transform of the system is given by:

Y(s) =
60

011 02 12
.

. .s s+ +
U(s)

Since the input signal is a step, we find that the output Y(s) is given by

Y(s) =
60

011 02 12
.

(. .)s s s+ +

The system parameters are given by

K = 6

1 0112/ .ωn = , ωn = 3

2ζ/ωn = 0.2, ζ = 0.3

Since ζ < 1:

(i) the system is underdamped, and

(ii) we can therefore expect two complex roots from the auxiliary equation.

The output response is given by

y(t) = –1{Y(s)} = L−
+ +

⎧
⎨
⎩

⎫
⎬
⎭

1
2
60

011 02 1
.

(. .)s s s

186 Simple systems: second-order systems

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (secs)

Amplitude

Figure 7.5 Overdamped step response.

Using the appropriate entry in the Laplace transform tables, we find that the general expression
for the output of a second-order underdamped system to a step input is given by

y(t) = K 1
1

1 2
−

−
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−
ζ

ω φζωe n d
t tsin() where φ = tan–1 1 2−⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ζ
ζ

and ω ω ζd n= −1 2

For our system this becomes

y(t) = 6 1
1

091
3 0910 9− +

⎛
⎝
⎜

⎞
⎠
⎟−

.
sin(.).e t t φ where φ = tan–1 091

03
.
.

⎛

⎝
⎜

⎞

⎠
⎟

We note that the complex poles are given by

p1,2 = –ζωn ± −j nω ζ1 2 = –ζωn ± jωd = –0.9± j3 091.

Real part of pole = –0.9

Imaginary part of pole = 3 091.

We can see that the real part of the pole (–ζωn = –0.9) gives the exponential rate constant
e n−ζω t = e–0.9t. The imaginary part of the roots, 3 091. provides the damped natural frequency of
oscillation (ωd).

Skill section Step response examples

In control system engineering it is invaluable to be able to predict the type of step response which
is likely from a system. The behaviour of second-order systems, as established through their unity
s2 coefficient form is an essential means of developing this skill. We might be faced with the
problem of predicting the step response for the following three cases:

Case 1

Case 2

Case 3

The three examples are chosen to demonstrate the link between the gain, damping ratio and the
steady state output and response shape.

Evaluate steady state value yss
To evaluate the steady state value for the step response two items are needed: the height of the
step input, ro, and the d.c. system gain, K. Through the use of the Final Value theorem, the steady
state output yss = Kro.

7.4 Solving general second-order equations 187

4.5
s2+ 5.5s + 4.5

Y s()U s s() = 2/

9
s2+ 1.5s + 2.25

Y s()U s s() = 1/

4.5625
s2+ 1.5s + 4.5625

Y s()U s s() = 0.5/

Case No. Gain K Input step height Steady state output, yss

G1(s) 1 1 1

G2(s) 4 0.5 2

G3(s) 1 0.5 0.5

Determine the response shape
To determine the basic shape of the step response, we first need to determine whether the
system is underdamped, critically damped or overdamped. Then the roots of the transfer function
denominator and the value of damping ratio are used together to give an indication of the speed of
decay of the exponential components and the frequency of oscillation within the response when
this is appropriate.

System
transfer

Roots of
characteristic
equation

Damping
factor,

Response
shape

Comments

G1(s) p1 = –1

p2 = –4.5

1.296 Overdamped Of the components e–t and e–4.5t, the

e–t component is the slowest

G2(s) p1 = –0.75

p2 = –0.75

1 Critically

damped

p1 = –0.75, p2 = –0.75

indicates slow exponential terms

e–0.75t, te–0.75t

G3(s) p1 = –0.75 + j2

p2 = –0.75 + j2

0.35 Underdamped Real(s) = –0.75 indicates slow expo-

nentials

Imag(s) = ±2j indicates damped

frequency

Damping ζ = 0.35 is low

We have used all the information contained in the denominator poles and the value of damping
ratio, ζ to provide guidance in determining the shape of the transient portion of the step response.

Plotting the step response

Matlab plots
Use the matlab tf command to form the transfer function

g=tf(num,den)

then use the step command to give a unit step input (if you require a step of greater than one unit,
you need to multiply the output, or the transfer function, g, by the magnitude of the step):

step(2*g)

The final step is to list the features which can be used to sketch a step response or which can be
identified from a step response plot. The output responses are shown in Figure 7.6. Matlab has
been used to produce these plots.

Case 1: Transfer function G1(s)
Input step 1/s, d.c. gain K = 1; steady state output yss = 1
Damping ζ = 1.296 > 1. Overdamped with slowest component of step response at e–t.

188 Simple systems: second-order systems

Case 2: Transfer function G2(s)

Input step 0.5/s, d.c. gain K = 4; steady state output yss = 2
Damping ζ = 1. Critically damped with slow exponential terms e–0.75t, te–0.75t, but no overshoot
or oscillation.

Case 3: Transfer function G3(s)

Input step 0.5/s, d.c. gain K = 1; steady state output yss = 0.5
Damping ζ = 0.35 << 1. Underdamped with complex roots at –0.75 ± j2, giving slow exponen-
tial envelope e–0.75t, oscillatory content ωd = 2 rad/s

7.5 Modelling of second-order systems with deadtime

As we can have a deadtime with a first-order system, so we can have a deadtime associ-
ated with a second-order process.

We recall from Chapter 6 that the Laplace transform for the deadtime model is given by

{y(t – Td)} = Yd(s) = e d− sT Y(s)

The block diagram for the modelling of the deadtime process is given by:

and can be combined to give the total transfer function system representation. The
output yd(t) will be a delayed signal with the same ‘shape’ as y(t). We illustrate this by an
example.

7.5 Modelling of second-order systems with deadtime 189

U s() Y s() Y ()sd

Second-order lag Deadtime

+ +2 2
n n(1/) (2 /) 1

K
s sw z w

−e dsT

Time (seconds)

Output step responses

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2
Case 1

Case 2

Case 3

Figure 7.6 Output responses for three cases.

7.6 Simulink model of second-order system with deadtime

We can illustrate the transport delay using an example of a second-order model of a
building oscillating under an external force, such as an earthquake.

7.6.1 Earthquake input to building model
Consider a building which oscillates slowly when it receives a force due to an earthquake
phenomenon. The transfer function representing the building oscillations (from input
force to output position) is given by a second-order process:

G(s) =
1
06 42s s+ +.

The output position of the system is measured, but there is a processing delay in the
measurement system, which gives a delay of 1 second. The Simulink model of this
process is shown in Figure 7.7.

The output response of the system is given in Figure 7.8 (opposite). The transport delay
was 1 second which can be read clearly from the output response plot. The delay of 1
second is quite large compared with the time for the initial transient. This can cause
problems for systems, since the information on the process behaviour has been delayed in
reaching a monitoring or control system. This can cause instability within the system
(Chapter 10).

What we have learnt

� The second-order differential equation with constant coefficients is given by:

1 2
2

2

2ω
ζ

ωn n

d
d

d
d

y
t

y
t

y Ku t+ + = ()

� The Laplace transform representation of this second-order system is given by:

G s
K

s s
()

(/) (/)
=

+ +1 2 12 2ω ζ ωn n

190 Simple systems: second-order systems

t

Time

y2

Output second-order process

Transport
delay

1

s +0.6s+42

Building dynamicsStep1

Clock

y2dead

Second-order process
plus deadtime output

Building model

Figure 7.7 Simulink model of transport delays in system models.

� We need three parameters to describe the system:

Gain K

Natural frequency ωn (damped natural frequency ωd = ωn 1 2−ζ

Damping ratio ζ

� The denominator of the transfer function is called the characteristic equation or
auxiliary equation.

� The step response of the system depends on the roots, p1 and p2, of the denomi-
nator of system transfer function:

p12
2 1, = − ± −ζω ω ζn n

� The response of a second-order system (with complex roots) to a unit step input is:

� The value of the roots, the value of ζ and the nature of the system step response are
all related, as shown in the following summary table:

7.6 Simulink model of second-order system with deadtime 191

zw z
w f f

zz

w w z

- -
Ê ˆ Ê ˆ-Á ˜ Á ˜= - + =
Á ˜ Á ˜-Ë ¯ Ë ¯

= -

n
2

1
d2

2
d n

11
() 1 e sin() where tan

1

and 1

ty t K t

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (seconds)

System output

Delayed response

Original response

Deadtime

Figure 7.8 Step response of second-order system with deadtime.

Roots, p1, p2 System damping System step response Value of

Two real roots Overdamped Slow exponential rise, no overshoot,

no oscillations

ζ > 1

Two real equal

roots

Critically damped Exponential rise, no overshoot, no

oscillations

ζ = 1

Two complex

roots

Underdamped Overshoot and oscillatory response

(how much depends on value of ζ)

ζ < 1

Multiple choice

192 Simple systems: second-order systems

M7.1 If a second-order system has a damping
ratio of ζ = 0.3, is it:
(a) underdamped?
(b) critically damped?
(c) overdamped?
(d) a system with no damping?

M7.2 What are the gain and natural frequency of
the following system transfer function?

G(s) =
36
3 362s s+ +

(a) 36, 6
(b) 6, 6
(c) 1, 6
(d) 6, 1

M7.3 What is the damping ratio of the following
system transfer function?

G(s) =
27
1 8 92s s+ +.

(a) 3
(b) 0.9
(c) 0.1
(d) 0.3

M7.4 Which of these descriptions is true of the
step response of an overdamped system?
(a) it rises to a steady state value with no

overshoot
(b) it rises to a steady state value with little

overshoot
(c) it rises to a steady state value with a large

overshoot
(d) it does not settle to a steady state value

M7.5 If a system has two complex roots in the
denominator, it is described as:
(a) having no damping
(b) being underdamped
(c) being critically damped
(d) being overdamped

M7.6 For the following second-order system, what
are the dimensions of ζ?

(a) mm/mA
(b) mA/mm
(c) mm
(d) it is dimensionless

M7.7 An equivalent representation of

G(s) =
3

2 4 12s s+ +

in unity s2 coefficient form is:

(a) G(s) =
3

2 052s s+ + .

(b) G(s) =
1

066 133 0332. . .s s+ +

(c) G(s) =
1 5
2 052

.
.s s+ +

(d) G(s) =
1 5
4 12
.

s s+ +

Current,
mA

Position,
mm

+ +

2
n

2 2
n n2

K
s s

w
zw w

Questions: practical skills

Q7.1 A standard second-order system has the form

G(s) =
K

s s(/) (/)1 2 12 2ω ζ ωn n+ +

Three systems have the parameters given by:

System 1: ωn = 0.5, ζ = 0.1, K = 1
System 2: ωn = 2, ζ = 2, K = 2
System 3: ωn = 1.0, ζ = 0.3, K = 3

For each system, determine if it is under- or overdamped and write down the damped natural
frequency for each system.

Q7.2 Convert the following transfer functions into the unity s2 coefficient form.

(a) G1(s) =
3

7 4 92s s+ +

(b) G2(s) =
4

2 3 12s s+ +

(c) G3(s) =
6

3 2 362s s+ +

Q7.3 What are the values of K, ζ and ωn for the following systems. Also state the form of the second-
order transfer function (standard, unity s2 coefficient, unity constant coefficient).

(a) G1(s) =
3
2 92s s+ +

(b) G2(s) =
4

2 2 12s s+ +

(c) G3(s) =
100

100 10 12s s+ +

Practical skills 193

M7.8 The roots of the characteristic equation for

G(s) =
4

12 11 22s s+ +

are:
(a) s1 = –4, s2 = –3
(b) s1 = –0.25, s2 = –0.67
(c) s1 = –0.25, s2 = –2
(d) s1 = +4, s2 = +0.67

M7.9 The steady state output of the system

G(s) =
32

16s +

to an input step of magnitude 3 is:
(a) 3
(b) 96
(c) 6
(d) 48

M7.10 If the roots of characteristic equation are
given by s1,2 = –3 ± 2j, what is the damped
natural frequency in rad/s?
(a) e–2t

(b) e–3t

(c) 2
(d) 3

Q7.4 For the following systems, determine the model parameters, K, ζ and ωn, and state whether the
system is overdamped, underdamped or critically damped.

(a) 36 6 6
2

2
d
d

d
d

x
t

x
t

x u+ + =

(b)
d
d

d
d

2

2 2 14
x

t
x
t

x u+ + =

(c)
d
d

d
d

2

2 48 6 12
z

t
z
t

z F+ + =

(d) 60 4 8
2

2u y
y
t

y
t

− − =
d
d

d
d

Q7.5 Which of the following plots represents an underdamped system? Will the roots of the character-
istic equation be real or complex?

Problems

P7.1 A pneumatic control valve has the following block diagram representation:

(a) What are the units of gain K?
(b) If ωn = 2 rad s–1, ζ = 0.7 and K has a value of 2.36, what is the transfer function of system G(s) in

unity constant coefficient form?

P7.2 A d.c. motor has the transfer function description relating angular velocity, ω(t), to input voltage,
v(t):

ω()
() . .
s

V s s s
=

+ +
20

0001 06 12

194 Simple systems: second-order systems

Pressure,
bar

Valve position,
mm

+ +

2
n

2 2
n n2

K
s s

w
zw w

Time (seconds)

Step response

A
m

pl
itu

de

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Plot A

Plot B

Plot C

(a) What are the values of K, ωn, and ζ?
(b) Using the value for ζ, predict the type of velocity response to a step input voltage change.
(c) Using the value for ζ, predict the expected roots of the characteristic equation. Verify your predic-

tion by direct evaluation.

P7.3 Consider a cascade of systems given by:

(a) Assuming a step of magnitude 8 is applied to V(s), sketch the signal i(t) indicating the steady state
values.

(b) A control engineer wishes to predict the type of step response from V(s) to θ(s). Using your step
response sketch for intermediate signal i(t) would it be reasonable to approximate i(t) by a step
input function. If so, what height step should be select for I(s).

(c) Using this step input for I(s), sketch the heading response θ(s).
(d) What evidence could be offered that the ship’s rudder system has been designed to be critically

damped?

P7.4 Given a system represented in transfer function form as:

where U(s), I(s), Tq(s) and Ω (s) are the Laplace transforms of the signals, u(t), i(t), tq(t) and ω(t)
respectively.
(a) What is the transfer function from U(s) to Ω (s).
(b) Find the steady state values of the signals i(t), tq(t) and ω(t) if the applied input U(s) is a unit step.
(c) Draw the signal ω(t) given that the applied input U(t) is step of magnitude two units.

P7.5 A liquid level system comprises two non-interacting tanks which can be represented by two first-
order transfer functions in cascade having time constants τ 1 = 100 s and τ 2 = 300 s.
(a) Draw a block diagram for the system. Use inflow q(t) as input and the level of the second tank,

namely h2(t), as output.
(b) What would you expect the response of the output height to a step change in flow input to be?
(c) Given that the overall gain of the system is 1 m/m3 s–1 determine the system transfer function.

Work out the damping factor and natural frequency of the system. Do they verify your answer to
part (b)?

(d) If the system had different time constants τ 1 = 100 s and τ 2 = 400 s, how would this affect the
system response?

Problems 195

V s()

Circuit Ship rudder Gear

I s() q()s()sTW+
2.5

10s
1

10+ +2
300

3.873 3.75s s

U s() I s() Tq s() W()s1
4
1
403 1()s +.

01.6

4 3()s+

Feedback improves system
performance

8

Sensitivity transfer
function

Open loop systems

Closing the loop: feedback

Closed loop systems

Block diagram manipulation

MATLAB feedback command

Shorthand formula

Signal equations

Y s G s R s G s D s() = () () + () ()CL d

Disturbances

Comparator

Signal take-off

Feedback and closed loop
system performance

Help? Time to readGaining confidence Skill sectionGoing deeper

Every day we use feedback. For example, when we drive a car, we constantly adjust the steering
or speed depending on what our senses are telling us about the current road situation. In this way,
our eyes are acting as a measuring device and our brain as a controller and closing the loop from
the car’s position or speed back to the steering or accelerating inputs. This feedback concept is
also used in engineering systems; we often use electronic measurement and transducing equip-
ment to feed back the information about how well the system is performing so that the controller
can make an adjustment and correct for any errors. We have already looked at modelling the Actu-
ator–Process–Transducer components of engineering systems; now, we look at how to extend
our system knowledge and control engineering skills to create a transfer function representation
of a closed-loop system and to understand what advantages a closed-loop system has over an
open-loop system.

Learning objectives

� To understand the limitations of an open-loop control system.

� To appreciate the advantages of feedback control.

� To construct a closed-loop block diagram of a system using the controller, process,
actuator and transducer components.

� To perform block diagram manipulation of a closed-loop process.

� To perform some simple closed-loop analysis.

8.1 Open and closed-loop systems

Consider the example of a vehicle’s windscreen wipers. The driver switches the wind-
screen wipers to ‘intermittent wipe’ which gives a fixed time interval between the
clearing of the windscreen. Then, regardless of whether the rain has eased or if the wind-
screen has been soaked by a deluge of water from a passing truck, the wipers remain at
their preset level. It requires a manual adjustment to allow for any increase in frequency
of wipers clearing the screen. This is an open-loop system (Figure 8.1(a)) since there is no
automatic adjustment of the wipe timing.

Recent developments in sensor technology have provided sensors which can detect the
moisture level on windscreens. This information can be passed electronically to the
motor timing circuits which can then alter the wipe frequency. By doing this we are
feeding back information from the current situation to the wiper controller (Figure
8.1(b)). We are closing the loop.

To ‘close the loop’ for a system we require a measurement of a system variable which
can be used by the controller to make decisions on how to alter the controller output
signal to improve the system performance. In the windscreen wiper example, we can see
that the system would work without feedback, but by including the closed loop we can
improve the system performance in terms of keeping the windscreen free of water. Some
systems may perform adequately with open-loop control; for example, there may be no
disturbing influences which cause the output to move from its manually set level.
However, many systems do require feedback to compensate for disturbances affecting the
processes or variations in the system parameters.

8.1 Open and closed-loop systems 197

We use the example of an open-loop heating system to demonstrate why feedback is useful.

8.1.1 Open-loop heating system
An open-loop control scheme is one where the manipulated input signal does not auto-
matically depend on the actual process output. For example, consider a heating system in
a university building (Figure 8.2): the output temperature of a particular lecture room
rises 0.5 °C for every kW of power applied.

The system operator can then determine that if a temperature rise of 4 °C is required, 8
kW will need to be applied to the system. Therefore, for any particular output level, the
operator must manually reset the input level. Although it is tiresome for operators to
make continual changes, this system will work well when we know exactly how the
output changes for specific input levels.

However, there are often disturbance effects that can alter the temperature: external
weather, opening and closing doors providing draughts, 100 students sitting in a lecture
theatre providing bodily warmth, etc. These disturbances are represented in Figure 8.3 by
the signal d(t).

In this diagram we have two input signals: u(t) and d(t). Both signals will affect the
output y(t) but each input will have no effect on the other input signal: the inputs are
independent of each other. We can consider a simplified model (Figure 8.4) where the
output signal is given by

y(t) = 0.5(u(t) + d(t))

198 Feedback improves system performance

Wiper motor
electronics

Input wipe(a)

(b)

timing
Amount of water on
windscreen

Wiper motor
electronics

Input wipe
timing

Amount of water on
windscreen

Moisture sensor

Feedback loop

Figure 8.1 Open- and closed-loop systems for windscreen wipers.

Lecture room
heating
process

u t()
input
power

y t()
room
temperature

Input power
setting

Process

Heater
Temperature
sensor

Actuator

ym()t
measured
temperature

TransducerSet point

Figure 8.2 Room heating system.

If we let d(t) be modelled as an effective heating power of 3 kW due to the combined
heat of the students, then the output temperature for an input power of u(t) = 40 kW is:

y(t) = 0.5 × (40 + 3) = 21.5 °C

giving an error of 1.5 °C. The system is an open-loop system, since there is no automatic
adjustment for any errors in output temperature that may occur. If there is any error this
must first be spotted by the heating system operator and then any alteration must be done
manually.

We note that we can also represent the heating system in Laplace transforms (Figure
8.5). The system transfer function is given by G(s) = 0.5.

Problem A plant uses a pump on a pipeline to increase pipeline flow. The plant in Figure 8.6 represents the
flow, y(t), along the pipe which also suffers from a leakage after the pump. The leakage is indi-
cated by the disturbance flow d(t) on the output flow signal y(t).

8.1 Open and closed-loop systems 199

Room
heating
process

u t()
input
power

y t()
room
temperature

Input power
setting

Process

Heater
Temperature

sensor

Actuator

ym()t
measured
temperature

TransducerSet point

d t()

+
+

Figure 8.3 Heating system plus disturbance.

()G s

U s()
input
power

Y s()
room
temperature

D s()

+
+

Figure 8.5 Laplace transform block diagram of heating system.

4

u t()
10 litres/min y t()

d t()
0.5 litres/min

Pump -
+

Figure 8.6 Model of pipeline flow.

0.5

u t()
input
power

y t()
room
temperature

d t()

Representation+
+

Room temperature
model

Figure 8.4 Simplified model of heating system.

(a) What is the output flow?

(b) The flow is required to be 40 litres/min. What would the operator have to set u(t) to maintain
y(t) at this value?

(c) The output flow is required to increase to 46 litres/min, but at the same time it is noticed that
the leakage has increased to 1.5 litres/min. What would the operator have to set the input
flow to be to achieve an output of 46 litres/min?

Solution (a) From Figure 8.6 the output flow is given by

y(t) = 4u(t) – d(t)

= 39.5 litres/min

(b) We wish to maintain y(t) = 40 litres/min:

y(t) = 4u(t) – d(t)

40 = 4u(t) – 0.5

u(t) = 40.5/4 = 10.125 litres/min

(c) We wish to achieve y(t) = 46 litres/min:

y(t) = 4u(t) – d(t)

46 = 4u(t) – 1.5

u(t) = 47.5/4 = 11.875 litres/min

In many instances the size or source of the disturbance acting on a process is unknown,
but the effect is observed on the output signal. To obtain the required output, we must
manually reset the input to the process. This can be time-consuming and inefficient if we
have a process that suffers from many disturbance effects.

8.2 Introducing feedback into control

Returning to the temperature control problem, if there were no disturbances acting on
the heating process we would not need to change the input power to achieve the desired
set point or output value. In open-loop control we must reset the controller input values
or live with the consequences – overheated lecture rooms, excessive use of energy etc.
The way to rectify this is to inform the control system what is going wrong. We could use
a temperature measurement to determine how far the actual temperature is from the set
point, or reference temperature. This will produce an error signal

error = reference value – measured value

which can be used by the control system in what is called a feedback control system. The
feedback is said to be negative when the signal which is fed back is used to correct the
difference between the reference value and the actual value of the controlled variable.
Positive feedback occurs when the signal fed back reinforces the error, usually causing
instability.

We need to introduce some additional block diagram notation.

200 Feedback improves system performance

8.2.1 Signal notation

1. Signal take-off
Often a signal is required for use in another part of a system, such as for monitoring the
information or for control purposes. Symbolically this is represented by a take-off
point.

2. A comparator
A comparator is the special name we give to a subtraction operation which generates
an error between the desired value of a signal and its actual measured value. Common
notation used in this situation is:

e(t): error signal
r(t): reference or set point
y(t): output signal

The error relationship, which is often implemented in control systems, is then given
by

e(t) = r(t) – y(t)

and the symbolic representation is:

We can therefore add a feedback loop to the heating system problem (Figure 8.7):

Problem 1. Identify the signal take-off point and the comparator in the closed-loop system of Figure 8.7.

2. Assuming the feedback loop is broken at ‘X’ , identify the forward transfer functions, Ga(s) and
Gb(s), given by:

8.2 Introducing feedback into control 201

y t()

y t()

Signal take-off
point

y t()

y t()

Multiple take-off
y t()

y t()

r t()

y t()

e t()+

–

()G s

E s()
error
signal Y s()

output
temperature

+

–

Controller
()K s

U s()
input
power

R s()
reference or
set point
temperature
value

+

D s()

+

Lecture room
temperature model

Figure 8.7 Feedback loop added to heating system.

(a) from R(s) to Y(s): Y(s) = Ga(s)R(s)

(b) from D(s) to Y(s): Y(s) = Gb(s)D(s)

Solution

(a) Ga(s) = G(s)K(s)

(b) Gb(s) = G(s)

In this problem we met components of the feedback loop, such as the take-off point, the
comparator, the reference input and the controller. However, to represent a more general closed-
loop system we introduce some additional blocks. This is illustrated next.

8.3 Practical closed-loop control systems

A practical closed-loop control system often has many components. We look at the
example of a ship’s autopilot control system (Figure 8.8).

In the ship autopilot example, the process (or plant or system) is the ship itself. The
measurement system is the gyroscope, which gives a measurement of the ship’s heading.
This is subtracted from the reference heading to obtain an error signal which is fed to the
controller. The controller will send a signal to the actuator to change the rudder angle and
hence the ship’s direction. It is the change of the rudder direction which is the input to
the process. The disturbances acting on the ship which could lead to heading errors are
wind and wave forces from the sea environment. We note that the measurement system
and/or the computer software may include filters to remove such unwanted low- or high-
frequency signals.

Many control systems have similar components and can be written in a similar block
diagram. This more general form is given in Figure 8.9.

202 Feedback improves system performance

()G s

E s()
error

Comparator Take-off point

signal Y s()
output
temperature

+

–

Controller
()K s

U s()
input
power

R s()
reference or
set point
temperature
value

+

D s()

+

Lecture room
temperature model

Controller Ship

Filter

Rudder
actuator

Gyroscope

Wind, waves

Set point Heading

Measurement
noise

+

–

++

+

+

Microcomputer

Figure 8.8 Ship autopilot feedback system.

We can represent each block by a transfer function to give a general system block

diagram using Laplace transform notation (Figure 8.10).

We can identify the following signals and system components of the closed loop of
Figure 8.10.

� Signals:
R(s): reference signal or set point
E(s): process error signal
Uc(s): controller output signal
U(s): actuator output signal
UT(s): process input signal (actuator input plus disturbance)
Di(s): input disturbance signal
Do(s): output disturbance signal
Y(s): process output
N(s): measurement noise signal

� Systems:
K(s): controller transfer function
Ga(s): actuator system
G(s): plant or process model
H(s): measurement system, comprising transducers and signal

conditioning units

8.3.1 Input–output disturbances
There are different forms of disturbances that can act on a system: for example, supply or
load disturbances. These are described more fully in Chapter 11. However, we note that

8.3 Practical closed-loop control systems 203

Controller Process

Signal
conditioning

Actuator

Transducer

Input
disturbances

Set point
Output

Measurement
noise

Output
disturbances

–

+ +
+

+
+

+

+

Figure 8.9 General feedback system and loop components.

()K s Ga()s
+

–

R s() Y s()E s()
()G s

()H s

U s()

Do()s

Uc()s

Di()s

N s()

+

+

+

+
+

+UT()s

Figure 8.10 General system block diagram.

an input disturbance to a stable process may be moved to the process output. We show
these alternative forms in Figure 8.11.

The systems we will study may contain some or all of the signal and system compo-
nents from the general system block diagram. When we learn about systems and their
stability, we often reduce the number of component blocks in order to make the analysis
more simple.

8.4 Block diagram manipulation

When we analyse closed-loop systems we still use the input–output relation of a system
and we must therefore develop the block diagram reduction method for this closed-loop
system. We will practise our analyses on various system types, but, in particular, ones
with the structure of Figure 8.12.

The system has two inputs – a reference signal and a disturbance signal – and one
output. We note that the reference and disturbance signals are independent of each other
(they will not affect each other), but that both signals will have an effect on the output
signal. Therefore we view the block diagram as two single-input single-output processes
which are related by the blocks within the closed-loop process, as shown in Figure 8.13.

204 Feedback improves system performance

Y s()
()G s

U s()

D i()s

+

+
UT()s Y s()

()G s
U s()

Do()s

+
+

()G s

D i()s

Figure 8.11 Moving a disturbance representation from input to output.

()K s
+

–

R s() Y s()E s()
()G s

()H s

D s()

U s() UT()s

Inputs Output

+
+

Figure 8.12 General feedback loop.

Gd

D s()
disturbance
signal

Y s()
output signal

GCL

R s()
reference or
set point

YR()s

YD()s +

+

Figure 8.13 Output signal formed from two transformed input signals.

We use the superposition principle (Chapter 2), which states that the total response of
the system, Y(s), is the summation of responses for two cases:

1. Input signal R(s), with D(s) = 0

2. Input signal D(s), with R(s) = 0

that is,

Y(s) = YR(s) + YD(s)

= GCL(s) R(s) + Gd(s) D(s)

The problem we now face is how to determine the transfer functions GCL(s) and Gd(s),
given that we have a closed-loop process.

8.4.1 Closed-loop block diagram reduction
The closed-loop description will take the form

YR(s) = GCL(s)R(s)

YD(s) = Gd(s)D(s)

where GCL(s) represents the closed-loop relationship between the reference input and the
output signal and Gd(s) represents the closed-loop relationship between the disturbance
input and the output signal

We can form the closed-loop transfer functions in two ways:

A: By following the signals round the loop and developing a series of equations

B: By using a shorthand formula, which is a quick way of forming the closed-loop
transfer function

A: Closed-loop transfer function: signal equations
We can formalise the procedure for finding the closed-loop transfer function as:

1. Start at the output signal whose response we are interested in.

2. Working from right to left (anticlockwise), write down the equations relating the input
and outputs for each process block or each summation sign as you meet them.

3. Continue round the loop until your equations include the signal you started with.

4. Gather all terms in the output signal to the left-hand side of the equation and all terms
involving any inputs to the right-hand side.

5. By algebraic manipulation, determine the final system transfer function equation. For
example, for one output and two inputs, you would find

Output signal = [transfer function 1] × input signal 1
+ [transfer function 2] × input signal 2

Example: Signal equations
Calculate the closed-loop transfer functions from both R(s) and D(s) to Y(s) for the system shown
in Figure 8.14.

For brevity, in the following analysis we have not shown the dependence on the Laplace vari-
able s.

8.4 Block diagram manipulation 205

Starting from the output signal Y(s):

From the block diagram: Y = GUT

The combined process and disturbance signal is: UT = KE + D

From the comparator we can deduce that: E = R – HY

We now have an equation containing Y, the variable we started with, so we can begin
elimination.

Combining the equations together, we find: Y = G(KE + D)

Y = GK(R – HY) + GD

Gathering terms in Y to the left-hand side: (1 + GKH)Y = GKR + GD

or Y
GK
GKH

R
G
GKH

D=
+

+
+() ()1 1

This can be written as: Y = GCLR + GdD

where GCL = GK/(1 + GKH) represents the closed-loop transfer function between the
input R and the output Y and Gd = G/(1 + GKH) represents the closed-loop transfer func-
tion between the disturbance, D, and the output, Y.

There are two transfer functions, representing how the reference signal is passed to the
output, Y(s), and how the disturbance signal is passed to the output:

Y(s) = YR(s) + YD(s)

where

Y s
G s K s

G s K s H s
R s G s R sR CL()

() ()
() () ()

() () ()=
+

=
1

and

Y s
G s

G s K s H s
D s G s D sD d()

()
() () ()

() () ()=
+

=
1

We might think that we could force the transfer function analysis to give one overall
transfer function for this process. However, this is not possible since the transfer func-
tions relate how the output signal is affected by each input. Since there are two input

206 Feedback improves system performance

()K s ()G s

()H s

+

–

R s() Y s()

Closed loop system

E s()

D s()

+
+U s() UT()s

Figure 8.14 General closed-loop block diagram.

signals in this diagram, there should be two transfer functions showing the effect of each
input signal on the output.

We could equally well have determined the closed-loop transfer function from R(s) to
Y(s) by letting D(s) be zero in the above signal equations. This would have simplified the
algebra and would have resulted in only one transfer function: R(s) to Y(s). Likewise, we
could evaluate the closed-loop transfer from D(s) to Y(s) by letting R(s) be zero in our
signal equations. Again, this would simplify the algebra and produce the transfer func-
tion we required. (However, although R(s) = 0, the negative sign at the summation point
remains within the loop. This is important, as the negative sign is the indication of nega-
tive feedback.)

By closing the loop, the transfer function from input to output has been altered; the
closed-loop transfer function need not resemble the system transfer function, G(s). This
is desirable since it is through this ability to modify the input–output relationship that
we can change (for the better!) the system performance. Control systems use a feedback
loop in conjunction with a controller to provide the desired system behaviour.

Remark In our examples, multiplication of transfer functions G, H and K would give the same final
transfer function, no matter what order we multiplied the three together, since they all repre-
sent single-input single-output blocks. However, this would not be true if we were dealing with
multivariable systems where the systems can be described using transfer function matrices.
As with any algebra involving matrices, the order is important. The following provides an
example of manipulation of transfer function matrices.

Example: Transfer function multiplication: push-through rule
Firstly we note the following push-through rule:

G1(I + G2G1)–1 = (I + G1G2)–1G1

In this identity, the matrix, or transfer function, G1 has been moved from one side of the
inverse term to the other, and in doing so, the order of G1 and G2 has been reversed.

We can apply this to the development of the closed-loop transfer function from input R
to output Y. We note that the development of GCL included the equation:

(1 + GKH)Y = GKR

which gave

Y = (1 + GKH)–1GKR =
GK
GKH1+

= GCLR

By applying the identity above, we can write this equation as:

Y = GK(1 + HGK)–1R =
GK
HGK1+

= GCLR

Remark Unity feedback systems

We often assume that we have a unity feedback system; that is, a closed-loop system such as
that in Figure 8.14, where the transfer function H(s) = 1. In this case (and, for example, by
letting D(s) be zero), we can write

8.4 Block diagram manipulation 207

Y(s) = G(s)K(s)E(s)

and

E(s) = R(s) – H(s)Y(s) = R(s) – (1.Y(s)) = R(s) – Y(s)

Therefore

Y(s) = G(s)K(s)[R(s) – Y(s)]

which gives ultimately

Y s
G s K s
G s K s

R s()
() ()

() ()
()=

+1

B: Closed-loop transfer function: shorthand formula
First we define some common transfer functions, referring to Figure 8.15.

� Forward path: the transfer function relating the input signal to the output signal as
though the feedback path was not included

� Feedback path: the transfer function connecting the output signal to the comparator

� Open loop: the transfer function from the input signal to the loop, round the loop and
back to the input signal

Key result: Closed loop transfer function

Closed-loop transfer function:
forward path

1 open loop transfer function+

The above closed-loop transfer function assumes that there is negative feedback within
the closed loop.

We can form a procedure for determining the shorthand form:

1. Break the loop where the feedback signal returns to the summation sign at the input to the
loop.

2. Calculate the open-loop transfer function from the point at which the loop is broken
back (anticlockwise) round the loop to the summation sign.

3. Calculate the forward path transfer function from the input to the output required
(remembering to work from right to left when multiplying transfer functions).

4. Form the closed-loop transfer function as:

closed-loop transfer function:
forward path

1 open loop transfer function+

Skill section

Example 1 We apply the block diagram reduction methods to Figure 8.15 to evaluate the following transfer
function for the input given by R(s) and the output given by Y(s):

208 Feedback improves system performance

(a) The forward, feedback and open loop transfer functions, assuming the loop is broken at X.

(b) The closed-loop transfer function.

The transfer functions are given by:

Forward path: G(s)K(s)

Feedback path: H(s)

Open-loop transfer function: H(s)G(s)K(s)

Closed-loop transfer function: GCL(s) =
G s K s

H s G s K s
() ()

() () ()1+

Example 2 For the input D(s) and the output Y(s) in Figure 8.16, determine the following transfer functions:

1. The forward, feedback and open loop transfer functions, assuming the loop is broken at X.

2. The closed-loop transfer function.

Forward path: G(s)P(s)

Feedback path: K(s)H(s)

Open-loop transfer function: K(s)H(s)G(s)

8.4 Block diagram manipulation 209

()K s ()G s

()H s

+

–

R s() Y s()

Loop broken here

E s() U s()

R to Y: forward path

R to Y: feedback path

Figure 8.15 Closed-loop transfer function calculations for Example 1.

()K s ()G s

()H s

+

–

R s() = 0 Y s()

Loop broken here

E s()

D s()

+

+ UT()s

D to Y: forward path

D to Y: feedback path

X

()P s

Figure 8.16 Closed-loop transfer function calculations for Example 2.

Closed-loop transfer function: GCL(s) =
G s P s

K s H s G s
() ()

() () ()1+
=

G s P s
G s K s H s

() ()
() () ()1+

We note that the forward path from the input D(s) to the output Y(s) passes through only G(s)P(s) and
that P(s) does not appear in the open loop transfer function since P(s) is outside the loop. The open
loop transfer function is the same as the open loop transfer function in the previous example.

Example: Sensitivity transfer function S(s)
For the input D(s) and the output Y(s) in Figure 8.17, determine the following transfer functions:

1. The forward, feedback and open loop transfer functions, assuming the loop is broken at X.

2. The closed-loop transfer function

Forward path: 1

Feedback path: G(s)K(s)H(s)

Open-loop transfer function: G(s)K(s)H(s)

Closed-loop transfer function:
1

1+G s K s H s() () ()
(sensitivity transfer function, S(s))

This transfer function has a particular significance when we examine issues of disturbance
rejection, particularly in the frequency domain (Chapter 15). It is known as the sensitivity
transfer function and denoted by S(s).

Remark Algebra

We have performed the closed-loop block diagram reduction with symbols for the transfer
functions. These symbols will represent the Laplace transform descriptions of the systems.
When we replace the symbols with Laplace transforms we will need to be careful with the
algebra to find the final system transfer function. We will often find control systems with
closed-loop expressions such as

GCL(s) =
G
G

s

s
1

6
3 1

1
6

3 1
+

= +

+
+

210 Feedback improves system performance

()K s ()G s

()H s

+

–

R s() = 0 Y s()

Loop broken here

E s()

D s()

+
+U s()

D to Y: forward path

D to Y: feedback path

X

Figure 8.17 Transfer function calculations for sensitivity transfer function.

(or often much worse!). We need to be able to manipulate these expressions algebraically:

GCL(s) =
6

3 1
1

1
6

3 1

6
3 1

1
3 1 6

3 1

6
3 1 6

6
3 7s

s
s s

s
s s+ +

+

=
+ + +

+

=
+ +

=
+

8.5 Feedback changes the closed-loop performance

We now consider an example in which we show that including the feedback loop gives us
the freedom to choose a controller to change the speed of the system response.

Example Consider the following example of a process which has a time constant of 4 seconds and a
system gain of 3.

Y(s) = G(s)U(s) G(s) =
3

4 1s +

We would like to add a constant gain controller, K, in cascade with the system transfer function in
a unity feedback configuration in order to change the speed of response of the system.

The forward transfer function from R(s) to Y(s) is given by G(s)K = 3K/(4s + 1). The open-loop
transfer function is also given by GOL(s) = 3K/(4s + 1). These in turn will give a closed-loop
transfer function of:

G s
G s K
G s K

K
s K

s

K
s s KCL()

()
()

=
+

=
+ +

+

=
+ + +1

3
4 1

1

1
3

4 1

3
4 1

1
4 1 3

4 1

3
4 1 3

s

K
s K

+
⎛
⎝
⎜

⎞
⎠
⎟
=

+ +

The time constant of the process has changed. We can see this by putting the closed-loop
transfer function in the standard gain–time constant form. Starting with

GCL(s) =
3

4 1 3
K

s K+ +

we divide by 1 + 3K to get a unit constant coefficient on the denominator:

GCL(s) =

3
1 3
4

1 3
1

K
K

K
s

+

+
+

The gain and time constant can be read as:

Gain:
3

1 3
K
K+

Time constant:
4

1 3+ K

8.5 Feedback changes the closed-loop performance 211

E s() Y s()R s()

–

+
G s()K = GCL()s

R s() Y s()

By changing the value of the controller K we can change the time constant of the system. For
example, if we wished a value of τ = 0.5 seconds:

τ =
4

1 3+ K
= 0.5

⇒ 4 = 0.5 + 1.5K

⇒ K = 3.5/1.5 = 2.33

There are practical limits on the choice of controller K, but these and the formal controller
design process are discussed in the later chapters on control design.

Problem
Standard MATLAB commands can be used to manipulate transfer functions. Using MATLAB and
Figure 8.18, do the following exercises.

(a) Enter the transfer function K(s), G(s) and H(s).

(b) Calculate the forward transfer function from R(s) to Y(s).

(c) What is the forward transfer function from D(s) to Y(s)?

(d) What is the open-loop transfer function in both cases (b) and (c)?

(e) Calculate the closed-loop transfer function GCL(s) and Gd(s) using the shorthand formula:

forward path
1 open loop transfer function+

(f) Use the MATLAB feedback command to verify your answer. (General usage: g =feed-
back(forward, feedback), where forward and feedback are the appropriate transfer func-
tions for the particular input and output signals.)

Solution (a) s=tf('s');

k=10; g=4/(2*s+1); h=1/(0.5*s+1);

(b) gfwd = g*k;

(c) gfwd2= g;

212 Feedback improves system performance

10 2
3s+ 1

1
0.5s+ 1

+

–

R s() Y s()E s()

D s()

+
+

G s()K s()

H s()

Figure 8.18 Closed-loop system.

(d) openloop = h*g*k; (and will be the same for both R to Y and D to Y)

(e) gcl = gfwd/(1+openloop)

gd = gfwd2/(1+openloop)

(f) gcl = feedback(gfwd,h)

gd = feedback(gfwd2,h*k*g)

What we have learnt

� Open-loop systems can be used if the relationship between the input and output
signals is known exactly and there are no major disturbances which will upset the
process.

� The closed-loop system involves the use of a comparator to calculate the error
between the reference and the measured output value.

� By closing the loop, the overall system transfer function will change.

� The closed-loop transfer function can be calculated from the loop transfer function:

by using signal equations, or
by using the shorthand formula:

Closed-loop transfer function =
forward path

1 open loop transfer function+

Multiple choice

Multiple choice 213

M8.1 The following diagram shows:
(a) an open-loop system
(b) a system with a feedback transfer function equal to zero
(c) a negative feedback loop
(d) a positive feedback loop

M8.2 An open-loop control system:
(a) has a controller K = 1 in the closed-loop system
(b) corrects for disturbances acting on the system
(c) responds well to incorrect system models
(d) must be altered manually to deal with disturbances

K ()G s
+

–

R s() Y s()E s() U s()

214 Feedback improves system performance

M8.3 The shorthand formula for calculating the closed-loop transfer function for simple systems is:

(a)
forward

1 open loop+
(b)

forward feedback
1 open loop

×
+

(c)
forward

1 forward+
(d)

loop
1 open loop+

M8.4 The forward, feedback and closed-loop transfer function for the following system are:

(a)
3

2 1s +
, 0,

30
2 31s +

(b)
30

2 1s +
, 1,

30
2 30s +

(c)
30

2 1s +
, 1,

30
2 31s +

(d)
30

2 1s +
, 0,

30
2 31s +

M8.5 The transfer function from d(s) to Y(s) is

(a)
2

3 7s +
(b)

2
3 1s +

(c)
6

3 7s +
(d)

2
3 6s +

M8.6 In the following typical control system block diagram, which block would represent the controller unit?

(a) G1
(b) G2
(c) G3
(d) G4

10 3
2 +1s

+

–

R s() Y s()E s() U s()

3 2
3s+ 1

+

–

R s() Y s()E s()

d s()

+
+

G1
G3

G4

+

–

R s() Y s()E s() G2
Uc()s U s()

Multiple choice 215

M8.7 What is the characteristic equation of the following closed-loop system?

(a) s2 + 11s + 10
(b) s2 + 11s + 130
(c) s2 + 10s + 120
(d) s2 + 10s + 12

M8.8 In a typical control loop, the aim is to control:

(a) R(s)
(b) E(s)
(c) U(s)
(d) Y(s)

M8.9 For what values of K is the time constant of the closed-loop system less than 0.2 seconds?

(a) K > 3
(b) K > 5
(c) K > 7
(d) K > 9

M8.10 Which of the following describes the step response of this closed-loop system?

(a) underdamped
(b) critically damped
(c) overdamped
(d) the output does not reach a steady state value

K ()G s
+

–

R s() Y s()E s() U s()

K
+

–

R s() Y s()E s() U s()

2 + 1s
3

10 1
s2+2s+2

+

–

R s() Y s()E s() U s()

4 3
s + 1

10
s + 10

+

–

R s() Y s()E s()
G s()K s()

H s()

Questions: practical skills

Q8.1 (i) Draw symbolic summation diagrams for the following:
(a) z(t) = a(t) + b(t)
(b) z(t) = –a(t) + b(t) – c(t)
(c) α(t) = r(t) + s(t) + β(t)

β(t) = a(t) – b(t)
(ii) Define the operations represented by the following summation diagrams:

Q8.2 For the following block diagrams, determine the following:
(i) the transfer function of the forward path
(ii) the transfer function of the feedback path
(iii) the closed-loop transfer function; that is, the transfer function from R(s) to Y(s)

Q8.3 For the following block diagrams, determine the forward, feedback and closed-loop transfer func-
tions from R(s) to Y(s). Determine also the closed loop transfer function from the disturbance input
d(s) to the output Y(s).

216 Feedback improves system performance

R s()
3.0

Y s()E s()

–

+ 0.4+
+ d s()(a)

R s()
1.2

Y s()E s()

–

+ 0.4+
+ d s()

3.2

(b)

R s()
3.0

Y s()E s()

–

+ 0.4+
+

d s()

6.0

3.5

(c)

R s()
K

Y s()E s()

–

+ G
+
+

d(s)

H

F

(d)

d

g

b a

+

+

–

r

y

e+

–
n+

+

R s()
1.2

Y s()E s()

–

+(a)

(b)

(c)

2.0 3.2

R s()
2.5

Y s()E s()

–

+ 3.2 2.0

4.0

R s()
K1

Y s()E s()

–

+ K2 K3

H1

Q8.4 For the following systems evaluate:

GCL(s), where Y(s) = GCL(s)R(s)

and

GE(s), where E(s) = GE(s)R(s)

In each case (a) and (b), what do you notice about the denominator and numerator of each transfer function?

Q8.5 For the following systems evaluate:

GCL(s), where Y(s) = GCL(s)R(s)

GE(s), where E(s) = GE(s)R(s)

and

Gd(s), where d(s) = Gd(s)R(s)

In each case (a) and (b), what do you notice about the denominator and numerator of each transfer function?

Problems

P8.1. Liquid flows into a tank whose height is due to be controlled. The input flow is regulated by a
valve. A flow of 3 m3/s is produced for a 1 mm change in valve position. The tank is such that an input
flow of 1 m3/s produces a liquid height of 2 m.

Problems 217

6
(a)

(b)

5
3s+ 1

+

–

R s() Y s()E s()

2s+ 1
s

5
3s+ 1

+

–

R s() Y s()E s()

10

(a)

(b)

8
2s+ 1

+

–

R s() Y s()
+

d s()

3
2s2 +4 +1s

+

–

R s() Y s()
+

d s()

2
s+1

E s()

(a) Sketch the block diagram of the system.
(b) There is a leak from the connecting pipes of 0.02 m3/s. Re-draw your block diagram showing

where this would appear.

P8.2 An open-loop control system requires an operator to set a motorised valve setting, c, where
0 < c < 1, so that two fluids are mixed together. One stream has a constant flow of 10 m3/hr, and the
outflowing stream should be 14.6 m3/hr. The configuration is shown below, where motorised valve
dynamics are given.

Calculate the value of the valve setting to achieve the desired steady state outflow of 14.6 m3/hr.

P8.3 For a first-order process plant with a time constant of 5 and gain of 2, determine a controller gain
K in a unity feedback system such that the closed-loop time constant is τCL = 0.5. Sketch the open
and closed-loop responses to a unit step, noting carefully the gain and time constant of both systems.

P8.4 In the previous problem, let K(s) = K/s and examine what happens to the roots of the character-
istic equation for varying values of K. Comment on the performance for a step input for K = 0.01 and
K = 1.

P8.5 The system shown represents a process control plant with an output measurement transducer

Find the range of values of K such that the roots of the characteristic equation are
(a) overdamped
(b) underdamped

218 Feedback improves system performance

Motorised
valve

1.0

0.5

0

Constant flow 10m /hr

Desired flow 14.6m /hr

3

3

20
0.4 + 1s

3
s+2

E s() Y s()R s()

–

+
K

10
s+10

Design specifications on system time
response

99

What are the steady state and
transient parts of the response?

Steady state response Error transfer function Error design specification,
Final Value Theorem, ess

Transient response
Percentage overshoot: OS(%)

Maximum peak value: ymax

Disturbance rejection

Settling time: (5%), (2%)t ts s

Rise time: (10%,90%), (0%, 100%)t tr r

Peak disturbance: Dpeak

Disturbance settling time: Dts

Simulink test

Simulink test

Simulink test

Help? Time to readGaining confidence Skill sectionGoing deeper

We can use the modelling and transfer function analysis which we have learnt in previous chap-
ters when we go on to design controllers. However, before we look at control design, we need to
specify what performance we require from the controlled system. Do we wish the response to
move rapidly to its set point? Do we accept that the system may take some time to settle down?
Do we wish to react quickly to disturbances on the process? These requirements lead to a set of
design specifications which can be expressed in terms of a number of parameters which are
related to the process’s step response.

This chapter presents the common time domain specifications: firstly the steady state error,
then common specifications on the output for changes in reference input. We also look at the
specification of the system for when there is a change in disturbance. Although the actual change
in disturbance input may be unknown in practice, we often design systems to cope with a certain
level of disturbance input.

Learning objectives

� To calculate the steady state error to a specified input for a system.

� To appreciate that both step changes in reference and disturbances may produce
steady state offsets.

� To calculate the specifications for transient performance: the percentage overshoot (OS(%)),
the settling time (ts(5%) or ts(2%)) and the rise time (tr(10%,90%) or tr(0%,100%)).

� To calculate the specifications for transient performance after a change in disturbance:
peak change resulting from the disturbance (Dpeak), (Dpeak(%)) and settling time due to
a change in disturbance (Dts (5%), Dts(2%)).

9.1 Design specifications: steady state and transient behaviour

We often use controllers to stabilise and change the performance of a system. In doing so,
we need to specify the behaviour we would actually like to see from the system. This is
done by providing a set of design specifications for the inputs and outputs. These are
based on the desired steady state behaviour of the system (steady state error from a refer-
ence) and the transient performance of the system (Figure 9.1). If we recall from Chapter 8
that the error is given by e(t) = r(t) – y(t) where r(t) is the reference level or set point and y(t)
is the output, we can determine from Figure 9.1 that the steady state level of the output,
yss, is 0.8. The resulting steady state error will be given by

ess = rss – yss = 1 – 0.8 = 0.2

where the steady state reference level is 1.

Example: Robot arm/cutting device
A robot arm has at its extremity a cutting tool for speed cutting of leather for shoes. It is required to cut a
variety of pieces of leather and to cut at varying speeds depending on the complexity of the reference
shape. In this situation it is important for the robot arm to satisfy the following requirements:

� a quick response to new commands

� not too much overshoot (cutting past the required outline), since this would cause wastage

220 Design specifications on system time response

� quick to settle to a new cutting speed or line

� no steady state offset when the arm moves from one position to another

These requirements on the steady state and transient performance can be defined more rigor-
ously using criteria from the system’s output performance in response to changes in reference
signals or disturbance inputs.

9.2 Steady state performance

Key result: Steady state error

Just as we calculated the final output value yss, we can use the Final Value Theorem to work out
the final error value, ess, for stable systems:

e e t sE s
t s

ss = =
→∞ →
lim () lim ()

0

Skill section Error transfer function evaluation

We wish to find the transfer function that relates the error signal E(s) in Figure 9.2 to the input R(s)
and the disturbance D(s). We can do this in two ways:

A work out the error transfer function directly in terms of the input signal: for example, E(s) = GeR(s)

B given the transfer function relationship Y(s) = GCL(s) R(s), calculate
E(s) = R(s) – Y(s) = R(s) – GCL(s)R(s) = [1 – GCL(s)]R(s)

To make the manipulations easier to read we have removed the dependency on the Laplace vari-
able s.

A: Transfer function by calculating E(s) = Ge(s)R(s)
We practise our skills in manipulation by considering both the signal equation formulation and the
shorthand formula.

9.2 Steady state performance 221

0 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Output response

Reference level

Steady stateTransient

Time
1

Figure 9.1 Steady state and transient parts of step response.

1. Transfer function from signal equations
Since we wish E(s) as the output signal, we start the block diagram manipulation at E(s) and work
our way round the loop, back to E(s):

E = R – HY

Y = G[KE + D]

Combine these to give:

E = R – H[GKE + GD]

E = R – HGKE + HGD

[1 + HGK]E = R + HGD

E =
1

1 1+
+

+HGK
R

HG
HGK

D

Total error: E = ERR + EdD

2. Shorthand form

(i) Set D(s) to zero: evaluate the transfer function from R(s) to E(s):

forward path (from R to E): 1

open-loop transfer function: HGK

Therefore

E =
1

1+HGK
R

(ii) Set R(s) to zero: evaluate the transfer function from D(s) to E(s):

forward path (from D to E): HG

open-loop transfer function: KHG

Therefore

E =
HG
KHG1+

D =
HG
HGK1+

D

B: Transfer function by calculating E(s) = R(s) – Y(s)
If we know the closed-loop transfer function,

Y(s) = GCL(s)R(s)

222 Design specifications on system time response

E s()R s()

–

+
G s()K s()

Y s()

D s()

+
+

H s()

Figure 9.2 Block diagram for error analysis.

we can easily calculate the error transfer function. For the above system,

GCL =
GK
HGK1+

and the error transfer function is given by

E R HY R HG R HG R

HGK
HGK

R

HGK H

= − = − = −

= −
+

⎛
⎝
⎜

⎞
⎠
⎟

=
+ −

CL CL[]1

1
1

1 GK
HGK

R
1+

9.2.1 Steady state error design specification
We found in Chapter 8 that the output signal, Y(s), can be composed of two components:
one from the system’s response to a changing reference signal and the other from the
system’s response to a disturbance input:

Y(s) = YR(s) + YD(s)

We can use the Final Value Theorem to work out the steady state level of y(t).

Final Value Theorem

y y t sY s

s Y s Y s

Y

ss
t s

s

= =

= +

=

→∞ →

→

lim () lim ()

lim (() ())
0

0
R D

Rss Dss+Y

The steady state value has two components: one derived from the transfer function from
R(s) to Y(s) and one derived from the transfer function from D(s) to Y(s). We can use these
values to specify the requirements on the closed-loop system design. For example, we
may wish our steady state error to satisfy one of the following criteria

(i) Steady state error to a unit step increase in R(s) to be less than 0.1: ess < 0.1

(ii) Steady state error to a change in disturbance to be zero.

Problem Consider the system shown in Figure 9.3. What are the values of gain K which will achieve the
following design specifications?

(a) ess ≤ 0.1 for a unit step input in R(s)

(b) ess ≤ 0.2 for a step change of 2 in the disturbance D(s)

9.2 Steady state performance 223

E s()R s()

–

+ 2
s+1

K
Y s()

D s()

+
+

Figure 9.3 Control system for design problem.

Solution (a) We need to evaluate YRss. The closed-loop transfer function is evaluated using the shorthand
formula (and setting D(s) to zero).

forward transfer function:
2

1
K

s +

open-loop transfer function:
2

1
K

s +

closed-loop transfer function : YR(s) = GCL(s)R(s)

G sCL
forward path

1 open loop transfer function
() =

+
=

2K
s

K
s

K
s K

+

+
+

=
+ +

1

1
2

1

2
1 2

Hence

Y sY s sG s R s s
K

ss s s
Rss R CL= = =

+ +→ → →
lim () lim () () lim

0 0 0

2
1 2K s

K
K

1

2
1 2

=
+

Since the input signal was a unit step (Rss = 1), the error will be given by

e R Y
K
K Kss ss Rss= − = −

+
=

+
1

2
1 2

1
1 2

The error will therefore become smaller as our controller gain increases. We meet this again
as proportional control (Chapter 11). Our design requires

ess � 0.1

⇒
1

1 2+ K
� 0.1

⇒ K � 4.5

A value of K greater than 4.5 will satisfy the design criterion. However, in practice the actual
equipment has hard limits and this will determine the maximum amount of controller gain that
can be applied.

(b) We need to evaluate YDss. The closed-loop transfer function is evaluated using the shorthand
formula (and setting R(s) to zero for this calculation).

forward transfer function:
2

1s +

open-loop transfer function:
2

1
K

s +

closed-loop transfer function: YR(s) = Gd(s)D(s)

G s s
d

forward path
1 open loop transfer function

() =
+

=

2
+

+
+

=
+ +

1

1
2

1

2
1 2K

s
s K

224 Design specifications on system time response

Hence

Y sY s sG s D s

s
s K

s s

s

Dss D d= =

=
+ +

→ →

→

lim () lim () ()

lim

0 0

0

2
1 2

2
s

K
=

+
4

1 2

Since the input signal r(t) = 0, Rss will be zero, and the error will be given by

|ess | = |0 – YDss | = 0
4

1 2
4

1 2
4

1 2
−

+
=

−
+

=
+K K K

Our design requires

ess � 0.2

⇒
+
+

4
1 2K

� 0.2

⇒ K ≥ 9.5

A value of K ≥ 9.5 will satisfy the design criterion. We note that we cannot always satisfy
design criteria on the disturbance and reference signal simultaneously. This will become
more apparent in Chapter 11.

Problem Given the system in Figure 9.4, what would be the value of the controller gain K to achieve a
steady state error of ess � 0.2 to a unit step input?

Solution The closed-loop transfer function is given by:

Y(s) =
10

5 14 102
K

s s K+ + +
R(s)

Therefore the steady state output to a unit step input can be calculated as:

y sY s s
K

s s K s
K

s s

s

ss = =
+ + +

=

→ →

→

lim () lim

lim

0 0 2

0

10
5 14 10

1

10
s s K

K
K2 5 14 10

10
14 10+ + +

=
+

We asked for a reference value of 1.0; the error in the final value is ess = Rss – Yss:

e
K

K Kss = −
+

=
+

≤1
10

14 10
14

14 10
02.

K � 5.6

We can use a Simulink model (Figure 9.5), to verify these results.

9.2 Steady state performance 225

E s() Y s()
R s()

–

+ 10
s2+5 +14s

K

Figure 9.4 Control system for second-order design problem.

The output response (Figure 9.6) settles down to a steady state value of 0.8, giving an error of
0.2. If we increased the value of the gain, we would notice that the error would decrease.
However, the value of K = 5.6 satisfies the design specification for this system.

9.3 Transient performance

Steady state specifications are concerned with the accuracy with which a closed-loop
system can track a specified input reference trajectory. Transient performance corre-
sponds to the initial behaviour of the system before it has begun to settle down into its
steady state behaviour. Transient performance is usually specified on the basis of the
system unit step response.

Time domain performance indices have to be appropriate to all the different type of
responses. However, second-order systems are of considerable interest to the control
engineer because:

226 Design specifications on system time response

10
s +5s+142

Transfer fcn

t

Time

Step

y

Output

5.6+
–

Gain

Clock

Figure 9.5 Simulink diagram for second-order design problem.

0 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Output response

Steady state error

Unit step input

Time
1

Figure 9.6 Output response for K = 5.6.

1. Many physical systems can be characterised by a second-order model (even systems of
higher order can often be approximated by a second-order system).

2. The mathematics involved in developing design specifications for second-order
systems is not too daunting.

Although we could set demands on the second-order parameters of ζ and ωn, we often set
specifications on the time (step) response of the system, and in particular on:

� the system overshoot

� the system settling time

� the system rise time

When we discuss each of these, we indicate whether we are referring to a change in refer-
ence input or disturbance input.

9.3.1 System overshoot (change in reference)
In general, the overshoot is an indication of the largest error between the reference input
and the output. It is usually given as a percentage.

Key result: System overshoot

percent overshoot = OS (%) =
peak value final value

final value
−

× 100%

On an overdamped system’s step response there is no overshoot value. Figure 9.7 shows
the overshoot for an underdamped case. The percentage overshoot can be calculated as

OS (%) =
0 97 075

075
. .

.
−

× 100 = 29.33%

9.3 Transient performance 227

0 5 10 15 20 25 30
0

0.3

0.6

0.75

0.9

1.2

Time (seconds)

System output
response

Overshoot

Final value

Peak value = 0.97

Figure 9.7 Overshoot in system response.

What is a tolerable overshoot depends on the application. It might be as low as 0% for
ship turning manoeuvres, 5% for a tracking system or as high as 20% for a position
control system where steady state accuracy is considered more important.

For a second-order system where we know the system output equation we can find the
maximum and minimum turning points using the techniques of calculus. The maximum
overshoot is determined by taking the derivative of y(t) and evaluating the values of t
which give turning points of the output response.

Maximum peak value of second-order system
We recall that the unit step response for a second-order system of the following form
(note the unity gain):

G(s) =
ω
ζω ω

n

n n

2

2 22s s+ +

is

y t tt() (sin)= −
−

+−1
1

1 2ζ
ω φζωe n d

where ω d = ωn 1 2−ζ and φ = tan–1[() /1 2−ζ ζ]. The derivative of the function is given by

d
d

en
d dn

y
t

t tt= −
−

− + + − +−ω

ζ
ζ ω φ ζ ω φζω

1
1

2
2[sin() cos()]

Combining sine and cosine expressions gives

d
d

en
dn

y
t

tt= −
−

−ω

ζ
ωζω

1 2
sin

The turning point times can be calculated to be the times when dy/dt = 0:

tmax = kπ/ω d k = 1, 3, 5, ...

tmin = kπ/ω d k = 2, 4, 6, ...

By substituting the value of tmax for k = 1 in the equation for y(t):

y(t)= 1 –
1

1 2−
+ = =−

ζ
ω φ π ωζωe n d d

t t t tsin() /max

and with some reduction, we can determine the maximum value of the function y(t):

ymax
/= + − −1 1 2

e ζπ ζ

Hence we find that the maximum percentage overshoot is given by

OS(%) =
1 1

1
100

1 2+ −
×

− −e ζπ ζ/

which reduces to

228 Design specifications on system time response

zp

z

Ê ˆ-Á ˜=
Á ˜-Ë ¯2

OS(%) 100exp
1

Remark The percentage overshoot of a step response of a second-order system is a function of ζ only.

9.3.2 Settling time (change in reference)
This is the time required for the system to rise and settle within a given percentage of its
final value. Figure 9.8 shows the settling time for the output response to lie within 5%
bounds of the final value. Since in this case the final value is ‘1’, the 5% bounds are 1.05
and 0.95. The usual bounds that we refer to are either 5% or 2% and the settling time is
denoted by ts(5%) or ts(2%) respectively.

We can determine an approximate value for the settling time for a second-order system
by examining the system response:

y(t) = 1 –
1

1 2−ζ
(sin ω dt + φ)

We note that the output comprises a decaying exponential and a sinusoidal oscillating
term. Consequently, the maxima and minima touch an upper and lower envelope:

ymax(t) = 1 +
1

1 2−
−

ζ
ζωe nt

ymin(t) = 1 –
1

1 2−
−

ζ
ζωe nt

If the damping is small this can be approximated by:

9.3 Transient performance 229

0 5 10 15 20 25 30
0

0.4

0.95

0.8

1

1.2

1.6

1.05

Time

System output

Settling time

Point at which
response stays
within 5% bound
on final value

t s

Upper and lower 5% bounds

Figure 9.8 Settling time in system response.

ymax(t) = 1 + e n−ζω t

ymin(t) = 1 – e n−ζω t

This envelope can be used to determine a relationship for the settling time. Let X be the
percentage (0.05, 0.02) that we would like to calculate a settling time for. By equating the
value of the envelope to the 5% or 2% settling bound, we can find an approximate value
for ts.

1 + X = 1 + e n s−ζω t

or ln (X) = –ζωnts, giving

ts =
− ln()X
ζωn

By evaluating this for the 2% bound (X = 0.02) and 5% bound (X = 0.05), we find:

Key result Settling time: 2% and 5%

Settling time bound Settling time

2% (X = 0.02) ts(2%) ~
4

ζωn

5% (X = 0.05) ts(5%) ~
3

ζωn

9.3.3 Rise time (change in reference)
The rise time is the time required for the system to change from, say, 10% to 90% of its
final value (Figure 9.9). In some textbooks you will find that the definition is ‘0 to 100%’
for underdamped cases and ‘10 to 90%’ for overdamped cases. We will denote the rise
time by tr(10%,90%) or tr(0%,100%) for clarity. A short rise time indicates a fast

230 Design specifications on system time response

0 5 10 15 20 25 30
0

0.4

0.95

0.8

1

1.2

1.6

1.05

Time

System output

Upper envelope ª

ª

1+e

1–e

–zwnt

–zwntLower envelope

response, but this may also cause a large peak value. We often find that when we design
control systems, the result is a trade-off between the different design specifications.

Estimation of transfer function model from time response
Using our knowledge of final value, peak value and overshoot, combined with our knowledge of
general second-order systems, we can estimate the transfer function of a system given its step
response.

Problem Figure 9.10 shows the step response of a second-order system of the standard form to a unit step.
Determine approximately from the plot the gain, damping and natural frequency of the system.

Solution 1. We know from our knowledge of second-order systems that the gain can be calculated from:

yss = Kro

where yss is the steady state value, ro is the magnitude of the step input and K is the system
gain. In this case the final value = 0.6 and the magnitude of ro is 1. This gives the gain K as 0.6.

9.3 Transient performance 231

0 5 10 15 20 25 30
0

0.5

1

1.5

Time (seconds)

Amplitude

Figure 9.10 Second-order step response.

5 10 15 20 25 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time

System output

t r(10%,90%): rise time

Figure 9.9 Rise time in system step response.

2. Since the overshoot is a function of damping ratio only, we can determine the value of ζ by first
calculating the percentage overshoot. The formula for the overshoot is given by:

OS (%) =
peak final

final
−

× 100 = 100 exp(–πζ/ 1 2−ζ)

From the plot, the peak value is approximately 1.15 and the final value is 0.6. This gives the
percentage overshoot as

OS (%) =
115 06

06
. .

.
−

100 = 91.7%

Therefore we find that

0.917 = exp(–πζ/ 1 2−ζ)

or

ln(0.917) =
−

−

πζ

ζ1 2

giving

(ln(0.917))2 = (0.0866)2 = 0.00750 =
π ζ

ζ

2 2

21()−

Solving for ζ2 gives

0.00750 (1 – ζ2) = π2ζ2

or

ζ2 =
000750

000750 2
.

. +π
= 0.000760

ζ = 0.0276

3. The natural frequency, ωn, can be calculated from the frequency of oscillation of the response,
ωd:

ωd = ωn 1 2−ζ

The calculation of ωd requires us to read the period of one oscillation from the response plot. In
this case we take the time between the first and second peaks, t1, to be

t1 = 6 – 2 = 4 seconds

The frequency in hertz (cycles/second) is given by f = 1/t1 = 0.25 Hz. The angular frequency is
then:

ωd = 2πf = 2 × 3.14 × 0.25 = 1.57 rad/s

The natural frequency can then be easily calculated using our value for damping, ζ = 0.0276:

ωn = ωd/ 1 2−ζ = 1.57 × 099924. ≅ 1.57 rad/s

In this case, the damping is so small that the natural frequency and damped natural frequency
take almost the same value.

232 Design specifications on system time response

The resulting transfer function is

G(s) =
06

1 157 2 0027 157 1
06

0 406 0032 2 2
.

(/ .) [(.) / .]
.

. .s s s+ × +
=

+ 4 1s +

9.4 Specifications for disturbance rejection

Let us consider the robot arm/cutting system whose aim is to cut leather for shoes given a
reference track to follow (Figure 9.11). The robot cutting arm is driven by a motor and
suffers from disturbances in the form of varying qualities of leather causing variations in
the process input signal.

Figure 9.12 shows the output from the position-measuring system. There is an initial
change in reference position to an operating level of 10 mm. After 10 minutes we notice a
disturbance affecting the system due to the change in quality of thickness of leather. The
control system acts to reduce this disturbance, but in this case is not sufficient to remove
the steady state error caused by the disturbance. This error is approximately 0.4 mm.

9.4 Specifications for disturbance rejection 233

Controller Motor
Robot

arm

Position
transducer

Reference
position

+

–

+
+

Output
position

Disturbance

Figure 9.11 Closed-loop system for robot arm position system.

0 5 10 15 20
0

2

4

6

8

10

12

14

Time (minutes)

Position (mm)

Steady state error

Reference position

Set point following Disturbance rejection

Figure 9.12 Robot arm position.

In this case we can see that a disturbance has caused the output to move from the
desired operating level. Very often we will see the disturbance response graph shown as in
Figure 9.13. This is the same disturbance as before, but we have shown the output
response as the deviation from its steady state (or ‘zero’) level.

We often wish to design a control system to reduce the effect of a disturbance on the
system output. In these circumstances we are responding to a disturbance rejection situ-
ation. We may often meet systems which operate at a steady state operating condition.
These systems are not required to track a changing reference level and therefore the spec-
ifications on the rise time and percentage overshoot are not applicable in these circum-
stances. However, it is important to design control systems to reduce the effect of the
disturbance which may cause the system to move from its operating condition.

What we do here is provide a means of quantifying the effect that the disturbance may
have. We assume that the system is operating at a nominal or steady state condition and
the disturbance will cause a movement from this steady state level.

9.4.1 Peak disturbance

Key result: Peak disturbance

We can define the peak disturbance as:

Dpeak = max | () |
t

y t y− ss

Or, as a percentage of the (non-zero) steady state level, as:

Dpeak (%) =
D

y
peak

ss
×100

Problem In the robot cutting example, the engineer has a maximum allowable specification for the Dpeak of
0.5 mm. The output response is shown in Figure 9.12, and is re-plotted as the deviation from the
steady state level in Figure 9.13.

234 Design specifications on system time response

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Time (minutes)

Deviation from set point (mm)

due to
Steady state error

disturbance

Disturbance acts here

Figure 9.13 Robot position referenced to steady state level.

(a) Determine whether the system meets the design specification.

(b) Also determine the percentage overshoot, Dpeak(%).

Solution (a) Figure 9.13 shows the deviation

|y(t) – yss|

We find that the maximum deviation is given by

Dpeak = max |y(t) – yss| = 0.54 mm

This is larger than the required specification of 0.5 mm and the system does not meet the
design requirements.

(b) The percentage of steady state level requires us to refer to the first plot to determine the
(non-zero) steady state level. This is read as 10 mm.
Therefore the peak overshoot as a percentage of the system’s steady state is

Dpeak(%) =
D

y
peak

ss
× 100 = 5.4%

Remark We note that if the system were operating around a zero level, the value of Dpeak(%) would not
be calculable and we would refer only to Dpeak.

9.4.2 Settling time (disturbance input)
We recall the definition for a 5% settling time (reference input):

ts(5%): time required for the system to rise and settle within 5% of its final value

We can use a similar definition for the settling time after a disturbance input. Once again,
we presume that the system is operating at a (non-zero) steady state condition and the 5%
band is referred to this steady state condition.

Disturbance settling time = Dts(5%): time required for the system to rise and settle
within 5% of its steady state value

From Figure 9.14, we can calculate the 5% settling time as:

Dts(5%)= 11.3 – 10.0 = 1.3 minutes.

If we look at the ‘zero-reference’ plot (Figure 9.14), we notice that this system would not
satisfy any design specification on a 2% disturbance settling time due to the steady state
offset caused by the disturbance.

Remark Once again, the disturbance settling time can also be expressed as a value in absolute units.
For example, it may have been a requirement for this system to stay within a bound of ±0.45
mm after 3 minutes. This manner of specification avoids the necessity of referring the settling
time to a specific steady state level.

9.4 Specifications for disturbance rejection 235

What we have learnt

� To analyse the system behaviour to changes in input reference signals or distur-
bances using steady state and transient performance indices.

� To evaluate the steady state error for a system using

e e t sE sss
t s

= =
→∞ →
lim () lim ()

0
� To calculate the percentage overshoot for change in reference:

OS (%) =
peak value – final value

final value
× 100

� To measure a peak disturbance from a step response plot:

Dpeak = max | () |
t

y t y− ss

Dpeak (%) =
Dpeak

ssy
× 100

� To measure the settling time from the plot:

ts(5%) or ts(2%) and (Dts (5%), Dts(2%))

� To calculate an approximate settling time from the system parameters:

ts(2%) ~
4

ζω n

and

ts(5%) ~
3

ζω n

236 Design specifications on system time response

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Time (minutes)

Position (mm)

Disturbance acts here
5% settling time

5% bound on reference
level of 10 mm

2% bound on reference
level of 10 mm

Figure 9.14 Settling time bound on offset due to disturbance.

� To measure the rise time from the step response plot

tr(10%,90%) or tr(0%,100%)

We use these specifications when we go on to do control design.

Multiple choice

M9.1 A control design specification is required:
(a) when the controller is just a simple device
(b) to remove disturbances
(c) when the final control system must meet certain requirements
(d) there is no pre-existing knowledge of the system output

M9.2 The ‘steady state error to a unit step input’ refers to:
(a) the initial error at the beginning of a step input
(b) the final output value of the system after a step input
(c) the magnitude of the step input
(d) the difference between the final output and the step input

M9.3 The error transfer function between R(s) and E(s) for the following system is:

(a)
s
s
+
+

2
32

(b)
s
s
+
+
32

30 32

(c)
30

2s +

(d)
3

2s +

M9.4 If

E(s) =
6
3 42s s

R s
+ +

()

what is ess if the input signal is a step input of magnitude 2?
(a) 3
(b) 6
(c) 1.5
(d) 2

Multiple choice 237

10 3
s+2

+

–

R s() Y s()E s() U s()

M9.5 The figure shows the output of a system to a unit step response. What is the percentage over-
shoot in the figure?

(a) 3.7%
(b) 1.37%
(c) 13.7%
(d) 37%

M9.6 In the previous figure, what is the rise time, tr(10%, 90%)?
(a) approx. 0.5 seconds
(b) approx. 0.8 seconds
(c) approx. 0.3 seconds
(d) approx. 0.6 seconds

M9.7 In the previous figure, what is the damped natural frequency of the system?
(a) approx. 2.65 rad/s
(b) approx. 1.85 rad/s
(c) approx. 3.55 rad/s
(d) approx. 5.75 rad/s

M9.8 A disturbance peak value, Dpeak, is:
(a) the error in the steady state output of the plot
(b) the percentage of the peak to the final output value
(c) the actual magnitude of the peak value on the output graph
(d) the time it takes to reach the peak value on the output graph

M9.9 The settling time, ts(5%), is given as:
(a) the time taken for the response to stay within 5% of its final value
(b) the time taken to reach the final output value
(c) the time taken to reach 95% of the final output value
(d) the time taken to reach the 5% overshoot

238 Design specifications on system time response

Time (seconds)

A
m

pl
itu

de

Step response

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

M9.10 The percentage overshoot of a second-order system to a step input depends only on:
(a) the value of the step input
(b) the value of the damping ratio
(c) the value of the gain K
(d) the parameter ωn

Questions: practical skills

Q9.1 What is the steady state value of the output from the following systems when a step of magnitude
3 is injected?

(a) G s
s

() =
+

10
2 1

(b) G s
s

() =
+
3

4
(c) G s

s
() =

−
10

2 1

Q9.2 What is the steady state value of the output from the following systems when a step of magnitude
4 is applied?

(a) G s
s s

() =
+ +
6

3 2 12 (b) G s
s s

() =
+ +
10

5 2 32 (c) G s
s s

() =
+ −

7
4 22

Q9.3 For plots A and B, determine
(a) the percentage overshoot
(b) the damping ratio
(c) tr(10%,90%)
(d) ts (5%)
(e) the damped frequency, ωd
(f) the natural frequency, ωn
Hence write down the second-order transfer functions for Plot A and Plot B.

Q9.4 The plot shows two output responses, y1(t) and y2(t), from electrical systems which were at rest at
a value of y1(t) = y2(t)= 25 V. An input disturbance voltage of 1 V occurs at 5 seconds.

For both systems:
(a) What is Dpeak?

Practical skills 239

Time (seconds)

A
m

pl
itu

de

Step response

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Plot A

Plot B

(b) What is Dts(2%)?
(c) What is the approximate value of ω d.

Problems

P9.1 Identify the order of the system shown below.

Determine the magnitude of a constant input signal to ensure that the steady state error, ess = 0.
Sketch the time responses of the system output y(t) and the error signal.

P9.2 For the comfort of passengers on board a ship, it is important not to have large sudden changes in
position and that any oscillations should be reduced quickly. The following system represents an auto-
pilot. It is desirable to switch from one heading to another with the closed-loop system satisfying
OS(%) � 5%.

(a) Choose a value of K to satisfy the above criterion.

240 Design specifications on system time response

0 5 10 15 20 25 30 35 40
24.5

25

25.5

26

26.5

27

27.5

y1()t

y2()t

Output response,
V

Time (seconds)

2
0 5 1(.)s+

s)R s(

Y s() +

– E s()

= 6

s
c
sU()=

K
1

s s(10 +1)
–

R s()

Input
heading
degrees

Y s()

Heading,
degrees

+

(b) Implement your final system in Simulink and check the output response for a 10° reference
heading meets the specification. What is the settling time?

(c) What would happen if you changed K to meet a second requirement on the settling time of the
system?

P9.3 The system shown represents a second-order position control system. The output Y(s) gives the
position in mm and is subject to disturbances acting at the input to the system. The controller is a
specific type of controller called a Proportional–Integral controller, which we shall learn more about
later. In this exercise we shall vary only the gain K in the controller.
(a) Implement the system in Simulink. Let K = 0.5. Plot the output y(t) for a disturbance input of

magnitude 2. Presume that the system is already controlled to a reference level of 5 mm. What
does the plot show?

(b) Let K take the following values: K = 0.5, 1.0, 1.5 and 2.0. Draw up a table showing how the
change in K relates to Dpeak.

(c) If the reference level of the output was initially 5 mm, what values of K satisfy a 5% settling time of
less than than 4 seconds.

Problems 241

(3K s +1)
s

2
(s2+ 0.8s+1)

+

–

R s() Y s()

+

d s()

+

Poles, zeros and system stability10

Poles, zeros and the -planes Finding poles and zeros

Poles and the time constant, t

s-plane locations:
constant , constantz wn

Pole positions and
the time response

Feeder tank:
reinforcing/competing
modes

Further analysis and
interpretation of zeros

Closed loop pole locations for increasing gain

Bounded signals Poles in LHP, RHP, on j axisw

System stability Check for closed loop stability

The relation between system
parameters and poles and zeros

How do zeros arise?

Open and closed loop
system poles and zeros

Help? Time to readGaining confidence Skill sectionGoing deeper

When we represent systems in terms of transfer functions, the numerator and denominator of the
transfer function contain key information on the system parameters which inform us about the
performance of the system. We find that the denominator and numerator polynomials also give us
the poles and zeros of the system.

The poles will provide information on the system stability. Stability is a main consideration when
we design control systems since we do not wish to have any spiralling or unbounded output
signals. Luckily for us, most everyday processes are stable. We do not have house heating
systems that produce unbounded heat, nor do we have cars that accelerate in an unbounded
manner. We will find out in this chapter that the essence of stability depends on whether a
bounded input signal produces a bounded or unbounded output signal. We will also find that for
the type of systems described by transfer function models, we do not need to examine the input
and output signals, but will be able to find out about a system’s stability from the locations of its
poles.

The zeros of a system are also important, since they will affect the performance of a system. We
will find out how zeros arise in a system and the ‘odd’ effects that they can cause in the system
response.

Learning objectives

� To be able to determine the poles and zeros of a system.

� To relate the position of the system poles to the time domain performance indices.

� To understand how zeros arise within a system.

� To examine what is meant by a bounded or unbounded signal.

� To determine the stability of a system and its relationship to the poles of the system.

Before we study how the stability of a system is related to the poles of the system transfer func-
tion, we introduce the definitions for the poles and the zeros of a system and examine how the first
and second-order system parameters (τ , ωn and ζ) are related to pole positions.

10.1 Poles and zeros

We often express our system models in transfer function representation. For example, let
the transfer function of a general system, G(s), be expressed as the ratio of two
polynomials:

G s
n s
d s

b s b s b s b
a s a s
m

m
m

m

n
n

n
n()

()
()

= =
+ + + +
+

−
−

−
−

1
1

1
1

0

1
1
…

+ + +… a s a1
1

0

where n(s) is the numerator polynomial of degree m and d(s) is the denominator polyno-
mial of degree n. We define the order of the system, G(s), as the degree, n, of the denomi-
nator polynomial, d(s). We term the roots of the denominator polynomial equation, the
poles of the system and the roots of the numerator polynomial equation as the zeros of
the system.

10.1 Poles and zeros 243

Key result: Definition of poles

The poles of the system G(s) are defined as the roots of the denominator polynomial equation:

Poles: All the values of s for which d(s) = 0

We note that the polynomial, d(s), of degree n has n roots and a system of order n has n
poles. The system poles may be real and/or complex. If the poles are complex, the pole
locations will occur in complex conjugate pairs.

Key result: Definition of zeros

The zeros of the system G(s) are defined as the roots of the numerator polynomial equation:

Zeros: All the values of s for which n(s) = 0

The numerator polynomial, n(s), of degree m will have m roots. (However, the order of the
system is still determined by the order of the denominator.) The system zeros may be real
and/or complex. If the zeros are complex, the zero locations will occur in complex conju-
gate pairs.

We recall that the variable s is the independent complex variable defined by:

s = σ + jω

where σis the real part of s, which we also denote as Re(s) = σ and variable ω is the imagi-
nary part of s, which we denote as Im(s) = ω . We show the range of variation of s or the
domain of s as a plane (Figure 10.1).

We call the horizontal axis of this plane the real axis, since it is defined by:

s = σ + j0

We denote the vertical axis as the imaginary axis, since it is defined by:

s = 0 + jω

244 Poles, zeros and system stability

jw

Real axis
s = Re()s

Imaginary
axis

w = Im()s

Origin
s = 0,w = 0

Left half plane
(LHP)

Right half plane
(RHP)

s = s + jw

s

w

Figure 10.1 s-plane for pole and zero location.

The origin is represented by the complex zero s = 0 + j0. We call the region to the left of the
imaginary jωaxis (for –∞< σ< 0) the Left Half Plane (LHP), and the region to the right of
imaginary axis for (0 < σ< ∞) the Right Half Plane (RHP). The jω axis is the border between
the LHP and RHP. We call the whole complex plane the s-plane.

Skill section

After we have found the poles and zeros of a system’s transfer function, we can locate them on the
s-plane. This visual representation of the poles and zeros can help us in several ways. For
example, we will see that the stability of system depends on the location of the poles on s-plane.
Also, the time constant of a first-order system or the damping ratio and natural frequency of a
second-order system are related to the position of the poles on the s-plane.

Problem Find the poles and zeros for the system model:

G s
s

s s
() =

+
+ −

1
62

Solution Poles

We identify the denominator polynomial as d(s) = (s2 + s – 6). Since the order of d(s) is n = 2, d(s)
is a second-order polynomial, and we expect to find two poles p1 and p2. To find the poles solve
d(s) = 0:

d(s) = (s2 + s – 6) = (s – 2)(s + 3) = 0

The poles of the system are at s = 2 and s = –3, hence the poles are p1 = 2 and p2 = –3.

Zeros
We identify the numerator polynomial as n(s) = (s + 1). Since the order of n(s) is m = 1, n(s) is a
first-order polynomial and we expect one zero, z1. To find the zero, solve n(s) = 0:

n(s) = (s + 1) = 0

The solution is s = –1. Hence the zero of the system is z1 = –1.

We now show the positions of poles and zeros on the complex s-plane. For our example all the
poles and zeros are real, so they are located on the real axis, Re(s). We represent the poles by a
cross (×) and the zeros by a circle (○), as shown in Figure 10.2.

We call this schematic representation the pole–zero map. For high-order transfer functions we
can use the MATLAB functions poles, zeros and pzmap to find the poles and zeros or to draw the
pole–zero map.

Problem Find the poles and zeros of the transfer function

G s
s

s s s
()

()()
=

+
− + +

3
4 12 522

Draw the pole–zero map of G(s).

10.1 Poles and zeros 245

Solution We identify the numerator and denominator polynomials as:

n(s) = (s + 3)

d(s) = (s – 4)(s2 + 12s + 52)

Poles
Solve d(s) = (s – 4)(s2 + 12s + 52) = 0.

Hence (s – 4) = 0 and (s2 + 12s + 52) = 0.

(s – 4) = 0 → s = 4

Thus the pole is p1 = 4.

(s2 + 12s + 52) = (s + 6)2 + 16 = 0

(s + 6)2 = –16 = –42 → (s + 6) = ± −()4 2 = ±4j → s = –6 ± 4j

so that p2 = –6 + 4j and p3 = –6 – 4j
Therefore p1 = 4, p2 = –6 + j4 and p3 = –6 – j4 are the poles of G(s). Note that G(s) has a pair of

complex poles p2,3 = –6 ± j4 which are symmetric with respect to the real axis. These poles are
known as complex conjugate poles.

Zeros
Solve n(s) = 0:

n(s) = (s + 3) = 0 → s = –3

Therefore z1 = –3 is a zero of G(s).
We can now draw the pole–zero map as shown in Figure 10.3.

246 Poles, zeros and system stability

Real axis

jw

Pole–zero map

–4 –3 –2 –1 0 1 2 3
–1

–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

1

p2 = –3 z1 = –1 p1 = 2

Figure 10.2 Pole–zero diagram for G(s) = (s + 1)/(s2 + s – 6).

Multiple poles
When the system G(s) has more than one pole or one zero at the same coordinates on the
s-plane, we say that G(s) has multiple poles or multiple zeros. For example, consider the
following system transfer function:

G(s) =
1
2s

To find the poles, identify the denominator polynomial, d(s), and solve

d(s) = s2 = 0

This has two roots both at s = 0, hence p1 = 0 and p2 = 0, since it is of degree two. Thus the
transform has a multiple pole at the origin of the s-plane, and we indicate this by the
double cross () in Figure 10.4.

10.1 Poles and zeros 247

p3

z1

p p2 3,

p Im()s

Complex
conjugate pair

2

Zero at
z1 = –3

p1

4

2

–2

–4

–6 –4 –2 0,0 2 4 6 Re()s

s-plane

Real pole
= 4s

Figure 10.3 Pole–zero diagram for G(s) = (s + 3)/[(s – 4)(s2 + 12s + 52)].

Double pole
at the origin

s-plane

(0,0)

Re()s

Im()s

Figure 10.4 Pole–zero map for G(s) = 1/s2.

10.2 System parameters and their relationship to pole locations

When we study control systems, we are often interested to see how the performance of
the system changes as the damping ratio or the natural frequency are varied. Alterna-
tively, it is often useful to know where the poles of a system should be located in order to
obtain a desired set of control design specifications. To do this we need to relate the
performance parameters (first-order time constant, second-order damping ratio and
natural frequency) to the location of the poles of the system.

Skill section Relationship between the first-order system poles and its time constant

For the first-order system transfer function, K/(τ s + 1), the system pole is at s = –1/τ . We notice
that the model parameter K does not affect the poles of the system. It will have an effect on the
steady state or final value of the output but has no effect on the speed of the response. Only the
system pole location influences the dynamical shape or speed of response of the output through
the time constant parameter τ .

Problems Find the poles and the time constants of the following first-order systems:

(a) G s
s1
1

2 1
() =

+

(b) G s
s2
1

5 1
() =

+

(c) G s
s3
1

10 1
() =

+

(d) G s
s4
1

20 1
() =

+

Solution The poles and time constants of the system transfer functions are given by

(a) s1 = –0.5, τ 1 = 2

(b) s2 = –0.2, τ 2 = 5

(c) s3 = –0.1, τ 3 = 10

(d) s4 = –0.05 τ 4 = 20

We can compare the unit step responses and the poles of the systems as shown in Figure 10.5.
As τ increases the response becomes slower; that is, it takes longer to reach 63.2% of the final

output. We can see that the pole corresponding to the fastest step response lies furthest from the
origin, while the pole closest to the origin results in the slowest step response. This correlation of
speed of response and the location of the system pole is a useful effect to appreciate.

Key result: Time constants, poles and speed of response

A large time constant produces a slow response and its pole will lie close to the imaginary axis.

A small time constant gives a fast response and its pole will lie further from the imaginary axis.

248 Poles, zeros and system stability

10.2.1 Second-order systems
Consider the second-order system:

G s
s s

() =
+ +

ω
ζω ω

n

n n

2

2 22

This system will have different step responses (underdamped, critically damped and over-
damped), depending on the value of damping ratio ζ. We will now try to find a relationship
between ζ and ωn and the position of the poles for a second-order system.

For underdamped systems, the damping ratio satisfies 0 < ζ < 1, and the two poles for
the underdamped system are:

p

p

1
2

2
2

1

1

= − + −

= − − −

ζω ω ζ

ζω ω ζ

n n

n n

j

j

We can represent these poles on the s-plane as shown in Figure 10.6.

10.2 System parameters and their relationship to pole locations 249

Time

Step response

30 40
0

0.2

0.4

0.6

0.8

1

Real axis

Pole-zero map

–1 –0.5 0 0.5 1
–1

–0.5

0

0.5

1

t1 t2 t3 t4

s1 s2 s3 s4

Figure 10.5 Step responses and pole locations for different first-order systems.

Real axis

Pole–zero map

–1.5 –1 –0.5 0 0.5 1
–2

–1

0

1

2

p1

q
R

–wnz

p2

Imag. axis

C O

2
n 1w z-

2
n 1w z- -

Figure 10.6 Example of second-order underdamped system pole locations.

We can apply trigonometry to the triangle OCp1 to determine the angle θ.

tan θ =
ω ζ

ζω
ζ

ζ
n

n

1 12 2−
=

−

This states that the angle, θ, that the poles make with the real axis position will depend
entirely on the damping ratio of the system. If ζ = 0 then θ = π/2 and if ζ = 1 then θ = 0. If
0 < ζ < 1, then θ = will lie between 0 and π/2.

We now calculate the radial value of R in Figure 10.6, which is the distance from the
origin to the pole. By trigonometry again

R2 = () ()ζω ω ζ ζ ω ω ζ ω ωn n n n n n
2 2 2 2 2 2 2 2 21+ − = + − = or R = ωn

Therefore all poles with constant value for ωn will lie on a semicircle, radius R (=ωn) from
the origin.

We can plot the loci of the poles on the pole–zero map:

(i) For different values of ωn, we obtain a number of semicircles.

(ii) For different values of ζ, we find a number of straight lines making different angles
with the real axis. We can then easily establish a relationship between the location of
poles and ζ and ωn. This is shown in Figure 10.7.

If we keep ωn constant and change ζ from zero to one, the poles of the system move on a
semicircle starting from the jω axis and end on the real axis where the two poles meet and
the system becomes critically damped.

As we increase the value of ζ > 1, the system becomes overdamped and the poles
become real. One pole will move to the origin of the s-plane and the other pole moves to

250 Poles, zeros and system stability

Real axis

Pole–zero map

–4 –3 –2 –1 0 1
–5

–4

–3

–2

–1

0

1

2

3

4
Imag. axis

Lines of constant
damping ratio, z

Semicircles of
constant wn

Figure 10.7 Contours of constant damping and natural frequency.

–∞as the value of ζ approaches infinity. We call this semicircle and the negative part of
the real axis, the locus of all the poles of a second-order system.

Remark � The imaginary axis represents the locus of all the poles for constant ζ = 0 (the oscillatory
systems).

� The negative real axis represents the pole locations for constant values of ζ ≥1.

10.3 The link between pole position and system step response

We look at the four system categories: oscillatory, underdamped, critically damped and
overdamped.

Oscillatory systems
Oscillatory systems have zero damping factor. By substituting for ζ = 0 in G(s), we obtain:

G s
s

() =
+
ω
ω

n

n

2

2 2

We find the poles by setting the denominator polynomial equal to zero and solving for the
roots:

s s2 2 0+ = → = ±ω ωn j n

The system has a pair of complex conjugate poles on the jω axis (p1 = jωn, p2 = –jωn)
(Figure 10.8(b)). The unit step response of the system is a sine wave of amplitude one and
frequency ωn (Figure 10.8(a)).

Underdamped system
The system has a pair of complex conjugate poles:

p

p

1
2

2
2

1

1

= − + −

= − − −

ζω ω ζ

ζω ω ζ

n n

n n

j

j

10.3 The link between pole position and system step response 251

Time (seconds)

A
m

pl
itu

de

Step response

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Real axis

Im
ag

. a
xi

s

Pole–zero map

–1 –0.5 0 0.5 1
–2.0

–1.0

0

1.0

2.0

(a) (b)

Figure 10.8 Oscillatory system. (a) Step response; (b) pole–zero map.

The step response of an underdamped system is also shown in Figure 10.9(a). As ζ approaches
zero, the system response becomes more oscillatory. The poles have negative real parts (ζ > 0
and ωn > 0), and hence they always lie on the LHP for 0 < ζ < 1 (Figure 10.9(b)).

Critically damped system
For a critically damped system, the damping ratio is ζ = 1. Setting ζ = 1, we can write G(s)
as:

G s
s

()
()

=
+
ω
ω
n

n

2

2

The system has two real poles at s = –ωn and s = –ωn. If we let ωn = 1, we see in Figure
10.10(a) that the unit step response is similar to a first-order exponential-like function,

252 Poles, zeros and system stability

Time (seconds)

Step response

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Real axis

Im
ag

. a
xi

s

A
m

pl
itu

de

Pole–zero map

–2 –1 0 1 2
–1

–0.5

0

0.5

1

Multiple pole

(a) (b)

Figure 10.10 Critically damped system. (a) Step response; (b) pole–zero map.

Time (seconds)

Step response

0 10 20 30 40 50 60
0

0.5

1

1.5

2

Real axis
Im

ag
. a

xi
s

A
m

pl
itu

de

Pole–zero map

–1 –0.5 0 0.5 1
–2.0

–1.0

0

1.0

2.0

(a) (b)

Figure 10.9 Step response and pole–zero map for underdamped system.

which settles to a steady state value as time increases. Figure 10.10(b) shows the pole
locations for the case ωn = 1.

Overdamped system
For an overdamped system, the damping ratio is greater than one, ζ > 1. The poles are:

s s s2 2 22 0 1+ + = → = − ± −ζω ω ζω ω ζn n n n

Since ζ > 1, both poles are real: p1
2 1= − − −ζω ω ζn n and p2

2 1= − + −ζω ω ζn n . Both poles
have negative real parts, and therefore the poles lie in the LHP on the negative real axis. If
we consider the example s2 + 5.2s + 1 = 0, we find that the poles lie at s = –5 and s = –0.2
(Figure 10.11(b)). The corresponding unit step response is shown in Figure 10.11(a).

10.4 How do the zeros of a transfer function model arise?

Earlier we looked at how the poles of a system transfer function arose and we were quite
willing to accept that the poles represented the dynamical motions of a system. When we
ask the same question about the transfer function zeros we do not usually receive such a
straightforward answer to the question. This is surprising, because system zeros are a
very common feature of system transfer function models. Firstly, we look at how the
zeros arise before analysing their effect on a system.

10.4.1 Origin of zeros
Zeros arise from the internal physical pathways of a process and represent where these
internal effects are adding together or competing (subtracting) with one another. Figure
10.12 shows examples where the internal pathways are being added or subtracted to
produce zeros.

We now look at an example of the causes and consequences of a zero in the LHP and the
RHP. The example we use is of a feeder tank used in process control.

10.4 How do the zeros of a transfer function model arise? 253

Time (seconds)

Step response

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Real axis

Pole–zero map

–6 –4 –2 0 2
–1

–0.5

0

0.5

1

(a) (b)

Im
ag

. a
xi

s

A
m

pl
itu

de

Figure 10.11 Overdamped system. (a) Step response; (b) pole–zero map.

10.4.2 Feeder tank simulation
The feeder tank is used to supply a steady flow of liquid feed to downstream processes.
This tank is shown in Figure 10.13 and it has the length, width and depth dimensions of
4 m, 3 m and 3 m respectively, giving a cross-sectional area of 12 m2.

There are two pumps in the system: a fast-responding pump and a slow but more
powerful pump.

System modelling: general tank model
The height of the feed liquid is assumed to be measured from the level of the outflow
pipes.

Rate of change of volume = inflow – outflow

Thus

A
h
t

h
t

f t f t
d
d

d
d T o= = −12 () ()

254 Poles, zeros and system stability

Fast pump Slow pump

Outflow
Feeder tank

Inflow

Figure 10.13 Feeder tank example.

2
s + 2

1
s + 1

U s()
Y s()+

+

3(+1.33)s
(s + 2)(s+ 1)

U s() Y s()

2
s + 3

1
s + 2

U s()
Y s()+

–

s + 1
(s + 2)(s+ 3)

U(s) Y s()

2
s + 3

1
s + 1

U s()
Y s()+

–

s –1
(s + 1)(s+ 3)

U s() Y s()

Figure 10.12 Zeros arising from the addition or subtraction of different pathways.

where the cross-sectional area is A = 12 m2, the total inflow = fT(t) and the outflow is
determined from fo(t) = 1.2h(t) with the coefficient 1.2 m2 /min being determined from
flow experiments.

Thus

12 12
d
d T
h
t

f t h t= −() . ()

or, equivalently

12 12
d
d T
h
t

h t f t+ =. () ()

Assuming h(0) = 0, and taking Laplace transforms

12 12sH s H s F s() . () ()+ = T

giving

H s
s

F s()
.

()=
+

0833
10 1 T

The pumps have been calibrated and their details are:

Fast pump F s
s

V sf in()
.

.
()=

+
0 5

075 1

with τ f = 0.75 min, Kf = 0.5 m3/min/volt and Vin(s) = V/s.

Slow pump F s
s

V ss in()
.

()=
+

10
5 1

with τ s = 5 min, Ks = 1.0 m3/min/volt and Vin(s) = V/s.
Thus the fast pump is less powerful than the slow pump, and the same step voltage

input drives both.

Case 1: Reinforcing mode connection
In this connection we make the reasonably sensible suggestion that the two pumps
should be made to work together.

The control of level will be

F s F s F s

s
V s

s
V s

T f s

in in

() () ()

.
.

()
.

()

= +

=
+

+
+

0 5
075 1

10
5 1

giving

F s
s

s s
V sT in()

. (.)
(.)()

()=
+

+ +
15 2167 1
075 1 5 1

and

H s
s

F s
s

s s
()

.
()

. (.)
()(.

=
+

=
+

+ +
0833

10 1
125 2167 1

10 1 075 1T)()
()

5 1s
V s

+ in

(i) We can see that in this connection the system has a zero at s = –1/2.167 = –0.46. This
is a Left Half Plane zero.

10.4 How do the zeros of a transfer function model arise? 255

(ii) The steady state value for level is calculated as hss = 1.25.

(iii) We can use the Simulink model in Figure 10.14 to plot the output response for the
system. We have marked the summing point on the Simulink model, since this repre-
sents the flow into the tank.

The Simulink response to a 1 volt signal on vin(t) shows a reasonably well behaved over-
damped response (Figure 10.15). This response may be a little slow but it is
unremarkable.

Case 2: Competing mode connection
In this connection we make the pumps work in opposing modes against one another. We
think that this is an unreasonable method, but it is interesting to see what happens. The
control of the level will be given by

F s F s F s

s
V s

s
V s

T s f

in in

() () ()

()
.

.
()

= −

=
+

−
+

1
5 1

0 5
075 1

giving

FT(s) =
0 5 3 5 1

075 1 5 1
. (.)

(.)()
()

− +
+ +

s
s s

V sin

and

H s
s

F s
s

s s
()

.
()

. (.)
()(.

=
+

=
− +

+ +
0833

10 1
04165 3 5 1

10 1 075T 1 5 1)()
()

s
V s

+ in

(i) We can see that in the competing mode, the connection has given rise to a zero at
s = 1/3.5 = +0.286. This is a zero in the Right Half Plane.

256 Poles, zeros and system stability

Unit
voltage step

h

Level

t

Time

f

Inflow

Slow pump
0.833

10s+1

Feeder tank

5s+1
1

0.75s+1
0.5

Fast pump

Clock

Summing point

Figure 10.14 Simulink representation of feeder tank.

(ii) The steady state value for level is calculated at hss = 0.4165, which is less than for the
reinforcing connection mode.

(iii) The Simulink model can represent the competing mode by changing the operations
at the summing point to ‘+’ and ‘–’. The plot for a 1 volt signal on vin(t) shows quite a
remarkable response (Figure 10.15). We see that the response goes negative before
going positive, and attaining a positive steady state level. This initial negative-going
response is due to the fast pump removing feed liquid from the tank before the slow
but more powerful pump has had time to respond. The result is that the level falls
before the slow pump is able to recover control of the level. In the long run the slow
pump dominates, but is less effective due to the initial response of the fast pump. The
first valuable lesson we should learn is that the presence of Right Half Plane zeros in
the system transfer function model means that the system will have possible control
problems and unusual effects in the system responses. The second lesson to be learnt
is that we should try to understand why a Right Half Plane zero has occurred, since
there are usually good physical reasons for its presence.

10.5 Further analysis and interpretation of the role of zeros in a
system

� Analytical feature: If we have a system transfer function, G(s), which has a zero at
s = sz, then G(sz) = 0. In other words, zeros are called zeros because they cause the
transfer function to be zero at the position of the zero!

� Interpretation: This one is a little subtle. If an input signal to the plant has a pole at the
zero location, then the physical system does not transmit this signal into the output.
This means that we have lost the ability to transmit all input signals; zero locations are
identified with those signals we can no longer transmit through the system.

10.5 Further analysis and interpretation of the role of zeros in a system 257

0 10 20 30 40 50
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Output level, m

Reinforcing mode

Competing mode

Steady state levels

Time, minutes

Figure 10.15 Step responses for feeder tank systems with
reinforcing and competing flows.

So zeros are really very important to our understanding of system models and they play
a role in deciding whether we shall be able to achieve good performance from the control
system.

10.5.1 A computational example
An electrical circuit has a transfer function description which represents the input
voltage, Vi(s), to output voltage, Vo(s):

Vo(s) =
()

()()
s

s s
+

+ +
1

2 3
Vi(s)

To find the poles and zeros we identify denominator and numerator polynomials and set
up the pole and zero equations as follows:

G s
n s
d s

s
s s

()
()
()

()
()()

= =
+

+ +
1

2 3

For poles d(s) = (s + 2)(s + 3) = 0 and s1 = –2, s2 = –3 defines the poles. For zeros n(s) = (s + 1) = 0
and sz = –1. Hence we have poles at s1 = –2, s2 = –3, and one zero at sz = –1. If we look at the
transfer function value at the zero location we find:

G(sz) =
s

s s
z

z z

+
+ +

=
− +

− + − +
= =

1
2 3

1 1
1 2 1 3

0
1 2

0
()() ()() ()()

Thus the transfer function has zero gain at the zero location, sz = –1.
To understand the subtle interpretation about not transmitting certain types of input

signal, let us look at the step response. The input voltage is a 10 V step, hence Vi(s) = 10/s.
The output voltage is evaluated as:

V s G s V s
s

s s so i() () ()
()

()()
= =

+
+ +

1
2 3

10

Using partial fractions we find

V s
s s so()

() ()
= +

+
−

+
1
6

57
6 2

58
6 3

and

vo(t) = 1
6(1 + 57e–2t + 58e–3t) t > 0

Notice how the output voltage contains three components, one from the input term, (1/s), one
from the system pole at s = –2, (the term 1/(s + 2)) and one from the other system pole at s = –3, (the
term 1/(s + 3)). Clearly the output does have a time component from the input step.

By way of contrast, look at the following. The system zero location is sZ = –1. Consider
an input signal whose pole lies at this zero location, namely set Vi(s) = 10/(s + 1), or in the
time domain vi(t) = 10e–t.

How does the circuit respond to this particular input? The voltage output is evaluated as

V s G s V s
s

s s s s so i() () ()
()() ()()

= =
+

+ + +
=

+ +
=

1
2 3

10
1

10
2 3

10
() ()s s+

−
+2

10
3

and the output time voltage response is vo(t) = 10e–2t – 10e–3t. Unlike the step response
calculation, we appear to have lost the input signal vi(t) = 10e–t completely within the

258 Poles, zeros and system stability

circuit, and a component has not appeared in the output voltage vo(t). This is a very clear
demonstration of how the zero at sZ = –1 has blocked the transmission of a particular
signal, e–t, since at s = sZ = –1 the system gain is zero, G(–1) = 0.

10.6 Open- and closed-loop poles and zeros

We have found that open-loop systems have limitations, for example, in rejecting distur-
bance signals, and we learned how we can use feedback to improve the performance of
systems. We will now study the effect of feedback control systems on the position of the
poles and zeros of the closed-loop system. Consider the unity feedback system shown in
Figure 10.16.

10.6.1 Some transfer function analysis
We assume

G s
n s
d s

K s
n s
d s

()
()
()

()
()
()

=

=

G

G

K

K

We can then find the closed-loop transfer function as:

GCL(s) = G s
Y s
R s

n s
d s

K s G s
K s G sCL

CL

CL
()

()
()

()
()

() ()
() ()

= = =
+1

We replace for K(s) and G(s) to obtain:

GCL(s) =
n s
d s

n s
d s

n s
d s

n s
d s

n s
CL

CL

K

K

G

G
K

K

G

()
()

()
()

()
()

()
()

()=
+1

d s

n s n s
d s d s n s n s

G

K G

K G K G
()

() ()
() () () ()

=
+

Key result: Open- and closed-loop poles

The open-loop poles will be the zeros of the denominator of the system transfer function

dG(s) = 0

We can find the closed-loop poles by setting the denominator of the closed-loop transfer func-
tion GCL(s) to zero:

dCL(s) = dK(s)dG(s) + nK(s)nG(s) = 0

We can see that the two equations for the open- and closed-loop poles are different.

10.6 Open- and closed-loop poles and zeros 259

K s() G s()
+

–

R s() U s() Y s()

Figure 10.16 Unity feedback system.

Key result: Open- and closed-loop zeros

The open-loop zeros are the roots of the numerator equation of the system transfer function:

nG(s) = 0

The closed-loop zeros are the roots of the numerator polynomial equation of the closed-loop transfer
function:

n s n s n s n s n sCL K G K G() () () () , ()= = → = =0 0 0

We see that the zeros have not changed and can conclude that feedback does not change the
zeros of the system. Although we can introduce extra zeros through the design of controller K(s),
the original system zeros will remain unchanged.

Problem: First-order system
Study the effect of the controller gain k = 0, 1, 4, 8, 10 on the closed-loop pole position of the
following unity feedback system.

Solution System poles:

(s + 10) = 0 → s = –10 → p1 (system) = –10

Closed-loop transfer function:

GCL(s) =
k s

k s
k

s k
/ ()

[/ ()]
+

+ +
=

+ +
10

1 10 10

Closed-loop poles:

(s + 10 + k) = 0 → s = –10 – k → p1 (closed-loop) = –10 – k

We can calculate the closed-loop poles for different values of k. This is summarised in Table 10.1.

We can see that as we increase the gain k, the closed-loop poles moves further to the left in the
LHP. Thus the system becomes faster, as the magnitude of the first-order system pole is inversely
proportional to its time constant. The locus of the poles is shown in Figure 10.17 and confirms the
result of the table.

260 Poles, zeros and system stability

k
1

s+10

+

–

R s() U s() Y s()

k System pole Closed-loop pole

0 –10 –10

1 –10 –11

4 –10 –14

8 –10 –18

10 –10 –20

Table 10.1 Closed-loop pole locations for
increasing K (first-order system).

Problem: Second-order system
Study the effect of the controller gain k = 0, 1, 3, 5, 6, 8, 10 on the closed-loop poles of the
following unity feedback system.

Solution System poles:

s(s + 10) = 0 → s = –10 and s = 0 →p1 (system) = –10 and p2(system) = 0

Closed-loop transfer function:

GCL(s) =
k s s
k s s

k
s s k

/ [()]
/ [()]

+
+ +

=
+ +

10
1 10 102

Closed-loop poles:

(s2 + 10s + k) = 0 →s = –5 ± 25− k

We analyse three cases depending on the value of k.

(i) 0 < k < 25: s = –5 ± 25− k

closed-loop poles:

p1 = –5 + 25− k and p2 = –5 + 25− k (overdamped system)

(ii) k = 25: s = –5 (twice)

p1 = –5 and p2 = –5 (critically damped system)

(iii) k > 25: s = –5 ± j k −25

closed-loop poles:

p1 = –5 + j k −25 and p2 = –5 – j k −25 (underdamped system)

The closed-loop poles are given for different values of k in Table 10.2.

10.6 Open- and closed-loop poles and zeros 261

k
1

s s(+10)

+

–

R s() U s() Y s()

–15 –10 –5 0 5 10
–1

–0.5

0

0.5

1
Pole position

Imag

Real

Figure 10.17 Movement of poles as the controller gain k increases.

Increasing gain k has a dramatic effect on the position of the closed-loop poles for the

second-order system, as shown in Table 10.2 and the pole–zero map (Figure 10.18). The
system is overdamped for k = 0 (no feedback). As we increase k to 25, the closed-loop poles
both move to –5 and the system becomes critically damped. Increasing k to values above
25 makes the poles complex and they move away from the real axis (underdamped
system). We can therefore change the position of the poles by changing the gain k until a
desired controller performance is obtained.

Example Consider the system shown in Figure 10.19.

262 Poles, zeros and system stability

–10 –8 –6 –4 –2 0 2 4
–8

–6

–4

–2

0

2

4

6

8

Real axis

Im
ag

. a
xi

s

Open loop poles

Figure 10.18 Pole–zero map for second-order system.

k 1
(+8)(s s2+4 +40)s

+

–

R s() U s() Y s()

Figure 10.19 Closed-loop block diagram for G(s) = 1/(s + 8)(s2 + 4s +40).

k System poles Closed-loop poles

0 –10, 0 –10,0

3 –10, 0 –9,–1

5 –10, 0 –5,–5

10 –10, 0 –5 ± j8.6

Table 10.2 Closed-loop pole location for increasing
K (second-order system).

We set the denominator of the system transfer function to zero to find the open-loop poles:

(s + 8)(s2 + 4s +40) = 0

The poles are at

s1 = –8

s2 = –2 + 6j

s3 = –2 – 6j

All the poles are in the LHP. The closed-loop transfer function is given by

Y(s) =
k

s s s k()()+ + + +8 4 402 R(s) =
k

s s s k3 212 72 320+ + + +
R(s)

The poles of the closed-loop transfer function are given by the roots of the following
equation:

s3 + 12s2 + 72s + 320 + k = 0

For k = 0, we get the poles of the original system transfer function. We can use MATLAB to calcu-
late the poles for us for different values of k.

k Poles: roots of s3 + 12s2 + 72s + 320 + k

200 –10.0000 –1.0000 + 7.1414i

–1.0000 – 7.1414i

400 –11.2770 –0.3615 + 7.9822i

–0.3615 – 7.9822i

600 –12.2521 0.1261 + 8.6645i

0.1261 – 8.6645i

800 –13.0559 0.5279 + 9.2470i

0.5279 – 9.2470i

MATLAB commands:

k=200;
p=[1 12 72 320+k];
roots(p)

We see that we still have one real pole and two complex poles for the values of k chosen. The
real pole stays in the LHP but moves away from the imaginary axis. The complex poles actually
cross from the LHP to the RHP. We can see this in a plot by using the analysis and design tool
rltool in MATLAB. Figure 10.20, produced from rltool, shows the three system poles and the
path or locus that the poles make as the gain k increases. We can identify the point at which the
two loci related to the complex poles cross the imaginary axis and become unstable poles. This
tells us that if you increase the gain to a high enough value the closed-loop system will become
unstable.

10.6 Open- and closed-loop poles 263

The definition of system stability can be related to the poles of a system. However, its
strict interpretation also relies on our knowledge of the system’s response to bounded
signals. We now look at what is meant by bounded and unbounded signals before we
address the question of system stability.

10.7 What do we mean by bounded signals?

A time domain signal, x(t), is assessed by the behaviour of its magnitude over an infinite
time interval. As time tends to infinity, the absolute value of the signal magnitude can
either:

(a) continuously decrease and/or increase (or stay constant) but remain within a
bounded range

(b) continuously increase to very large values without any bound

Figures 10.21 and 10.22 show examples of bounded exponential signals and bounded sinu-
soidal signals. We can see that the magnitude of an exponential function, eat, with a < 0,
will decrease to zero as time tends to infinity. The magnitude of a unit step function is
finite since its value is 1, even when time tends to infinity. We call these types of signals
bounded.

264 Poles, zeros and system stability

–30 –25 –20 –15 –10 –5 0 5 10
–20

–15

–10

–5

0

5

10

15

20

Real axis

Im
ag

. a
xi

s

Root locus design

Position of poles

for = ~ 570k

Figure 10.20 Position of closed-loop poles as gain k increases.

Figures 10.23 and 10.24 show examples of unbounded signals. If the exponent in the
exponential signal eat is positive, a > 0, the signal will increase to infinity as time tends to
infinity. We categorise these signals as unbounded signals.

10.7 What do we mean by bounded signals? 265

0 10 20 30 40 50 60 70 80 90 100
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

t t4 05() . sin()=

x

x

t e t t5() sin()= –

All these

Time

signals
are
bounded
within ±1

Figure 10.22 Example of bounded sinusoidal signals.

0 10 20 30 40 50 60 70 80 90 100
–2.5

–2

–1.5

–1

–0.5

0

0.5

Time

1

1.5

2

2.5 ×104

x

x

t

t

e

–e

t

t

7

8

0

0

1

1

(

(

)

)

.

.

=

=

Figure 10.23 Unbounded exponential signal.

0 2 4 6 8 10
0

0.2

0.4

0.6

Time

0.8

1

x1() = 1.0t

x t e t
2() = –

All these
signals are
bounded
within ±1

x3(t) = 1–e–t

Figure 10.21 Examples of bounded exponential signals.

Table 10.3 examines the exponential signals and their boundedness by studying the
location of their poles.

Although variable s is a complex variable given by s = σ+ jω , for these examples the pole
values are real, and the values are the same as the rate constant in the exponential func-
tion. For example, x7(t) = eat, and the pole is at s = a.

266 Poles, zeros and system stability

0 10 20 30 40 50 60 70 80 90 100
–2.5

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5 ×104

x t t6
2() =

Time

x t e t t9
01() . sin()=

Figure 10.24 Unbounded parabolic and sinusoidal signal.

Exponential signal Laplace transform Poles Bounded/unbounded?

x t t
1

10() = −e X1(s) =
1
10s +

s = –10 Bounded

x t t
2

6() = −e X2(s) =
1

6s +
s = –6 Bounded

x t at
3() = −e X3(s) =

1
s a+

s = –a

a > 0

Bounded

x t t
4

05() .= −e X4(s) =
1
0 5s + .

s = –0.5 Bounded

x t t
5

0 1() = =−e X5(s) =
1
s

s = 0 Bounded

x t t
6

15() .= e X6(s) =
1
15s − .

s = +1.5 Unbounded

x t at
7() = e X7(s) =

1
s a−

s = +a

a > 0

Unbounded

x t t
8

2 8() .= e X8(s) =
1
2 8s − .

s = +2.8 Unbounded

x t t
9

20() = e X9(s) =
1
20s −

s = +20 Unbounded

Table 10.3 Location of poles and boundedness of signals.

Remark Decaying exponential signals have Laplace transforms with poles in the LHP. Growing or increasing
exponential signals have Laplace transforms with poles in the RHP. We can generalise this observation

in the Key Result that follows.

Key result: Poles in LHP, RHP and on j axis

Signals whose transforms have all the poles in the LHP are bounded.
Signals whose transforms have any one pole in the RHP are unbounded.

However, we must still consider the poles on the jω axis.

Poles on j axis

Signals whose transforms have poles in the LHP and no multiple poles on the jω axis are
bounded, otherwise they are unbounded.

This is intuitively so; we recall that a step function has the transfer function R(s) = 1/s
which is a bounded (and constant!) signal and has one pole at p = 0. A ramp function has
the transform R(s) = 1/s2 which has two poles at the origin on the jωaxis. The ramp func-
tion is unbounded, since its magnitude increases without bound as time progresses.

10.8 System stability

Stability is one of the most important considerations in any system. It is thus essential to
develop simple tools to examine the stability of systems. We term unstable systems as
those that will, for example, move off position and not return to a stable equilibrium
position after some initial excitation. A simple example of this is shown in Figure 10.25
(a) and (b), where we can see a pendulum and an inverted pendulum.

The pendulum shown in Figure 10.25(a) is a stable system. If we hold the rod horizon-
tally and release it, it goes to its rest position after some initial oscillation. An inverted
pendulum, as shown in Figure 25(b), is an unstable system. If we hold the rod vertically
and release it, it stays vertical unless perturbed, and then it falls from its unstable posi-
tion to the horizontal, stable, position. A real example of a system which is like an
inverted pendulum is a mountain bike. This is an unstable system where the rider stabi-
lises the bike using pedal force and rider balance to keep the bike upright and moving
(most of the time!).

10.8 System stability 267

(a) (b)

Figure 10.25 Pendulum and inverted pendulum.

Another example of an unstable system is an exothermic reactor. In this case, the
exothermic reaction process gives out heat which must be removed by a coolant if the
process is to remain under control or stable. If the heat removal balance is lost, then a
runaway situation can develop, causing a spiralling or unbounded temperature rise.

10.8.1 What is a stable system?
We call a system stable if its output signal is bounded for any bounded input signal. We
call this type of system stability ‘bounded-input bounded-output stability’.

A simple method to check the system stability is to examine the poles of the systems,
since there is a relationship between the system poles and the system stability, which we
explore now.

Consider a general transfer function of the form:

G s
n s
d s

b s b s b s b
a s a s

m
m

m
m

n
n

n
n()

()
()

= =
+ + + +
+

−
−

−
−

1
1

1
1

0

1
1
…

+ +…a s a1
1

0

Set the denominator polynomial equal to zero to find the poles:

a s a s a s an
n

n
n+ + + + =−
−

1
1

1
1

0 0…

We can factorise this polynomial into real (first order) and complex poles (second order).

sr(s + p1) ... (s + pi) ... () ()s s s si i
2 2 2 22 2+ + + +ζω ω ζω ωn1 n1 n n…

The system poles will therefore consist of some real poles and some imaginary poles.
From the superposition principle (Chapter 2) the response of the general system is the
summation of the responses from all the individual poles. If only one of these poles lies in
the RHP, the total response will be dominated by this pole and the system becomes
unstable. A system is therefore stable if all the poles lie in the LHP.

Key result: Stability test

A system is stable if all its poles lie in the Left Half Plane.

What about poles on the j axis?
To answer this question we give two examples: Figures 10.26(a) and (b).

In the two examples, we can see that the input signal is a step and a sine wave. Both of
these are therefore bounded input signals. If we examine the poles of each system we find
that:

(a) For system 1, the pole lies at the origin, on the jωaxis.

(b) For system 2, the poles lies at ±ω 1, both on the jωaxis.

268 Poles, zeros and system stability

1
s

U s() = 1
s Y s()

System 1

s
s2+w1

2

U s() =
s

s2+w1
2 Y s()

System 2

Figure 10.26 Two examples of systems with bounded input signal
and unbounded output signal.

However, the output signals are given by:

(a) For system 1,

Y(s) =
1 1 1

2s s s
× =

which represents a ramp signal (an unbounded signal)

(b) For system 2,

Y s
s

s

s

s

s

s
() =

+
×

+
=

+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟2 2 2 2 2 2

2

ω ω ω1 1 1

The output is shown in Figure 10.27, where we see increasing unbounded oscillations.
Although the input signal to the system is bounded, the output signal is unbounded;
hence the system is unstable.

Although we might think that these are specific examples, the statement about
stability tells us that for a system to be stable, it must produce a bounded output signal
for any bounded input signal. In both the above cases, we have chosen a bounded input
signal, but the output is unbounded; hence the systems are unstable. What we should
remember from this is that poles on the jω axis are not in the LHP, and therefore our
stability test is correct provided we do not include the jωaxis in the LHP.

Example Figures 10.28 and 10.29 show the relationship between the stability of a first-order system and
its pole position. The first-order system is given by

G(s) =
1

s a+

We can see that the first-order system is stable if its pole lies in the LHP. If the pole lies in the RHP
including the origin the system is unstable.

10.8 System stability 269

0 5 10 15 20 25 30
–15

–10

–5

0

5

10

15
Output response

Time

Figure 10.27 Unstable response from system with poles on jωaxis.

Using MATLAB to check the stability of a system
Enter the system transfer function using:

s = tf('s');
g = ...

then either

270 Poles, zeros and system stability

Real axis

Pole zero map

–10 –8 –6 –4 –2 0 2 4 6 8 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0 2 6 10–3–7–10

(UNSTABLE)

1

0.5

0
0 50 100 150 200 250

Typical step response

Position of system
pole; for < 0,
| | increases

a
a

Figure 10.29 The loci of poles for the first-order system a < 0.

Real axis

Im
ag

. a
xi

s

Pole–zero map

–10 –8 –6 –4 –2 0 2 4 6 8 10
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0 2 6 10–3–7–10

Position of system
pole as > 0a
increases

(STABLE)

Typical step response

1

0.5

0
0 50 100 150 200 250

Figure 10.28 The loci of poles for the first-order system a > 0.

(i) run:

pzmap(g)

If all the poles are located in the LHP the system is stable. Otherwise the system is unstable.

or

(ii) use

pole(g)

If all the poles have negative real parts then the system is stable.

To find the damping ratio and natural frequency contours run sgrid and read the values
from the contours

Problem The following transfer function represents a large sea-going tanker where U(s) is the input signal
from the rudder and Y(s) is the heading angle of the ship. Investigate the stability of the system.

Y(s) =
00192 1 46

1 1230 1 160
. ()

(.)(.)
+

− +
s

s s
U(s)

Solution Using MATLAB we enter the transfer function as follows

s = tf('s');
g = 0.0192*(1+46*s)/((1–123*s)*(1+16*s));

The function pzmap(g) produces the output shown in Figure 10.30.

Figure 10.30 shows that both the poles and the zero lie on the real axis, but one pole lies in the
RHP. Since one pole is in the RHP the system is therefore unstable.

10.8 System stability 271

Real axis

Im
ag

. a
xi

s

Pole zero ma

–0.2 –0.15 –0.1 –0.05 0 0.05 0.1 0.15 0.2
–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2

Figure 10.30 Pole–zero map for the tanker system transfer function.

What we have learnt

� To find the poles and zeros from the transfer function representation of a system:

System poles are the roots of the denominator polynomial equation of the
system transfer function

System zeros are the roots of the numerator polynomial equation of the system
transfer function

� To recognise the link between the first-order time constant, τ , and the associated
pole position:

As the time constant increases the pole approaches the origin

� To understand the relationship between the second-order system parameters (ζ and
ωn), and the associated contours on the pole–zero map:

Fixing the damping ratio fixes the angle of the second-order poles from the real
axis

Fixing the natural frequency ensures the poles lie a fixed distance from the origin

� To understand how the zeros in a system arise and the blocking effect they have on
signals.

� To understand that by closing the loop, the poles of the closed-loop system will be
different from the system poles.

� To identify whether a signal is bounded or unbounded.

� To establish whether a system is stable or unstable by using the stability test:

The system G(s) is stable if all the poles of G(s) lie in the Left Half Plane, other-
wise the system is unstable

Multiple choice

272 Poles, zeros and system stability

M10.1 What are the pole, p, and zero, z, of the
transfer function G(s) = (s + 2)/(s + 3)?
(a) p = 2, z = 3
(b) p = 3, z = 2
(c) p = –2, z = –3
(d) p = –3, z = –2

M10.2 If a first-order system has a pole at p = –2,
what is the system time constant?
(a) τ = 0.5
(b) τ = 2
(c) τ = –0.5
(d) τ = –2

M10.3 Three different first-order systems have the
following poles: p1 = –0.2, p2 = –0.4, p3 =
–0.6. Which system has the fastest step
response?
(a) the system with p1 = –0.2
(b) the system with p1 = –0.4
(c) the system with p1 = –0.6
(d) they all respond the same since they are all

first-order systems

M10.4 Purely oscillatory systems have poles that
lie:
(a) at the same place on the negative real axis
(b) at the same place on the positive real axis
(c) in the LHP, but not on the real axis
(d) on the imaginary axis

Questions: practical skills

Q10.1 Find the poles of the following Laplace transforms and state the general time-domain signal feature
to which the poles relate. Select these features from the list:

Fast exponential decay
Slow exponential decay
Constant oscillation
Slow exponential growth
Fast exponential growth
Slow increasing sinusoidal oscillation
Fast increasing sinusoidal oscillation

(a) X s
s1

4
3

()
()

=
+

(b) X s
s

s2 2
10

0015625
()

(.)
=

+

(c) X s
s3
7 4

01
()

.
(.)

=
−

(d) X s
s4

4
106

()
(.)

=
−
−

(e) X s
s5

65
45 1

()
.

(.)
=

+
(f) X s

s6
2

001 1
()

(.)
=

+

(g) X s
s7 2

10
64

()
()

=
+

(h) X s
s s

s s s8

2

3 2
10 24

4 64 256
()

()
=

+ +
− + −

Q10.2 Using an × to mark a pole position in the s-domain, make an s-domain sketch and plot the position
of the poles found in Laplace transforms in parts (a)–(b) of the previous problem. Label each pole
position with the appropriate feature found in the time-domain signal from which the transform was
obtained. If there are any zeros, mark their position with a ○.

Practical skills 273

M10.5 An example of a bounded signal is:
(a) e–4t

(b) e2t

(c) t
(d) et sin t

M10.6 A bounded signal has poles that lie:
(a) only in the LHP
(b) in the LHP and on the imaginary axis
(c) in the LHP, and single poles on the imagi-

nary axis
(d) in the RHP

M10.7 A stable system has poles that lie:
(a) only in the LHP
(b) in the LHP and on the imaginary axis
(c) in the LHP, and single poles on the imagi-

nary axis
(d) in the RHP

M10.8 Are the following systems stable?

(i) G1(s) =
2

3s +

(ii) G2(s) =
3

3s −

(iii) G3(s) =
4

2s s()+
(a) yes, no, no
(b) no, yes, no
(c) yes, no, yes
(d) no, no, yes

M10.9 Poles with the same damping ratio lie:
(a) the same distance from the origin
(b) on the real axis
(c) on the same radial line from the origin
(d) on the imaginary axis

M10.10 If a system has a zero in the RHP, its
output to a positive input step will:
(a) be unstable
(b) be the same as one having a zero in the

LHP
(c) go negative before going positive
(d) be negative

Q10.3 In each of the following:

(a) G s
s s

() =
+ +
1

2 3 12 (b) G s
s s

() =
+ +
25

16 24 252 (c) G s
s s

()
.

=
+ +

1
08 12

(i) Determine ζ, ωn and K
(ii) Draw the s-domain plot for the system poles
(iii) Sketch the appropriate unit step response

Q10.4 What are the poles of the following systems? Comment on the stability of each system.

(a) G s
s

() =
+

3
4 1

(b) G s
s

() =
+
6

2 3

(c) G s
s

() =
−
10

4
(d) G s

s s
() =

+ +
3
3 92

(e) G s
s s

() =
− +

6
3 42 (f) G s

s s
() =

+ +
10
2 12

Q10.5 For the pole map shown:
(a) comment on the stability of the various first-order systems, A, B, C and D. Assume each system is

of the form

G s
s p

() =
−
1

, p = A, B, C or D

(b) Which system would have the fastest stable response?

Q10.6 For the pole map shown:
(a) comment on the stability of systems whose poles are A, B, C and D.
(b) Comment on the response to a step input for systems A, B, C and D.

274 Poles, zeros and system stability

Im()s

D C B A Re()s

s-plane

Im()s

s-plane

Re()s

B

A

B

D

C

D A

C

Problems

P10.1 A diagram of the pole positions of three thermocouples is given. You have to determine which ther-
mocouple responds fastest to a change in temperature. Determine also the associated time constant
for each thermocouple.

P10.2 The system shown represents the position control system for a robot cutting arm within a manufac-
turing system which produces clothing. The production manager has insisted that in order to save
material wastage, there should be no overshoot to any requested change in cutting position. What
value of controller K would satisfy this requirement?

P10.3 A typical feedback control system is shown.

The system transfer function has three poles at s = 0, s = –2, s = –1. It has a gain of 5. The controller
is a simple gain, where U(s) = KE(s).
(a) Draw the block diagram, substituting in appropriate transfer functions.
(b) Is the open-loop system stable?
(c) Using MATLAB, comment on the stability of the closed-loop system for K = 0.3, 0.5, 0.7 and 0.9.

P10.4 An open-loop system is given by

G(s) =
()

(.)()
2 1

05 1 12 1
s

s s
+

+ +

The system is placed in a unity feedback loop with a controller K(s) = (10s + 1)/s in the forward path.
(a) What are the system zeros and poles?
(b) What are the open-loop zeros and poles?
(c) Using MATLAB, determine the closed-loop zeros and poles. Are any the same as those of the

system or open loop?

Problems 275

Th3 Th1Th2

Im()s

0

0 1 2–1–2–3 Re()s

E s()R s()

–

+ 3
(s s+ 2)K

Y s()

E s()R s()

–

+
K s()

Y s()
G s()

U s()

P10.5 Given a system of the form

G(s) =
1

0333 1 025 1
−
+ +
(/)

(.)(.)
s

s s
α

use MATLAB to investigate how the unit step response changes for the zero at s = α taking values of
s = 2, 4, 7, 10. Comment on your results.

276 Poles, zeros and system stability

Three-term control: PID control11

Controller assessment framework Block diagram analysis

Proportional control First-order system with P control Closed loop stability

P control: summary

First order system with I controlIntegral control

I control: summary

Reference tracking

Closed loop stability

Reference tracking

Disturbance rejection

Derivative control

D control: summary

Closed loop stability

Reference tracking

Disturbance rejection

Disturbance rejection

First-order with I control

First-order with P control

First-order with I control

Second-order with PD control

Second-order with PD control

Second-order system
with PD control

Closed loop stabilityClosed loop analysis

Help? Time to readGaining confidence Skill sectionGoing deeper

PID or three-term controllers are widely used in industry. For example, in a typical paper mill there
may be about 2000 control loops, and over 90% of these would be PID control loops. The PID
name comprises the first letters of the three terms which make up this controller:

P stands for the Proportional term in the controller

I stands for the Integral term in the controller

D stands for the Derivative term in the controller

In the mid-1900s, several technological and analysis concepts came together to make the PID
controller widely accepted as an effective industrial controller.

� Technology
The electronic amplifiers of the time allowed proportional, integrator and differentiator units to be
made fairly easily with good reliability. Thus the PID controller could be made using analogue
electronic components. This ability to manufacture PID controllers made it the first really
successful controller product with a high volume market.

� Analysis
The Laplace transform formalism had begun to be understood and used by engineers to study the
performance of op-amps and hence the performance of PID control. These simple Laplace trans-
form links, like [1/s] to represent an Integrator and [s] to represent a Differentiator, helped to
establish a theoretical basis for analysing a PID control design. Figure 11.1 shows the three links
for the PID controller. Figure 11.1(a) shows the PID blocks, (b) shows the time function forms of
the blocks and finally (c) shows the Laplace function forms of the blocks.

In this chapter we are going to learn about the different effects of the three controller terms on
the closed-loop system response.

Learning objectives

� To understand the system effects of each of the terms, P, I and D in three-term control.

� To be able to perform simple closed-loop analysis for the different combinations of the
terms in PID controllers.

� To investigate the effect of the three terms on disturbance signals.

278 Three-term control: PID control

P

I

(a) (b) (c)

D

+
+

+

Kp

Kd
d
dt

+
+

+

Kp

K i
s

Kds

+
+

+

e t() u t() e t() u t() E s() U s()
K i

Figure 11.1 PID controller blocks.

11.1 Controller assessment framework

To understand and assess the effects of the different terms of the controller, we use a stan-
dard transfer function block diagram (Figure 11.2), which has a reference signal, R(s), and
a disturbance signal, D(s).

The controller is represented by K(s) and the plant or process transfer function model by
G(s). The output Y(s) is desired to follow the reference signal, R(s). Typically the diagram
represents a real system where signal D(s) represents the extra loading demands made on
the process. For the purposes of good control, we require the process output, Y(s), to track
only the reference signal, R(s), and attenuate or reject the load disturbance signal, D(s).
This is why we discuss and assess the performance of the control system in terms of:

(a) reference tracking performance

and

(b) load disturbance rejection performance

Example: An industrial furnace and a load disturbance
A gas burner supplies heat to a furnace which is used for firing ceramic components (Figure
11.3). The reference signal, or set point signal, is the desired value of the furnace
temperature needed for firing the ceramics. For example, in the time domain the reference signal
is r(t) = Tset point = 500 °C, or as a Laplace transform the reference would be R(s) = 500/s.

Load disturbance signal: Suppose the operator loads the shelves of Bay 1 with ceramics and
then switches on the gas burner and sets the reference temperature to 500 °C. Provided we have
a good control design, the furnace temperature will steadily climb to the reference level. If, one
hour later, a second batch of ceramics arrive for firing, the operation of filling the shelves of Bay 2
will create a load disturbance since the furnace door will have to be opened and cold ceramics

11.1 Controller assessment framework 279

+

–

K s()
R s() + +E s()

G s()
Y s()

D s()

Uc()s

Controller Process

Figure 11.2 Unity feedback closed-loop control.

Bay 1 Bay 2

INDUSTRIAL FURNACEController

Gas
supply

Tset point

Gas burner

–

Temperature

Figure 11.3 Industrial furnace.

will be placed on the shelves. The furnace now has double the loading (quantity) of ceramics to
fire and heat up. This is how a typical load disturbance occurs. Note that the temperature refer-
ence level of 500 °C has not changed, but the controller has to act to generate more heat to
combat the temperature drop caused by the extra demand for heat placed on the furnace. We
represent this situation by a load disturbance signal acting on the process output.

11.1.1 Alternative terms
If a control system has to be designed to follow a frequently changing reference signal,
this is sometimes referred to as a servo-control design problem.

If the reference or set point signal is held at a steady value for long periods, and the
control system has to reject disturbance signals, this type of control design problem is
sometimes called a regulator control design problem.

11.1.2 General block diagram analysis
Starting from the closed-loop system output, Y(s), in Figure 11.2, we work round the loop
anticlockwise to obtain

Y(s) = D(s) + G(s)K(s)(R(s) – Y(s))

= G(s)K(s)R(s) + D(s) – G(s)K(s)Y(s)

[1 + G(s)K(s)]Y(s) = G(s)K(s)R(s) + D(s)

giving

Y(s) =
G s K s

G s K s
() ()

() ()1+
R(s) +

1
1+G s K s() ()

D(s)

= GCL(s)R(s) + S(s)D(s)

The system output comprises two effects and we show this as a reduced system diagram
(Figure 11.4). This has two paths: one due to reference tracking and one due to load distur-
bance rejection.

Key result: Reference tracking and disturbance rejection

To assess reference tracking performance we use the transfer function from R(s) to Y(s) with
D(s) = 0, namely

YR(s) =
G s K s
G s K s
() ()

() ()1+
R(s) Reference tracking performance

280 Three-term control: PID control

GCL()s

S s()

Reference tracking performance

R s()

D s()

YR()s

YD()s

Y s()

+

Disturbance rejection performance

Figure 11.4 Reduced system form of the closed-loop system.

For disturbance rejection performance assessment we use the transfer function from D(s) to Y(s)
with R(s) = 0, namely

YD(s) =
1

1+G s K s() ()
D(s) Disturbance rejection

Using the principle of superposition (Step 4, Chapter 2) we can combine these separate
effects to give the overall performance of the control system in the process output as

Y s Y s Y s() () ()= +R D

and

Y(s) =
G s K s

G s K s
() ()

() ()1+
R(s) +

1
1+G s K s() ()

D(s)

= GCL(s)R(s) + S(s)D(s)

Control design is difficult because we note that

GCL(s) + S(s) =
G s K s

G s K s
() ()

() ()1+
+

1
1+G s K s() ()

= 1

Thus, we cannot change the reference tracking or disturbance rejection properties inde-
pendently of one another. This will be highlighted in the examples in this chapter.

Our closed-loop system analysis will look at three properties.

A Closed-loop stability
We perform this analysis only once because we have the same denominator in the two
transfer functions, GCL(s) and S(s). We can see this from the following simple analysis

GCL(s) =
G s K s

G s K s
() ()

() ()1+
and S(s) =

1
1+G s K s() ()

Set G(s) = n(s)/d(s) and K(s) = nK(s)/dK(s); then

GCL(s) =
G s K s

G s K s
() ()

() ()1+
=

n s n s
d s d s n s n s

() ()
() () () ()

K

K K+
=

n s
d s

CL

CL

()
()

S s
G s K s

d s d s
d s d s n s n s

n s
()

() ()
() ()

() () () ()
(

=
+

=
+

=
1

1
K

K K

s)
()d sCL

The closed-loop stability test is to see whether the pole positions coming from the
characteristic polynomial dCL(s) are all in the Left Half Plane of the s-domain. These
pole positions will be found as the roots of the equation dCL(s) = 0. We also know that
the position of the closed-loop poles will give us an intuitive idea of the speed of
response in the output signals. We associate poles which have a more negative real part
with an increasingly fast speed of response.

B Reference tracking performance
Here we look at the shape of the time response in the output signal. In the transient
part of the response, we look to see the speed of response and the size of any overshoot.
In the steady state part of the output signal we look to see if any steady offset is
present.

11.1 Controller assessment framework 281

C Disturbance rejection performance
We look at the shape of the output signal. We look at speed of response, we look at the
size of the disturbance peak value, and we look to the steady state region of the output
to make sure that no offset exists after the process disturbance transients have died
away.

11.2 Proportional control

The desired output of a closed-loop system is known as the reference signal or the set
point signal. The controller will use the error, or difference between the reference signal
and the measured output signal. We use proportional control when we want the
controller action to be proportional to the size of this error signal. Figure 11.5 shows the
time and Laplace domain representations for proportional control:

Time domain: uc(t) = Kpe(t)

Laplace domain: Uc(s) = KpE(s)

Figure 11.6 shows a process with a proportional controller within the closed loop.

Then the following definitions apply:

Error signal: e(t) = r(t) – y(t)

Controller signal: uc(t) = Kpe(t)

Consider the situation where r(t) = 1.0 and y(t) = 0.8; then

e(t) = r(t) – y(t) = 1.0 – 0.8 = 0.2

and the controller signal is

uc(t) = Kp × 0.2

This is interpreted as ‘the controller signal to drive the plant should be positive and
proportional to the error of 0.2'. This controller signal will then increase the process
output y(t) and reduce the error of e(t) = r(t) – y(t) = 0.2. The controller tuning problem is

282 Three-term control: PID control

Time domain

Kp
e t() uc t() E s()

Laplace domain

Kp
Uc()s

Figure 11.5 Proportional control block diagrams.

y t()

–
Kp

uc()t
G

Output signalControl signalReference signal

r t() e t()

ProcessProportional controller

+

Figure 11.6 Closed-loop proportional control.

that of selecting a suitable proportional controller gain Kp to meet desired closed-loop
stability and output response specifications.

We will use the unity feedback block diagram (Figure 11.7) to help us to assess the refer-
ence tracking and disturbance rejection of the different controller types. Here the
diagram is used with a proportional controller in place. Note that we have both the refer-
ence signal, R(s), and the load disturbance, D(s), present in the analysis.

11.2.1 First-order system analysis – proportional control
Consider the following transfer function description, which represents a heating system.
The input signal is the power in kW from the heater and the output signal Y(s) is the
resulting temperature.

Y(s) = G(s)U(s)

where

G(s) =
0 3

2 1
.

s+

The time constant of the process is given as 2 hours. The transducer has a very short time
constant in comparison to the process time constant, so we can model the system as a
unity feedback system (Figure 11.8). We let the step reference signal be r(t) = 1, so that R(s) =
1/s and let the constant load disturbance effect be modelled by d(t) = 0.5 so that D(s) = 0.5/s.

A: Closed-loop stability
The open-loop poles are obtained from the denominator of the open-loop transfer
function

G(s) =
0 3

2 1
. ()

()s
n s
d s+

= OL

OL

so that dOL(s) = (2s + 1) = 0 implies that the single open-loop pole lies on the LHP at
s = –0.5. This LHP location shows that the open-loop system is stable.

The closed-loop poles are obtained from the denominator of the closed-loop transfer
function, GCL(s), where in this case:

11.2 Proportional control 283

+

–
Kp

R s() + +E s()
G s()

Y s()

D s()

Uc()s

Controller Process

Figure 11.7 Unity feedback block diagram for controller analysis.

03
2 1

.
s+

+

–

+
E s()

Kp

Uc()s
Y s()+

1
()R s

s
⎛ ⎞= ⎜ ⎟⎝ ⎠

0.5
()D s

s
⎛ ⎞= ⎜ ⎟⎝ ⎠

Figure 11.8 Heating control system with proportional control.

GCL(s) =
+ +

=
0 3

2 1 0 3

.

.
()
()

K

s K
n s
d s

p

p

CL

CL

Thus, dCL(s) = (2s + 1 + 0.3Kp) = 0 implies that the single closed-loop pole lies at the LHP
location of s = –0.5 – 0.15Kp

Two important observations can be made:

1. If we select the proportional controller gain, Kp to be positive, then for all values Kp > 0
the closed-loop pole s = –0.5 – 0.15Kp is in the LHP of the s-plane and the closed-loop
system is stable.

2. At Kp = 0, the closed-loop pole has a value equal to the open-loop pole. As Kp is
increased, the closed-loop pole moves deeper into the LHP. This has the effect of
speeding up the closed-loop system response.

Table 11.1 shows the effect of increasing the value of Kp. The calculated locations of the
closed-loop pole and the closed-loop system time constant show the closed-loop system pole
becoming increasingly fast and hence the corresponding time response will also speed up.

We would term this behaviour as ‘an increasing controller gain is causing a faster
closed-loop system response’. We can give this a nice interpretation using the s-domain
and the system response curves (Figure 11.9).

284 Three-term control: PID control

Kp Closed loop pole Closed-loop time constant Comments

0 –0.5 2 For an increasing gain,

the closed loop time

constant becomes

smaller; hence the system

response speeds up

1 –0.65 1.54

4 –1.10 0.91

10 –2.0 0.5

Table 11.1 Comparison of changing proportional gain and closed-loop time constant.

–2.5 –2 –1.5 –1 –0.5
0

–1

–0.5

0.5

1

Direction of increasing

s-domain plot

proportional gain

Direction of increasing
proportional gain

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Time, t

Output, y(t) Reference level

Figure 11.9 Comparison of increasing proportional gain and step responses.

B: Reference tracking performance
For a reference output of r(t) = 1.0, we now examine how well the system output, y(t),
actually follows this reference signal. We look at the steady state tracking performance
using the Final Value Theorem. We can revise this theorem by looking at Chapter 2. The
general reference tracking response result for proportional control Kp is given by

Y(s) =
G s K

G s K

()

()
p

p1+
R(s)

and the Final Value Theorem gives

In this particular example

G(s) =
0 3

2 1
.

s+
and R(s) =

1
s

Thus

If we complete a table of yRss values for the same range of proportional control gains that
we used to assess the closed-loop stability we find the results shown in Table 11.2.

This reduction in the steady state offset as the proportional gain is increased can be
seen in the closed-loop unit step responses in Figure 11.9. We also plot the control signals
for increasing values of Kp (Figure 11.10). The control signal increases as proportional
gain increases.

Two observations can be made:

1. Increasing the size of the proportional gain has two effects on the system output. The
speed of the response is increased and the offset from the desired output level is
reduced. This offset can only be completely removed by allowing the proportional gain
to become infinitely large.

11.2 Proportional control 285

Kp yRss r ess = r – yRss Comments

0 0 1 1.0

Offset error decreases

as proportional

controller gain

increases

1 0.23 1 0.65

4 0.55 1 0.45

10 0.75 1 0.25

∞ 1.0 1 0.00

Table 11.2 Comparison of increasing proportional gain and decreasing ess.

Æ• Æ Æ

È ˘
= = = Í ˙

+Í ˙Î ˚

p
Rss R R

0 0 p

()
lim () lim () lim

1 ()t s s

G s K R
y y t sY s s

G s K s

p
Rss

0 p

p

p p

0.3 1
lim

2 1 0.3

0.3 1
1 0.3 1 (1/ 0.3)

s

K
y s

s K s

K

K K

Æ

È ˘
= Í ˙

+ +Í ˙Î ˚

= =
+ +

2. Increasing the proportional term to achieve the desired effects of faster output
response and significantly reduced steady state offset causes the controller signal uc(t)
to become increasingly large. This means that the demanded movement of the system
actuator could be too large, possibly reaching physical system limits. Thus, too large a
proportional gain may not be able to achieve the theoretical improvement because the
hardware of the actuator cannot actually deliver the required control signals.

C: Disturbance rejection performance
The principle of superposition allows us to consider the disturbance rejection perfor-
mance in the closed-loop system output separately from reference tracking performance.
As before, the process is modelled by G(s) = 0.3/(2s + 1) and we use the disturbance rejec-
tion block diagram of Figure 11.11 for this analysis.

The general expressions are

YD(s) = S(s)D(s) =
1

1+G s K s() ()
D(s)

Substitute for the system transfer function, and the disturbance D(s), where

G(s) =
0 3

2 1
.

s+
and D(s) =

0 5.
s

to obtain

286 Three-term control: PID control

03
2 1

.
s+

+

–

R s() = 0
+

E s()
Kp

Uc()s Y s()+

0.5
()D s

s
⎛ ⎞= ⎜ ⎟⎝ ⎠

Figure 11.11 Closed-loop system for disturbance rejection analysis.

0 2 4 6 8
0

2

4

6

8

10

Control signal, uc(), kWt

Time, hours

Direction of increasing
proportional gain

Figure 11.10 Control signal for increasing proportional gain.

YD(s) = S(s)D(s) =
2 1

2 1 0 3
0 5s

s K s
+

+ +
⎛
⎝
⎜

⎞
⎠
⎟

.
.

p

Closed-loop stability
Note that the denominator of the disturbance rejection closed-loop transfer function S(s)
is identical to that of the reference tracking closed-loop transfer function GCL(s). Hence
there is no need to perform a second analysis of the closed-loop system stability because
it is the same as that already performed and the same effects will be found:

1. The ability to place the closed-loop pole deeper and deeper into the LHP by increasing
the size of the proportional gain.

2. A corresponding increase in the speed of the closed-loop output response yD(t) as the
proportional gain is increased.

The disturbance response, yD(t)
We can investigate the disturbance response and the disturbance rejection performance
using simulation or analysis methods.

Method 1: Simulink study of disturbance rejection responses
For the closed-loop system diagram of Figure 11.11:

(a) Set up the Simulink simulation for this feedback system.

(b) Plot the disturbance rejection response curves yD(t) for the proportional gains Kp = 1, 4, 10.

(c) Deduce the link between yDss and the value of Kp from the graph obtained.

Solution (a) The Simulink diagram is shown in Figure 11.12.

(b) A plot of yD(t) for increasing proportional gain is shown in Figure 11.13.

(c) Table of yDss versus Kp.
Using MATLAB to determine the end point (steady state value) of the response curves, we
find the values given in Table 11.3. We deduce that increasing the proportional gain reduces
the steady state offset from zero.

11.2 Proportional control 287

0

Zero
reference

t

Time

0.3

2s+1

System
Sum 1 Sum Scope

1

Proportional gain

y

Output

Disturbance step

Clock

+
+
+

–

Figure 11.12 Simulink diagram of first-order system with proportional control.

Table 11.3 Offset values versus proportional gain

Kp yDss

1.0 0.3836

4.0 0.2262

10.0 0.1259

Method 2: Disturbance rejection analysis using Laplace transforms
To see the effect of the proportional gain on the speed of response, and steady state value of the
disturbance response we firstly calculate the time response yD(t).

Calculation of yD(t) from YD(s)
Using the disturbance rejection block diagram (Figure 11.11), the closed-loop transfer function
analysis is:

YD(s) = S(s)D(s) =
1

1+G s K s() ()
D(s)

Substituting for

G(s) =
03

2 1
.

s +
, K(s) = Kp and D(s) =

05.
s

288 Three-term control: PID control

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

Time (hours)

Output response, °C

yD(0)

Increasing proportional gain

Figure 11.13 Output responses to input disturbance signal for increasing proportional gain.

obtains

From the Laplace transform YD(s) we need the time domain response, yD(t). To compute this we
use Laplace Transform tables directly using the identity:

L− − −+
+ +

⎧
⎨
⎩

⎫
⎬
⎭
=

−
− − −1 1()

()() ()
[() ()

s
s a s b b a

a bat bα
α αe e t]

The result is obtained as follows:

Identify α = 0.5, a = 0, and b = 0.5 + 0.15Kp, giving

Now that yD(t) is available as an explicit function of the proportional gain Kp, the shape of the
disturbance response can be explained and the dependence of the steady state value yDss
studied.

Disturbance response, yD(t) – general shape
A look back at Figure 11.13, produced by the simulation study, and using the expression
for yD(t), shows the following disturbance response features:

(a) Let t = 0; then yD(0) = 0.5 and is independent of Kp.

(b) As Kp becomes larger, the quantity –(0.5 + 0.15Kp) becomes more negative, so that the
transient part of the response, which depends on e p− +(. .)0 5 015K t , becomes faster.

(c) The steady state value of yDss is given by

y K
KDss p

p
()

.
. .

=
+
0 25

0 5 015

and the steady state value of the disturbance response depends on Kp. Increasing Kp
reduces the steady state offset.

Finally, as Kp →∞we see that

y y K
KK K

Dss Dss p
pp p

= =
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟→∞ →∞

lim () lim
.

. .
0 25

0 5 015
= 0

11.2 Proportional control 289

È ˘ È ˘+ +Ê ˆ Ê ˆ= =Í ˙ Í ˙Á ˜ Á ˜Ë ¯ Ë ¯+ + + +Í ˙ Í ˙Î ˚ Î ˚
D

p p

2 1 0.5 0.5 0.5
()

2 1 0.3 0.5 0.15
s s

Y s
s K s s K s

D
p p

0.5 0.5 0.5
() 0.5

0.5 0.15 (0.5 0.15)
s s

Y s
s K s s s K

È ˘ È ˘+ +Ê ˆ= =Í ˙ Í ˙Á ˜Ë ¯+ + + +Í ˙ Í ˙Î ˚ Î ˚

p

p

D

(0.5 0.15)0
p

p

(0.5 0.15)
p

p

1
() (0.5) [()e ()e]

()

1
(0.5) [(0.5 0)e (0.5 0.5 0.15)e]

(0.5 0.15)

0.25
[1 0.3 e]

(0.5 0.15)

at bt

K tt

K t

y t a b
b a

K
K

K
K

a a- -

- +-

- +

È ˘= - - -Í ˙-Î ˚
È ˘

= - - - -Í ˙
+Í ˙Î ˚

= +
+

Key result: Proportional control

� The proportional gain Kp is taken to be positive so that Kp > 0.
� Increasing the proportional action:

– means increasing the numerical value of the proportional gain, Kp

– speeds up the transient portion of the reference tracking response and the transient portion
of the load disturbance response

– decreases but does not entirely remove or eliminate the output offset from the desired refer-
ence value

– decreases but does not entirely eliminate the offset in the output due to the constant load
disturbance

– generally increases the size of the control signal which achieves good reference tracking
and disturbance rejection in the system output

– may cause the controller signal to be too large which may lead to saturation or limiting prob-
lems with the system actuators

11.3 Integral control

Integral control is denoted by the I-term in the PID controller and we use an associated
integral controller gain, Ki. Integral control is used when we want the controller action to
correct for any steady and continuing offset from a desired reference signal level. Integral
control overcomes the shortcoming of proportional control by eliminating offset without
the use of an excessively large controller gain. The time and Laplace representations are
shown in Figure 11.14.

Time domain: u t K e
t

c i d() ()= ∫ τ τ

How does integral control achieve what proportional control could not accomplish?
Let us look at Figure 11.15.

In Figure 11.15(a) we see the typical unit step response with offset that might be given by
proportional control of a first-order system. The error signal e(r) = r – y(t) is shown in Figure
11.15(b). Here the area under the error signal is shaded. Integral control sums up this
shaded area. As you can see in Figure 11.15(c), the integral term, t e∫ ()τ τd , shows an increas-
ingly large signal in the time region where the steady state offset exists. What integral
control manages to do is to increase the size of the control signal whenever a steady offset
from a desired reference level starts to occur. This is rather like an automatic procedure to
‘increase’ the controller gain in the presence of steady offsets, and the controller output

290 Three-term control: PID control

Time domain

Ki
te t() uc()t E s()

Laplace domain

K
s
i Uc()s

Figure 11.14 Integral control block diagram.

i
cLaplace domain: () ()

K
U s E s

s
È ˘= Í ˙Î ˚

increases until the offset is eliminated. As you can see, this guaranteed property of integral
control is going to be very useful indeed in practical industrial control systems.

To give this intuitive insight about integral control a formal basis, we use the familiar
analysis framework for reference tracking and disturbance rejection.

11.3.1 First-order system analysis – integral control
The analysis of integral control of a process modelled by a first-order system examines
the ability of the system to track the reference signal. This uses the transfer function rela-
tionship for YR(s). We will also see how integral control performs in rejecting process load
disturbance upsets using the transfer function relation for YD(s).

We use the heating process that we have previously studied for proportional control.

G(s) =
0 3

2 1
.

s+

Let the reference signal be a unit step so that R(s) = 1/s and let the load disturbance effect
be modelled by a constant disturbance signal, D(s) = 0.5/s. An integral controller is to be
used, so we have

K(s) =
K
s
i Ki > 0

and we put all this information on one diagram (Figure 11.16).
Let us first evaluate the two important transfer function relationships, GCL(s) and S(s)

for the modelling data in Figure 11.16. Substitute for G(s) and K(s) to find:

G s
G s K s

G s K s
K

s s K
n s

CL
i

i

CL()
() ()

() ()
.

() .
(

=
+

=
+ +

=
1

0 3
2 1 0 3

)
dCL

S s
G s K s

s s
s s K

n s
d s

()
() ()

()
() .

()
()

=
+

=
+

+ +
=

1
1

2 1
2 1 0 3 i

s

CL

11.3 Integral control 291

0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4Output signal Error signal Integral of error

Time Time Time

(a) (b) (c)

Figure 11.15 (a) Output response; (b) error signal; (c) integral of error.

Closed-loop stability
To assess the closed-loop stability we identify the common characteristic equation from
the transfer function GCL(s) and S(s) as:

d s s s K s s KCL i i() () . .= + + = + + =2 1 0 3 2 0 3 02

Using the usual formula to solve a quadratic, we have

s
K

K

=
− ± − × ×

×
= − ± −

1 1 4 2 0 3
2 2

0 25 0 251 24

2

1 2

.

. . (.) /

i

i

Firstly we note that if Ki = 0 (that is, we have broken the feedback loop), the poles are the
open-loop poles given by s = –0.5 and s = 0.

Now we consider the roots of the quadratic for Ki not equal to zero.

Whether (1 – 2.4Ki) is
< 0, = 0, > 0

Corresponding value of Ki Roots Real/complex?

(1 – 2.4Ki) > 0 0 < Ki < 0.417 –0.25 ± 0.25 1 24− . K i Real

(1 – 2.4Ki) = 0 Ki = 0.417 –0.25 and –0.25 Real

(1 – 2.4Ki) < 0 Ki > 0.417 –0.25 ± j 0.25 2 4 1. K i − Complex

If the closed-loop system poles are plotted on the s-plane for the different ranges of Ki,
we can obtain a graphical s-domain interpretation of the stability of closed-loop integral
control for this process (Figure 11.17). We are also able to make some inspired guesses
about the type of output responses available from the closed-loop control system. These
guesses use our knowledge of second-order systems and will be related to the value of
integral control gain Ki chosen.

The analysis for the closed-loop system stability has revealed two important
results:

1. The closed-loop system is stable for all the integral controller gain values, Ki > 0.

2. The range of responses obtainable covers all the three types of second-order system
response shapes. A particular output response shape can be obtained by selecting a
particular integral gain value. From the diagram and the analysis the following links
can be seen:

292 Three-term control: PID control

–

Y s()
+

E s() Uc()s

ProcessIntegral controller

+
+

Ki
s

0.3
2s+1

1
()R s

s
⎛ ⎞= ⎜ ⎟⎝ ⎠

0.5
()D s

s
⎛ ⎞= ⎜ ⎟⎝ ⎠

Figure 11.16 Closed-loop system with integral control.

(a) 0 < Ki < 0.417 Overdamped
(b) Ki = 0.417 Critically damped
(c) Ki > 0.417 Underdamped

Reference tracking performance
We study the reference tracking performance by looking at an exercise.

Problem: Reference tracking responses
For Figure 11.16 with a reference signal of R(s) = 1/s and a disturbance signal set to zero:

(a) Derive the general closed-loop transfer function and find an expression for the damping ratio,
ζ.

(b) Implement the closed-loop system in Simulink and find the output response for the following
different values of Ki.

(i) Ki = 0.25 (ii) Ki = 0.417 (iii) Ki = 1.0

(c) Using the expression for damping ratio found in (a), find the damping ratios for the three
different closed-loop systems given by the three values of Ki. Correlate your step responses
from Simulink to the damping ratios just calculated.

(d) For Ki = 1.0, find also the natural frequency and the damped natural frequency of the system.

(e) For the three step responses, what is the steady state offset?

(f) Repeat the three Simulink simulations but use proportional control with gains of

(i) Kp = 0.25 (ii) Kp = 0.417 (iii) Kp = 1.0

Compare the general shape of the proportional control responses and the steady state offset
with those obtained using integral control. Comment on the results found.

11.3 Integral control 293

Direction of
increasing K i

Predictions

Ki = 0

(0,0)

Ki = 0.417

Ki = 0

–0.5

Closed loop system stable for
all values of integral control
gain K i

0 < K i <0.417
Poles on real axis
Responses overdamped

K i = 0.417
Two equal real poles
Response critically damped

K i > 0.417
Two complex poles
Response underdamped

�

�

�

�

Figure 11.17 s-domain plots of closed-loop pole position.

Solution The solution to the above problem involves skills of transfer function analysis and simulation studies.

(a) Evaluate the closed-loop damping ratio for the system with integral control.

GCL(s) =
03

2 1 03
.

() .
K

s s K
i

i+ +

We put this in ‘unity constant coefficient form’:

GCL(s) =
1

2 03 1 03 12(/ .) (/ .)K s K si i+ +

If we associate the denominator with the denominator of a standard second-order transfer
function,

1
1 2 12 2(/) (/)ω ζ ωn ns s+ +

and equate coefficients of powers of s, we find

2
03

1
2. Ki n

=
ω

giving ωn =
03

2
. Ki

and

2 1
03

ζ
ωn i

=
. K

giving ζ =
ωn

i i06
1

2 06. .K K
=

(b) The Simulink model is shown in Figure 11.18.

(c), (d) We need to use knowledge of second-order system transfer functions to find various
closed-loop system parameters. We show the working for the case where Ki = 1.0 and find:

The natural frequency
Using the formula in (a) above and letting Ki = 1,

ω n i rad / s= = =03 2 03 2 039. / . / .K

The damping ratio
The formula in (a) gives ζ = = =1 2 06 1 2 06 065/ (.) / (.) .Ki .

294 Three-term control: PID control

t

Time

0.3

2 +1s

System
Sum1

Step
Scope

y

Output

0.25
s

Integral control

Clock

+
–

Figure 11.18 Simulink representation of closed-loop system with integral control.

The damped natural frequency
Using the general formula ω ω ζd n= −1 2 gives ω d = − =039 1 065 0302. . . rad/s.

(e) The integral control closed-loop traces can be found from the Simulink model runs. We
should find the three traces shown in Figure 11.19. We can find using MATLAB that there is
no steady state error.

(f) Repeating the exercise with proportional gains will give us a steady state error in the system.

In the example above, simulation was used to look at the general shape of the transient
portion of the reference tracking response. It was clearly shown that a much wider variety
of system responses is obtainable. For example, comparing these responses with those
produced by the proportional control analysis it could be seen that integral control offers
more potential response shapes than proportional control. However, a significant differ-
ence occurs when we look at the steady state portion of the output response. In all three
examples of the exercise, no offset in steady state was observed under integral control.
This means that yss = 1. Proof of this valuable property of integral control uses the Final
Value Theorem, and we are going to present two versions for the model data presented
above.

Method A: using output response forms
We would like to show that, given R(s) = 1/s, yss = 1 and hence ess = 0. We use the output
response of the reference tracking system with D(s) = 0.

y y t sY s sG s
st s s

ss CL= = = ⎛
⎝
⎜

⎞
⎠
⎟ =

→∞ → →
lim () lim () lim () l

0 0

1
im ()

lim
.

() .
.
.

s

s

G s

K
s s K

K
K

→

→
=

+ +
= =

0

0

0 3
2 1 0 3

0 3
0 3

1

CL

i

i

i

i

Method B: using offset or error response forms
We use the output response of the reference tracking system response with D(s) = 0, and
our objective is to show ess = 0.

Recall that e(t) = r – y(t) and hence

E s R s Y s
s

Y s() () () ()= − = ⎛
⎝
⎜

⎞
⎠
⎟−

1

11.3 Integral control 295

0 20 40 60
0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60
0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60
0

0.2

0.4

0.6

0.8

1

1.2

Ki= 0.25 Ki= 0.417 Ki= 1.0

y t() y t() y t()

Time Time Time

Figure 11.19 Output of closed-loop system for different values of integral gain.

Substitute for

and

Thus

e e t sE s s
s

s s Kss
t s s

= = =
+

+ +→∞ → →
lim () lim () lim

() .0 0

2 1
2 1 0 3 i i

⎛

⎝
⎜

⎞

⎠
⎟ = =

→
lim

.s
s

K0

1
0 3

0

Remark We showed that the steady state error was zero for our particular example. The same is true for
a general system with an integral controller. The proof of this for a general system as shown in
Figure 11.20 is given in the exercises.

Disturbance rejection performance
The starting point for the analysis of the closed-loop stability was that the characteristic
equation for both transfer functions S(s) and GCL(s) were the same and hence that the
stability analysis does not have to be repeated. As for the first-order system examples we use:

Reference tracking performance

YR(s) = GCL(s)R(s) =
0 3

2 1 0 3
.

() .
K

s s K
i

i+ +
R(s)

Disturbance rejection performance

YD(s) = S(s)D(S) =
s s

s s K
()

() .
2 1

2 1 0 3
+

+ + i
D(s)

Examine S(s) and GCL(s) closely and we see an important design constraint. If we choose Ki
to achieve a good reference tracking response, YR(s), then we automatically fix the closed-
loop pole positions and the related response shape for the disturbance rejection response,
YD(s). It may be that this fixed disturbance rejection response is not a very good one for the
real system. If we do the design the other way round and choose Ki to achieve a good distur-
bance rejection response then we automatically fix the reference tracking response. This
fixed tracking response may not be very effective. So we do have to remember this design
interplay between the possibly different requirements of the two responses.

296 Three-term control: PID control

Y s()

–

K
s

i
Uc()s

G s()R s =() r
s

E s()+

Figure 11.20 Closed-loop system for integral control tracking analysis.

È ˘ Ê ˆ= = Í ˙ Á ˜Ë ¯+ +Î ˚
i

CL
i

0.3 1
() () ()

(2 1) 0.3
K

Y s G s R s
s s K s

i

i

i

1 0.3 1
()

(2 1) 0.3

2 1
(2 1) 0.3

K
E s

s s s K s

s
s s K

È ˘Ê ˆ Ê ˆ= - Í ˙Á ˜ Á ˜Ë ¯ Ë ¯+ +Î ˚
Ê ˆ+

= Á ˜+ +Ë ¯

Problem: Disturbance rejection responses
Consider the system shown in Figure 11.21. For the heater model of this chapter, G(s) = 0.3/(2s + 1)
and for a disturbance input of D(s) = 0.5/s:

(a) Construct a Simulink simulation capable of accepting a range of integral controller gains and
recording the disturbance rejection response.

(b) Run the simulations for the integral gains, Ki = 1.0, 1.5 and 3.0 and form a table of largest
peak disturbance, the settle time for |yD(t)| < 0.01, and the steady state offset.

(c) Write an interpretation of the results found.

Solution (a) The Simulink model should look like Figure 11.22.

(b) The traces will look like those in Figure 11.23.

The table of values to be constructed will contain the following data:

Integral gain, Ki Absolute magnitude of
largest peak in yD(t)

Settle time for |yD(t)| < 0.01 Size of offset

1.0 0.035 15.9 0

1.5 0.068 12 0

3.0 0.14 8 0

(c) The example illustrates the link between the type of output response and the closed-loop
pole locations. Thus it is possible to see that the largest peak disturbance in the output

11.3 Integral control 297

Y s()

–

K
s

i
Uc()s

G s()
R s() = 0 E s()

D s =()
d
s

+ +
+

Figure 11.21 Feedback loop for disturbance rejection analysis.

0

Zero
reference

t

Time

0.3

2s+1

System
Sum1 Sum Scope

y

Output

Integral control

Disturbance step

Clock

Ki
s

+
+
+

–

Figure 11.22 Simulink model for disturbance rejection analysis.

occurs for the case with the most underdamped pole locations. In some real applications a
load disturbance peak of this size might not be permissible and a different tuning for Ki must
be selected.

The second important property also shown in the exercise is that there is no offset in
steady state and the static effect of the load disturbances is fully rejected. We prove this for
the first-order system model as follows:

General disturbance rejection analysis
For Figure 11.21 and assuming that G(s) has all poles in the LHP, we could form a general
transfer function relationship for Y(s) and show that for the general case the following
limit holds:

y y t sY s
t s

ss = = =
→∞ →
lim () lim ()

0
0

Therefore the rejection of constant load disturbance signals is a general guaranteed prop-
erty for the integral controller. In many practical cases, reference signal tracking perfor-
mance is not so important, but the ability to keep process outputs at reference levels
despite the appearance and disappearance of load disturbance signals is. This makes inte-
gral control especially valuable in industry.

298 Three-term control: PID control

0 5 10 15 20 25 30
–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

y t(), °C

K i = 3

K i = 1.5

K i = 1

Time, hours

Figure 11.23 System output responses with different values of integral gain for disturbance
input signal.

Æ• Æ

Æ Æ

= =

È ˘+ Ê ˆ= = Í ˙Á ˜Ë ¯+ +Î ˚

= =

Dss D D
0

0 0 i

i

lim () lim ()

(2 1) 0.5
lim () () lim

(2 1) 0.3

0
0

0.3

t s

s s

y y t sY s

s s
sS s D s s

s s K s

K

Key result: Integral control

� The integral gain Ki is taken to be positive so that Ki > 0.
� Introducing integral action into a controller means incorporating an integral term [Ki/s] into the

controller.
� Increasing the amount of integral action in a controller means that the integral gain Ki has an increasing

numerical value.
� The presence of integral action in a controller usually leads to a wider range of closed-loop system

responses (sometimes even unstable ones, although this was not shown in this chapter).
� Selecting a value for integral gain Ki shapes the dynamics of both reference tracking and disturbance

rejection responses.
� The presence of integral action in a controller eliminates constant offset signals in steady state for both

reference tracking and disturbance rejection responses. This property is guaranteed and does not
depend on using prior process gain modelling information.

11.4 Derivative control

If we want the controller to use the rate of change of the error signal in the control action,
we use derivative control. This is the D-term in the PID or three-term controller. Deriva-
tive control is more specialised than proportional or integral control. For example, in real
applications we cannot implement pure derivative action but need to use a modified
transfer function representation, or a particular controller feedback structure (Chapter
18). However, derivative control does have some useful design features and is an essential
term in some real-world control applications; for example, tachogenerator feedback in
d.c. motor control is a form of derivative control. The derivative control block represen-
tation is shown in Figure 11.24.

Time domain: u t K
e
tc d

d
d

() =

Laplace domain: U s K s E sc d() [] ()=

Firstly we examine how derivative control and proportional control will act differently
on the same instantaneous error signal. Figure 11.25 shows the output error signal for two
different processes. We see that the error is increasing in both cases, but more rapidly in
the second example.

At point X, a proportional controller would respond to the error signal from both
processes by producing the same output. The proportional controller acts on the instanta-
neous error and therefore no account is made for the rate at which the process error is
increasing. However, a derivative controller acts on the rate of change of the error. It
would produce a larger corrective signal for Process 2 than for Process 1, in keeping with

11.4 Derivative control 299

Time domain

Kd
d
dt

e t() uc()t E s()

Laplace domain

Kds
Uc()s

Figure 11.24 Derivative control block diagram.

the fact that we may have to act more quickly to ensure that Process 2 does not increase
so much that it reaches warning or operational limits.

The second important feature of derivative control is its effect on a constant (steady
state) error signal. If an error signal becomes constant (not necessarily zero!), the deriva-
tive of the error will be zero. This property, that derivative control has no output when it
is acting on constant signals, leads to an important implication for the practical imple-
mentation of the derivative control term. If we use pure derivative control along with
step reference signals we will frequently find that the derivative controller is producing
no control signal and is therefore taking no action. To avoid this happening we always use
the derivative control term in combination with a proportional term. This is called
proportional and derivative control, or in short, PD control. In this section we investigate
the use of this composite controller:
Proportional and derivative control

Time domain: u t K e t K
e
tc p d

d
d

() ()= +

Laplace domain: U s K K s E sc p d() [] ()= +

11.4.1 Second-order system analysis – proportional plus derivative control
We look at three aspects of derivative control: the first is closed-loop system stability,
and this is followed by an assessment of reference tracking and disturbance rejection
performance.

To investigate derivative control we perform an assessment using a process whose
transfer function is second order. This contrasts with the previous analysis performed for
proportional and integral control actions, where the process was assumed to be modelled
by a first-order transfer function.

300 Three-term control: PID control

0 2 4 6 8 10
0

5

10

15

20

25

30

35

Time

Error signal

Process 1

Process 2

X

Figure 11.25 Error signal increasing for different processes.

Consider a position control system with low damping where the output signal is given
in mm and the input to the process is in volts. Let the process be modelled by the transfer
function description

G(s) =
2
04 12s s+ +.

The reference signal is a unit step, so that R(s) = 1/s, and we model the constant load
disturbance by D(s) = (0.5/s). A controller with a fixed proportional term of Kp = 0.2 is
used, along with a derivative controller term, KD(s) = Kds. The full PD controller is then
K(s) = 0.2 + Kd s.

Figure 11.26 shows our typical block diagram for tracking and disturbance rejection
analysis.

The key transfer functions in the assessment are:

GCL(s) =
G s K s

G s K s
K s

s K s
n s() ()

() ()
.

(.) .
(

1
04 2
04 2 142+

=
+

+ + +
=d

d

CL)
()d sCL

S(s) =
1

1
04 1

04 2 14

2

2+
=

+ +
+ + +

=
G s K s

s s
s K s

n s
d s() ()

.
(.) .

()
()d

s

CL

A: Closed-loop stability
Identify the common characteristic polynomial for GCL(s) and S(s) as the transfer func-
tion denominator, dCL(s), to give the closed-loop pole equation as

dCL(s) = s2 +(0.4 + 2Kd)s + 1.4 = 0

We establish a link with the standard form for the second-order system.

G2nd(s) =
K

s s
n s
d s

ω
ζω ω

n

n n

nd

nd

2

2 2
2

22+ +
=

()
()

Compare the two characteristic equations:

d s s snd2
2 22 0() = + + =ζω ωn n

dCL(s) = s2 +(0.4 + 2Kd)s + 1.4 = 0

Then clearly,

(i) ωn
2 14= . giving ωn =11832.

(ii) 2 04 2ζωn d= +(.)K so that ζ = + × = +(.) / (.) . .04 2 2 11832 0169 0845K Kd d where
Kd > 0.

Two conclusions follow:

11.4 Derivative control 301

2
04 12s s+ +.

–
Y s()

+ E s() Uc()s

Process
Proportional and
derivative control

0.2+Kds +
+

1
()R s

s
⎛ ⎞= ⎜ ⎟⎝ ⎠

0.5
()D s

s
⎛ ⎞= ⎜ ⎟⎝ ⎠

Figure 11.26 Closed-loop system for PD control.

� Derivative control has not changed the dynamical order of the closed-loop system from
that of the original system, and the system is closed-loop stable for all the values of Kd > 0.

� Derivative control leads to a direct link between the value of the derivative gain and
the closed-loop system damping ratio, ζ.

It is the link between the selection of Kd and the closed-loop system damping ratio
which is of particular value. In fact, we are able to tune Kd to achieve a desired vale for ζ.
From the relationship given for ζ:

ζ = +0169 0845. . Kd

we can find the values of Kd associated with underdamped (ζ < 1), critically damped (ζ = 1)
and overdamped (ζ > 1) systems. We can see this link for the example given in Table 11.3.

For example, if we wished the design damping ratio to be ζ = 0.7 then we should tune
the derivative control so that Kd = 0.6284 and we should know that the dynamic response
will be underdamped and have the desired design damping ratio. The full range of
responses we can obtain can be shown by the usual s-domain plot (Figure 11.27) for the
system, given by:

K(Kp + Kds)G(s) =
K s

s s
(. .)

.
0 2 06284

04 12
+
+ +

where K represents the varying gain on the s-domain plot.

B: Reference tracking performance
The closed-loop stability analysis has shown the full range of response dynamics that can
be obtained using derivative control. We use a Simulink exercise to examine the actual
shape of the reference tracking responses.

Problem: Derivative control – reference tracking response
For the PD control system given in Figure 11.26 and with D(s) = 0:

(a) If Kd = 0.2, use a Simulink simulation to find the output response. Find the damping ratio from
a theoretical analysis. What steady state offset is found from the simulation?

(b) If the desired value of damping ratio is ζ = 1.2, what value of derivative gain should be
selected? Use the simulation to check that an overdamped response is obtained. What is the
value for the steady state offset in this case?

(c) Use the steady state values for above to demonstrate that changing the derivative gain has
not changed the steady state error.

302 Three-term control: PID control

Derivative gain value Damping ratio Comment

Kd = 0 ζ = 0.169 Open-loop system very underdamped

0 < Kd < 0.983 0.169 < ζ < 1 Underdamped closed-loop system

Kd = 0.983 ζ = 1 Critically damped system response

Kd > 0.983 ζ > 1 Overdamped system response

Table 11.3 Derivative control and the link to ζ.

Solution (a) The Simulink model needed is given in Figure 11.28.

The damping ratio is found from the formula ζ = 0.169 + 0.845Kd; thus if Kd = 0.2, then
ζ = 0.338. From the output plot the steady state offset is eRss = r – yRss = 1 – 0.2846 = 0.7154.

(b) For the desired value of damping ratio, ζ = 1.2, the derivative gain is found from the formula
ζ = 0.169 + 0.845Kd; thus Kd = 1.22.

11.4 Derivative control 303

–2 –1.5 –1 –0.5 0 0.5 1

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Real axis

Im
ag

. a
xi

s Open loop
system poles

Open loop
system zero

Figure 11.27 Pole–zero map for system with derivative control.

t

Time

2

s s+0.4 +12

System

Sum2Sum1
Step

Kp

Proportional gain

y

Output

Kd

Gain

du/dt

Derivative

Clock

+

++

–

Figure 11.28 Simulink model for PD control tracking analysis.

(c) The two plots found in the exercise are shown in Figure 11.29.

The plots can be used to find the steady state offset as follows:

Derivative gain value Kd Steady state output yRss Steady state offset e r yRss Rss= −

0.2 0.2846 0.7154

1.22 0.2846 0.7154

The steady state offset values obtained in the exercise show that the steady state tracking is inde-
pendent of the different values of derivative gain.

The results of the exercise demonstrated that the value of the derivative gain appeared to
have no effect on the value of the steady state error. In fact, in this example the reference
tracking performance of proportional and derivative control depends on the proportional
term only. We now intend to support this finding by using some formal analysis. We have
from the general block diagram that

and using the Final Value Theorem

304 Three-term control: PID control

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

y t()

Kd = 0.2, = 0.338

Time

Kd = 1.22, = 1.2

z

z

Figure 11.29 Output responses for different values of Kd.

È ˘+È ˘ Ê ˆÍ ˙= =Í ˙ Á ˜Ë ¯+ Í ˙+ + + +Î ˚ Î ˚

p d
R 2

pd

2()() () 1
() ()

1 () () (0.4 2) 1 2

K K sG s K s
Y s R s

G s K s ss K s K

p pd
Rss R R 20 0 ppd

2() 21
lim () lim () lim

1 2(0.4 3) 1 2t s s

K K s K
y y t sY s s

s Ks K s KÆ• Æ Æ

È ˘+ Ê ˆÍ ˙= = = =Á ˜Ë ¯ +Í ˙+ + + +Î ˚

We can see quite clearly that the steady state output value depends only on the value of
the proportional gain and is independent of the derivative gain term. If we evaluate this
expression for Kp = 0.2, we find that

y
K

KRss
p

p
=

+
=

2

1 2
0 2858.

so with r = 1, the offset is eRss = r – yRss = 0.7142. Clearly derivative control is ineffective
at ensuring that the steady state reference value is reached. This is the opposite of inte-
gral control. The reason for this is that when the error signal is constant, the derivative
de/dt is zero and the controller takes no action to correct the offset.

Problem: Disturbance rejection performance
The assessment of disturbance rejection performance for derivative control is illustrated by a
similar Simulink exercise. We use Figure 11.26 with R(s) = 0, D(s) = 0.5/s and we fix the propor-
tional gain at Kp = 0.2.

(a) If the desired value of damping ratio is ζ = 0.65, what value of derivative gain should be selected?
Use a Simulink simulation to obtain the output response. What is the steady state offset?

(b) If Kd = 0.983, use the simulation to find the output response. What type of output response
has been obtained: underdamped, critically damped or overdamped? Find the damping ratio
to justify the result found. What is the steady state offset?

(c) Set the derivative gain to zero. What is the steady state output value? Use the results of the
simulations to determine whether derivative control provides good disturbance rejection
properties.

Solution (a) Figure 11.30 shows the Simulink model that is needed.

The damping ratio is found from the formula ζ = 0.169 + 0.845Kd. For the desired value of
damping ratio, ζ = 0.65, a derivative gain of Kd = 0.569 is required. The plot of system
response shows the offset to be eDss = 0 – 0.3569 = –0.3569.

11.4 Derivative control 305

t

Time

2

s +0.4s+12

System

Sum 3Sum 2Sum 1

Step

0

Reference

Kp

Proportional gain

y

Output

Kd

Gain

du/dt

Derivative

Clock

+

+

+

++

–

Figure 11.30 Simulink model for PD control and disturbance rejection analysis.

(b) Thus if Kd = 0.983, then ζ = 0.169 + 0.845Kd = 0.9996 and a critically damped response
results. From the output plot the steady state offset is eDss = r – yDss = 0 – 0.357 = –0.357.

(c) The three plots found in the exercise are shown in Figure 11.31.

It is easily seen that the PD control plots have the same steady state value as the plot where
the derivative gain has been set to zero.

We now examine the steady state disturbance rejection performance using the Final
Value Theorem; recall the response equations as:

and

Thus r = 0 and yDss = 0.5/1.4 = 0.357, and the offset is eDss = r – yDss = –0.357. Clearly the
derivative control term has no effect on the rejection of constant load disturbance signals
and again this is the opposite of integral control.

Key result: Derivative control

� The derivative gain Kd is taken to be positive so that Kd > 0.
� Introducing derivative action into the controller means incorporating a derivative term into the

controller.
� Increasing the amount of derivative action means that the numerical value of the derivative gain Kd is

increased.

306 Three-term control: PID control

0 5 10 15
0.25

0.3

0.35

0.4

0.45

0.5

y t()

Kd K= 0.569, p = 0.2

Kd = 0.983, Kp = 0.2

Kd = 0, K p = 0.2

Time

Figure 11.31 Output responses to a disturbance input for different values of Kd.

2

D 2
pd

1 0.4 1 0.5
() ()

1 () () (0.4 2) 1 2

s s
Y s D s

G s K s ss K s K

È ˘È ˘ + + Ê ˆÍ ˙= =Í ˙ Á ˜Ë ¯+ Í ˙+ + + +Î ˚ Î ˚

2

Dss D D 20 0 ppd

0.4 1 0.5 0.5
lim () lim () lim

1 2(0.4 2) 1 2t s s

s s
y y t sY s s

s Ks K s KÆ• Æ Æ

È ˘+ + Ê ˆÍ ˙= = = =Á ˜Ë ¯ +Í ˙+ + + +Î ˚

� Derivative action is usually associated with the controller anticipating the future direction of error
signals.

� The damping ratio of the closed-loop system response can be tuned by changing the amount of deriva-
tive gain in the controller. This is an important practical property of derivative control.

� Derivative control will affect the shape of both the reference tracking and disturbance rejection
responses.

� Derivative control has no effect on constant offsets in either the reference tracking or disturbance
rejection responses. This is because the derivative of a constant error is zero and so the controller does
not respond to the presence of the constant error. This is quite the opposite effect of the use of integral
control.

11.5 PI and PID controller formula

We have studied the individual terms of the PID controller in this chapter. We will find
that the P, I and D controllers can be combined to produce more complex controllers such
as the PD controller we have just met. We find that as well as the P, I and PD controllers,
we will meet the PI and PID controllers in our control studies.

The choice of which terms (P, I or D) to include for a particular control system is
discussed in Chapter 12.

What we have learnt

� To recognise the different terms in the three-term control law

Proportional up(t) = Kpe(t) Up(s) = KpE(s)

Integral ui(t) = Ki e
t

()τ τd∫ Ui(s) =
K
s

i

Derivative ud(t) = Kd
d
d
e
t

Ud(s) = Kds

� To realise that an increasing proportional gain will cause increasing overshoots but
decreasing steady state error in a the system’s output response to a step input.

� To realise that integral action can remove steady state offsets, including those
caused by disturbance inputs signals.

� To realise that derivative action can improve the damping of the closed-loop system
but can do nothing to improve steady state performance.

Multiple choice 307

i
c p i c p0

i
c p i c pd d0

() () ()d or () ()

d
() () ()d or () ()

d

t

t

K
u t K e t K e U s K E s

s

e K
u t K e t K e K U s K K s E s

t s

t t

t t

È ˘= + = +Í ˙Î ˚
È ˘= + + = + +Í ˙Î ˚

Ú

Ú

PI controller:

PID controller:

Multiple choice

308 Three-term control: PID control

M11.1 A regulator problem is where the closed-
loop system must:
(a) try to follow a series of set point changes
(b) remove any disturbances acting on the

process
(c) respond very quickly
(d) respond very slowly

M11.2 A proportional controller, Kp, is used with a
first-order system given by G(s) = K/(τ s + 1).
What is the closed-loop transfer function?

(a)
KK

s KK
p

pτ + +1
(b)

KK

s
p

τ +1

(c)
K

s Kτ + +1 p
(d)

K

s K
p

τ + +1

M11.3 Increasing a proportional gain will:
(a) increase the overshoot, decrease the steady

state error
(b) decrease the overshoot, increase the steady

state error
(c) increase the overshoot, increase the steady

state error
(d) decrease the overshoot, decrease the

steady state error

M11.4 The denominator of the sensitivity function
S(s):
(a) is the same as the denominator of the open-

loop transfer function K(s)G(s)
(b) is the same as the denominator of the

closed-loop transfer function GCL(s)
(c) is the same as the numerator of the open-

loop transfer function K(s)G(s)
(d) is the same as the numerator of the closed-

loop transfer function GCL(s)

M11.5 Integral control has the advantage of:
(a) reducing steady state offsets
(b) reducing overshoot
(c) increasing stability
(d) all of the above

M11.6 If there is a constant error in the output
signal, derivative control:
(a) will reduce this error to zero
(b) will reduce the error but not necessarily to

zero
(c) will have no effect on the error
(d) will increase the error

M11.7 A PID controller has the form:
(a) U(s) = (Kp + Ki + Kd)E(s)
(b) U(s) = [Kp + Kis + (Kd/s)]E(s)
(c) U(s) = [Kp + (Ki/s) + Kds]E(s)
(d) U(s) = KpsE(s) + (Ki/s)E(s) + KdsE(s)

M11.8 Applying which of the following controllers
will increase the order of the closed-loop system
compared to the open-loop transfer function?
(a) proportional
(b) integral
(c) derivative
(d) none of the above will increase the order

M11.9 Which control has a direct effect on the
damping ratio in a second-order system?
(a) proportional
(b) integral
(c) derivative
(d) none of the above will affect the damping

ratio

M11.10 For the following system, what is the
sensitivity transfer function?

(a) S(s) =
1

2 3 1 32s K s K+ + +()p i

(b) S(s) =
s s

s K s K
()

()
2 1

2 1 32
+

+ + +p i

(c) S(s) =
s s

s K s K
()

()
2 1

2 12
+

+ + +p i

(d) S(s) =
s s

s K s K
()

()
2 1

2 3 1 32
+

+ + +p i

3
2 +1s

+

–

R s() Y s()E s()
Kp+

K i
s

U s()

d s()

+
+

Questions: practical skills

Q11.1 The figure shows a typical closed-loop transfer function with the system transfer function G(s) and
the controller transfer function K(s).

For the following two examples, what are the closed-loop transfer function, GCL(s), and the sensitivity
(disturbance rejection) transfer function, S(s)?

(a) K(s) = KP + Kds, G(s) =
32

2 4 162s s+ +.
(b) K(s) = Kp +

K
s

i , G(s) =
12

10()s +

Q11.2 For an input step of magnitude 3, determine the steady state error for the controller K(s) being:
(a) a proportional controller; (b) a P+D controller; (c) a P+I controller
Comment on the error produced for each controller.

Q11.3 Let the reference be a unit ramp and determine the steady state error for the controller K(s) being:
(a) a P+D controller; (b) a P+I controller

Q11.4 For the closed-loop system shown and G(s) = 2/(s + 0.5), apply a PI control to give a closed-loop
damping of 0.5 and a closed-loop natural frequency of 2 rad/s.

Q11.5 For the general closed-loop system as shown in the previous question and a system given by

G(s) = 25 01 0252. / (. .)s s+ +

apply a PD controller to give a closed-loop damping of 0.5 and a closed-loop natural frequency of 4
rad/s.

Problems

P11.1 For the system shown, apply a proportional controller to move the time constant to a sixth of its
open-loop value.

Problems 309

6
s + 1

+

–

R s() Y s()E s()
K s()

U s()

3
s s(2 +2s +1)

+

–

R s() Y s()E s()
K s()

U s()

()G s
+

–

R s() Y s()E s()
()K s

U s()

()G s
+

–

R s() Y s()E s()
()K s

U s()

10
s+0.333

+

–

R s() Y s()E s()
Kp

U s()

P11.2 For the system shown, apply a PD controller to move the poles to the position.

s1,2 = –1.414± 1j

P11.3 A rate-feedback system avoids the problem of the zero on the numerator caused by using a PD
controller.
(i) Calculate the closed-loop transfer functions for the systems below. Note the differences in the

structure.
(ii) Choose the values of Kp and Kd, and K1 and K2 to meet the following requirements: damping ratio

of ζ = 0.7, ωn = 2 rad/s.
(iii) Implement both systems in Simulink and comment on the output response to a unit step input for

both systems. Do the results show that the designed system satisfies the design specifications?

P11.4 The figure shows a block diagram of a motor and the measurements of velocity (via the tacho unit)
and position (via the potentiometer). n represents the gearbox ratio between the rotating shaft and the
output shaft. The left-hand side of the diagram represents the controller. A reference set point for the
rotating shaft is entered (in degrees) and this is converted to an equivalent voltage. The error is calcu-
lated by subtracting the measured position from the desired position. This error is multiplied by a
constant gain, Kp, and the resulting voltage used to control the motor.

310 Three-term control: PID control

10
s s(0.4 +1)

+

–

(a)

(b)

R s() Y s()E s()
Kp+ Kds

U s()

10
(0.4s+1)

+

–

R(s) Y(s)E(s)
K1

U s()

K2

+

–

1
s

6
s2+ 0.06s + 0.36

+

–

R s() Y s()E s()
K()s

U s()

1
ns

Output
position,
Y s()
(degrees)Motor unit

Km

ts + 1

Tacho unit
K t

voltage

voltage

Output
velocity,
w(s), (rad/s)

Measurement
potentiometer

K o

voltage

Position gain
control

K p

Input
conversion

K1

Tacho gain
control

K v

Set point
R s()
(degrees)

Set point
R v() (V)s

Error, ()E s

–

+ +

–

Values of constants already determined:

Km = 280 rad/s/V

Kt = 0.022 V/rad/s

Ko = K1 = 0.0278 volts/degree

n = 30: gearbox ratio

τm = 0.25 seconds

(a) Produce the closed-loop transfer function of the d.c. servo control system using the parameter
values listed.

(b) Set Kv = 0 to get the transfer function using only position feedback. What are the closed-loop
poles for Kp = 0.05, 0.1, 0.15, 0.2, 0.25.
Is the system stable for the values? Tabulate your answers and discuss the results.

(c) Let Kp = 0.2 and calculate the closed-loop poles for Kv = 0.2, 0.4, 0.6, 0.8, 1.0. Tabulate your
answers and find the values of ζ and ωn. Discuss the results.

P11.5 Consider the use of integral control for reference tracking performance and disturbance rejection.
Let the reference be given as R(s) = r/s and the disturbance as D(s) = d/s in the following general
block diagram:
(a) Show Y(s) = YR(s) + YD(s), where

Y s
G s K

s G s K
R sR

i

i
()

()
()

()=
+

⎛
⎝
⎜

⎞
⎠
⎟ and Y s

s
s G s K

D sD
i

()
()

()=
+

⎛
⎝
⎜

⎞
⎠
⎟

(b) If G(0) is finite, show that

y y t r
t

Rss R= =
→∞
lim ()

(c) If G(0) is finite, show that

y y t
t

Dss D= =
→∞
lim () 0

(d) Write short notes on the value and use of these two theoretical results.

Problems 311

()G s
+

–

R s() Y s()K i

s

+

+

D s()

PID control: the background to
simple tuning methods

12

Controller structure Textbook and parallel PID forms

Procedure A:
Manual P, PI tuning

PI and first-order process

Procedure B:
P control with first order model

Specification

Analysis: reference tracking and
disturbance rejection

Procedure C:
PI control with first-order model

Specification

Analysis: reference tracking and
disturbance rejection

Procedure D:
PD control with type 1 model

System type

Analysis: reference tracking and
disturbance rejection

Textbook PID vs. P on error + D on output

Procedure E:
Pole-placement method Solution of pole-placement equations

Example

Help? Time to readGaining confidence Skill sectionGoing deeper

We need to find some methods for choosing the value of the PID gains in the PID controller algo-
rithm. Although the tuning of the controller can be done in a heuristic manner, it is very
time-consuming to find, if at all, appropriate gains which would satisfy the performance specifica-
tions on the system. We therefore need a procedure for choosing which terms to include in our
controller and how to find the actual values of the controller gains. This chapter provides an intro-
duction to the problem of tuning the PID controller. We take a look at PI, PD and finally PID design
problems. We meet manual tuning and simple pole placement methods.

Learning objectives

� To appreciate the effects of the different terms of the PID controller.

� To be able to select an appropriate controller structure.

� To appreciate elementary manual tuning of PID controller.

� To look at more precise methods of tuning PID controllers.

12.1 Choice of controller structure

When we are faced with the problem of designing a PID controller for a particular system
application, we often think that the task looks very difficult. There seems to be so many
options and constraints to consider. But in fact the situation is not quite so daunting if we
begin from four simple steps:

Step 1: Understand fully the capability of the PID controller.
Step 2: Discover the strengths and weaknesses of the system’s existing response

performance.
Step 3: Decide what type of closed-loop system performance is required.
Step 4: Choose a suitable method for selecting the PID controller coefficients or

tuning the PID controller.

Step 1: The capabilities of PID control. In Chapter 11 we looked at the effects of the sepa-
rate P, I and D terms of the controller. We saw that each term had specific effects in the
transient and steady state portion of the closed-loop system responses. We can summa-
rise these effects usefully in Table 12.1. The table is very similar to a toolbox where each
tool (term) can be used to do a particular job. For example, if we need to remove steady
state offsets from a closed-loop reference response, the table says that a D-term will not
do this, that a P-term will reduce the offset if we increase the proportional Kp but that an
I-term will eliminate the offset completely. Therefore we would choose to have integral
action in our controller. Take a second example: suppose now after choosing to use inte-
gral action, we wish to speed up the closed-loop system response. A look at the table
shows that increasing the proportional gain Kp will have just this effect, so we elect to
have both proportional (P) action and integral (I) action in our controller. It is not difficult
to extend this idea so that we can select the controller structure or architecture to match
the effects we wish the controller to achieve. In this way PID control is really a family of
controllers, and we use the shorthand labels P, PI, PD and PID to denote the particular
controller structures. A full list of controller formulas for the members of the PID family
that we will learn about in this chapter is given in Table 12.2.

12.1 Choice of controller structure 313

The formulas in the table are given in textbook form with the PI, PD and PID formulas
also referred to as in parallel form. It is useful to explain these terms at this point in the
chapter:

(a) PID in textbook form. The PID controller formulas are capable of being written and
implemented in several different ways. In fact industrial versions of PID exhibit
some interesting but very different forms. These are introduced in Chapter 18 on
process control. Thus the formulas of the PID table are often referred to as textbook
PID controller forms.

314 PID control: the background to simple tuning methods

Control term Reference tracking
Step reference

Disturbance rejection
Constant load disturbance

Transient Steady state Transient Steady state

P Increasing Kp > 0

speeds up the

response

Increasing Kp > 0

reduces but does not

remove steady state

offset

Increasing Kp > 0

speeds up the

response

Increasing Kp > 0

reduces but does not

remove steady state

offset

I Introducing integral

action, Ki > 0, gives a

wide range of response

types

Introducing Ki > 0 elim-

inates offset in the

reference response

Introducing Ki > 0

gives a wide range of

response types and

speeds

Introducing integral

action, Ki > 0 elimi-

nates steady state

offsets

D Derivative action Kd > 0

gives a wide range of

responses and can be

used to tune response

damping

Derivative action has

no effect on steady

state offset

Derivative action Kd > 0

gives a wide range of

responses and can be

used to tune response

damping

Derivative action has

no effect on steady

state offset

Table 12.1 Table of effects of individual controller terms: P, I, D.

Label Time domain form Laplace domain form

P u t K e tc p() ()= U s K E sc p() ()=

I u t K e
t

c i d() ()= ∫ τ τ

D u t K
e
tc d

d
d

() = U s K s E sc d() [] ()=

PI u t K e t K e
t

c p i d() () ()= + ∫ τ τ

PD u t K e t K
e
tc p d

d
d

() ()= + U s K K s E sc p d() [] ()= +

PID u t K e t K K
e
tc p i d

t
e()d +

d
d

() ()= + ∫ τ τ

Table 12.2 PID control family.

È ˘
Í ˙Î ˚

i
c() ()

K
U s E s

s

i
c p() ()

K
U s K E s

s
È ˘= +Í ˙Î ˚

i
c p d() ()

K
U s K K s E s

s
È ˘= + +Í ˙Î ˚

(b) PID in parallel or decoupled form. The textbook PID form has three decoupled
terms, so that a numerical change in any individual coefficient from Kp, Ki or Kd
changes only that term. For example if we change the value of Ki, then only the size of
the effect of integral action changes, and this change is decoupled from the propor-
tional and derivative terms. This decoupling of the three terms is also reflected in the
parallel architecture of the PID controller.

The decoupled aspect of the PID controller is best seen in a diagram (Figure 12.1).

Thus the parallel or decoupled form of the PID controller has three independent
parallel paths. Each path is associated with only one of the PID terms. For example, the
middle path is only concerned with integral action, and changing the value of Ki changes
the size of the effect of the integral action.

Step 2: Understanding strengths and weaknesses of the system’s existing performance.
In practice, this knowledge is usually obtained by conducting some simple time-domain
experiments, often a step response test. We have already learnt about the main features of
first-order and second-order system step responses and what we have learnt can be
applied in a general way to categorise individual system performance.

Example An engineer conducts a series of step response tests on Process Unit No. CCR72 in a chemical
works (Figure 12.2). The system is operating in steady state with the actuator signal, u(t), at its
operating reference level. Two different step tests are performed by changing the actuator input
signal value from its steady state (or zero) level. One test is a +5% step input change and the
second is a –10% step input change from the steady state level. The output temperature
responses are plotted (Figure 12.3) and the chemical company’s assessment form completed.

12.1 Choice of controller structure 315

Uc()s

Kp

+

+

+

Kds

Ki
s

E s()

E s() Uc()s
Kpid()s

Figure 12.1 Parallel architecture of a PID controller.

Process
unit
no. CCR72

u t() y t = T t() ()

System setup

Figure 12.2 Process unit CCR72.

WJK Chemical Works

Date 16.04.1998 Location: Shed 4

Unit No: CCR 72

Tests Made: +5% Input change. –10% Input change

Step size Delay time Response type Time constant SS value Gain

+5% 0 First order 10 min 2.5 0.5

–10% 0 First order 10 min –5.0 0.5

Test comments

1. Fairly linear process because ± steps give similar response shapes.

2. First-order process type – time constant shows response is much too slow. Time constant is about

10 minutes.

3. Steady offset observed – needs to track reference better.

4. Proportional control used and does not appear to be very effective.

5. Operators report process load disturbances frequent and control system cannot cope.

The example shows how an understanding of the existing control system performance
begins to lead to an idea of what sort of control system performance is actually needed. In
the example, the test engineer thought the process too sluggish or slow, that the offset
needed to be removed and had learnt from the process operators that load disturbances
were a problem.

316 PID control: the background to simple tuning methods

0 50 100 150 200
–10

–5

0

5

Time, minutes

Output signal, °C

Steady state level

Figure 12.3 Open-loop step test traces from plant.

Step 3: Desired closed-loop system performance. From a better understanding of the
system and its performance we move on to Step 3, which is concerned with deciding what
type of closed-loop system performance has to be delivered by the PID control system.
This really comprises two parts:

1. the general considerations which will dictate the structure of the appropriate
controller, and

2. the design specifications that the controller has to try to achieve.

Take the general considerations first, since this is really a question about the type of
steady state accuracy required to step reference and load disturbance signals. This is
important because a requirement for steady state accuracy means that integral action is
needed in the controller. We may divide the family of PID controllers as follows:

Steady state accuracy is required
Then choose from PI or PID control

Steady state accuracy is not so important
Then choose from P or PD

The second part of Step 3 concerns the design specifications that the control system
should achieve. A typical list of specifications based on Chapter 9 is given by

Time constant, τCL
Rise time, tr(10%,90%)
Percentage overshoot, OS(%)
Damping ratio, ζ
Natural frequency, ωn
Closed-loop pole positions, si, i = 1, ..., n
Settling time, ts(2%) or ts(5%)
Steady state offset, ess, eRss or eDss
Disturbance peak value, yDpeak
Disturbance settling time, Dts(2%) or Dts(5%)

Some of these specifications can be given typical values; for example, closed-loop system
damping is often specified to lie in the range 0.6 to 0.75. Other control system perfor-
mance specifications will depend on the particular type of system being controlled, and
engineering experience. Sometimes one of the specifications is especially important and
is given critical values which must be achieved.

Example: Control system specifications
Different industrial control systems often have particular controller requirements.

Ship autopilot control Specification Design solutions

No overshoot to a step demand in

heading, but good speed of response

OS(%) = 0

ess = 0

Design for critical damping ζ = 1

Use proportional and integral control

Liquid tank level system Specification Design solution

Good speed of response, but steady

state accuracy not required

τ τCL OL<<
ess small

Design for first-order response type,

use proportional control

12.1 Choice of controller structure 317

Gas turbine temperature control Specification Design solution

Load changes frequent. Steady state

accuracy essential. Fast disturbance

rejection needed within 5 minutes

Disturbance rejection

design

eDss = 0

Dts < 5 minutes

Underdamped response design for

speed of response. Use proportional

and integral control

A further skill often needed in Step 3 is to be able to manipulate a given control specifi-
cation into a form which can then be used in the PID tuning method. There are a number
of useful relationships from first and second-order systems and these will be used later in
the chapter.

Step 4: Selecting the PID controller coefficients. This is the problem of choosing the PID
controller coefficients to achieve the desired closed-loop control performance. In this
chapter we start by introducing a manual tuning method. We then develop procedures for
tuning systems when we have some knowledge of system models. This gives a more
scientific approach to PID controller tuning. More techniques are given in Chapter 19.

Procedure A: Manual P, PI controller tuning
Procedure B: Proportional control of a process with first-order system model
Procedure C: Proportional and integral control of a process with a first-order model
Procedure D: Proportional and derivative control of a process with a simple Type 1

model
Procedure E: PID controller design by pole placement

12.2 Manual tuning method

The manual tuning of PID control is surprisingly common. As we have already learnt and
tabulated, the three terms are each associated with particular closed-loop response
effects. Manual tuning relies on these intuitive links. We restrict our discussion to
proportional and proportional-plus-integral control because derivative control is a little
specialised. A systematic design procedure is as follows.

Procedure A: Manual P, PI controller tuning
Step 1 Determine whether the priority for the closed-loop system is reference

tracking, load disturbance rejection or a trade-off between the two.
Step 2 Determine whether steady state accuracy is essential to the control system

performance.
Step 3 Proportional control tuning. Introduce proportional action by increasing the

value of proportional gain, Kp, until the speed of response is acceptable.
Step 4 Integral control tuning. If steady state accuracy is considered important (see

Step 2) then introduce integral action into the controller by increasing the
size of Ki. The integral gain Ki should be increased so that an acceptable settle
time is achieved.

318 PID control: the background to simple tuning methods

Step 5 Balancing the controller terms. Increasing Ki may increase the overshoot; to
compensate, decrease Kp. A little fine tuning between Ki and Kp will be neces-
sary to achieve acceptable time responses.

The manual procedure is a trial and error process. The control engineer hopes that Steps 4
and 5 will eventually converge to an acceptable solution. Basically, while Kp changes the
speed of response, changing Ki alters the settling time, with a tendency to introduce over-
shoot. Excessive overshoot usually needs to be avoided, but the settle time must be
reasonably short so that the desired output level is reached. The procedure is further
complicated if it is necessary to obtain satisfactory responses for both reference tracking
and load disturbance rejection.

Example In the WJK Chemical Works, an engineer decides to tune up Process Unit No. UV46. An
open-loop step response shows the process to give a 5 °C output temperature change to a 10%
change in actuator input signal level and the open-loop time constant is 10 minutes. The design
specifications are:

1. an effective closed-loop time constant of about 3 minutes

2. to have no steady state error in reference tracking mode

3. a ±5% settle time of better than 20 minutes

The engineer follows the Manual Tuning Procedure.

Step 1: The performance is required for reference tracking mode only, so the engineer uses
step response tests with a reference step change of 10 °C. The settle constraint means that
the system must settle to within ±0.5 °C of the 10 °C reference signal before 20 minutes has
elapsed.

Step 2: Steady state accuracy is seen to be important because steady state errors have to be
eliminated. This requirement coupled with a desire to speed up the process response leads to the
engineer to select proportional and integral control, namely a PI controller.

Step 3: Tuning the proportional term. The experiment involves repeated step response tests,
recording the process output on, for example, a chart recorder, and determining when Kp is satis-
factory (Figure 12.4).

The following table of experimental data was recorded.

12.2 Manual tuning method 319

y t()

–

uc()t Process unitr t() +

P I D

Controller unit

no. UV46

0

10 °C

Chart
recorder

Figure 12.4 Step response test setup on site.

Kp yss 0.632 × yss CL (mins) Experimental time

0.5 0.2 0.126 7.95 32 min

1.0 0.33 0.210 6.60 29 min

2.0 0.5 0.315 4.85 27 min

3.0 0.6 0.378 4.00 25 min

3.5 0.64 0.400 3.60 19 min

3.75 0.65 0.41 3.47 17 min

4.25 0.68 0.43 3.2 16 min

4.75 0.7 0.44 2.9 15 min

To tune up the proportional term Kp involves eight experiments with production disruption of
10 °C step reference changes and experimental run times of three hours. The tuning experiments
still have one stage to go.

Step 4: Tuning the integral action. Introducing integral action is designed to provide the steady
state accuracy and a ±5% settle time of better than 20 minutes. The following experimental data
was recorded.

Kp Ki ts (5%) Overshoot Experimental time

4.75 0.1 > 100 min 0 > 100 min

4.75 0.5 12 min 0 20 min

4.75 0.75 9 min 5% 15 min

The engineer resolved to use the settings Kp = 4.75 and Ki = 0.5. Note that over another two
hours of experimental time was required giving a total of five hours of experimental time and
production disruption. Further, note that the manual tuning procedure has yet to begin consid-
ering the disturbance rejection performance of the PI controller designed!

The example shows quite clearly the significant overhead in person-power costs, and potential
production disruption involved in manual tuning of a PID controller. Also it should be noted that
assessing the process response relied on the engineer’s experience and acumen.

Problem Process Unit No. UV 46 has open-loop data such that there is a 5 °C offset to a 10% input change
and a measured time constant of 10 minutes.

(a) Derive a first-order process model.

(b) Devise a Simulink model to follow the steps of the Manual Tuning Process.

(c) Follow the steps of the Manual Tuning Process to find the proportional gain Kp of 4.75 and
also the integral gain Ki of 0.5.

(d) Is the final tuning acceptable?

320 PID control: the background to simple tuning methods

Solution (a) The process is in open loop. The steady output changed by 5 °C when the input signal under-
goes a 10% change; thus,

Δyss = 5 °C, Δu = 10% K
y
u

= =
°

= °
Δ
Δ

ss

ss

5 C
10%

C / %)05. (

τ = Time constant = 10 minutes

Unit UV 46 has a model G s
s

()
.

=
+

05
10 1

(b) A Simulink model which can be used to follow the steps of the tuning procedure is given in
Figure 12.5.

(c) The solution to part (c) follows closely the tables of results given above.

(d) At the end of the tuning stages the step responses should look like those in Figures 12.6(a)
and (b).

PID controller tuning using simple process models
We have already demonstrated that the manual tuning method is somewhat laborious,
time-consuming and an ineffective use of resources. We must do better, and to do this we
use system knowledge. We know that many processes can be given a simple transfer func-
tion representation, and we know the formulas and characteristics of the time responses
that can be obtained by simple PID closed-loop control. Putting these facts to work
enables us to find the proportional, integral and derivative gains necessary to achieve the
desired closed-loop performance. We first look at proportional and propor-
tional-plus-integral control of a process which can be represented by a simple first-order
system model, and devise procedures for these cases.

12.3 Proportional control of a system with a first-order model

Consider the general reference tracking and disturbance rejection framework (Figure
12.7) first introduced in Chapter 11. The controller K(s) is a proportional controller,
K(s) = Kp.

12.3 Proportional control of a system with a first-order model 321

t

Time

y

Temperature
output

Sum 2Sum 1

Kp

Proportional gain 0.5

10s+1

Process UV 46
s
1

Integrator

Ki

Gain

Clock

10 °C
Temperature

reference

+

++

–

Figure 12.5 Simulink model for manual tuning.

322 PID control: the background to simple tuning methods

O
ut

pu
t,

te
m

pe
ra

tu
re

0 10 20 30 40 50
0

2

4

6

8

10

12
Stage 2 process response:

K Kp i= 4.75, = 0.75

Time, minutes

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8
Stage 1 process response:

= 4.75, = 0.0K Kp i

Time, minutes

63% of final value
O

ut
pu

t,
te

m
pe

ra
tu

re

Acceptable time constant (speed
of response)

(a)

(b)

Figure 12.6 (a) Step response for stage 1 of the manual tuning process; (b) step response
for stage 2 of the manual tuning process.

R s() =
r
s

–
Y s()

+

E s() Uc(s)
K s()

+K
ts + 1

D s() =
d
s

+

Figure 12.7 Closed-loop control system.

The closed-loop expression is therefore

Y s
KK

s KK
r
s

s
s KK

d
s

() =
+ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

+
+ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

p

p pτ
τ

τ1
1

1

within which we recognise the separate reference tracking and disturbance rejection
responses. Both these transfer functions can be put in time constant form to give:

The reference tracking term is:

Y s

KK

KK

KK
s

r
sR

p

p

p

() =
+

+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

⎛
⎝
⎜

⎞
⎠
⎟

1

1
1

τ

or

Y s
K

s
r
sR

CL

CL
() =

+
⎛
⎝
⎜

⎞
⎠
⎟

τ 1
with K

KK

KKCL
p

p
=

+1
and τ

τ
CL

p
=

+1 KK

The disturbance rejection term is:

Y s
s

s KK
d
s

K s
s

d
sD

p

s

CL
()

()
=

+
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

+
+

⎛
⎝
⎜

⎞
⎠
⎟

τ
τ

τ
τ

1 1
1

where

K
KKs

p
=

+
1

1
and τCL =

τ
1+ KKp

From the standard forms above the common closed-loop time constant can be identified
as

τ
τ

CL
p

=
+1 KK

and, by applying the Final Value Theorem to YR(s) and YD(s), we have the following steady
state outputs:

y K r
KK

KK
rRss CL

p

p
= =

+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟1

and y K d
KK

dDss s
p

= =
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
1

with steady state errors:

e r yRss Rss= − giving e
KK

rRss
p

=
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
1

and

e yDss Dss= −0 giving e
KK

dDss
p

= −
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
1

12.3 Proportional control of a system with a first-order model 323

Closed-loop time constant specification
To achieve a given closed-loop time constant of τCL, we use the model information K, τ
and the formula τCL = τ /(1 + KKp) to obtain the necessary proportional gain as:

K
Kp

CL
= −

⎛
⎝
⎜

⎞
⎠
⎟

1
1

τ
τ

The consequence of using this value of Kp is to fix the closed-loop steady state offsets as:

e rRss
CL= ⎛

⎝
⎜

⎞
⎠
⎟

τ
τ

and e dDss
CL= −⎛

⎝
⎜

⎞
⎠
⎟

τ
τ

These formulas show that specifying a faster and faster closed-loop response by
decreasing τCL will have the effect of increasing the required proportional gain and
reducing the steady state offsets. But we must also remember that an increasing propor-
tional gain will increase the size of the control signal and possible cause real-world actua-
tors to saturate at the limits of their operational range.

Steady state offset specification for reference tracking
The steady state error relation for reference tracking can be written as

| | | |e
KK

rRss
p

=
+

1
1

The required steady state error can be written as a percentage of the reference input as

e
e

ss
Rss
r

(%) = ×100

Combining these two expression for eRss gives

e
r

KK
rss

p

(%)
| | | |

100
1

1
=

+

Therefore we can find an expression for Kp as

K
K ep

ss
= −

⎛

⎝
⎜

⎞

⎠
⎟1 100

1
(%)

Selecting a proportional gain following this rule would lead to the following closed-loop
time constant

τ
τ

τ τCL
p

Rss ss
| |

=
+

= = ⎛
⎝
⎜

⎞
⎠
⎟

1 100KK
e

r
e (%)

with the associated disturbance rejection error

| | | |e
KK

dDss
p

=
+

1
1

Steady state offset specification for disturbance rejection
For disturbance rejection specification, we need to know at what reference level the
process is operating as previously described in Chapter 9. We denote this output level as

324 PID control: the background to simple tuning methods

yref. If the required steady state error percentage specification for disturbance rejection is
ess(%) of the output reference level, yref, we have

| |
(%)

| |
| |

e
e

y
d
KKDss

Dss
ref

p
= ⎛
⎝
⎜

⎞
⎠
⎟ =

+100 1

which yields

K
K

d
e yp

ss ref
= ⎛
⎝
⎜

⎞
⎠
⎟ −
⎛

⎝
⎜

⎞

⎠
⎟1 100

1
| |

(%)

Selecting a proportional gain following this rule would lead to the following closed-loop
time constant:

τ τCL
ss ref=

⎛

⎝
⎜

⎞

⎠
⎟e y

d
(%)

| |100

with the associated reference tracking error

| | | |e
KK

rRss
p

=
+

1
1

We can see from these simple design equations that if we satisfy one design specifica-
tion, this also fixes the other performance values of the control system.

For example, selecting Kp to achieve a desired closed-loop time constant automatically
fixes the steady state offsets achievable. Similarly, a value of Kp which achieves a partic-
ular steady state specification has implications for the closed-loop time constant. Ulti-
mately it must be noted that the analysis is linear and success in implementation will
rely on the capabilities of the system actuators and sensors. The linear analysis is only a
local analysis with limited validity. So with all these provisos we are able to give our
second design procedure.

Procedure B: Proportional control of a process with first-order system model
Step 1: Use a process identification method to find a first-order model for the system

responses of the form: G(s) = K/(τ s + 1).
Step 2: If disturbance rejection control design is of interest then it is necessary to

estimate the size of the constant disturbances, and also record the output
level at which the process operates. This we denote as yRef.

Step 3: Controller target specification. Select from:

(a) Target closed-loop time constant, τCL

(b) Reference tracking error percentage ess(%)

(c) Disturbance rejection error percentage of reference output level, yRef, given
by eDss(%)

12.3 Proportional control of a system with a first-order model 325

Step 4: Compute the proportional gain, Kp, choosing from one of the following:

Controller specification Calculation for Kp Associated performance values
(fixed by value of Kp)

Design closed-loop time constant, τCL K
Kp

CL
= −

⎛
⎝
⎜

⎞
⎠
⎟

1
1

τ
τ

e rRss
CL= ⎛

⎝
⎜ ⎞

⎠
⎟τ

τ

e dDss
CL= −⎛

⎝
⎜ ⎞

⎠
⎟τ

τ

Reference tracking error percentage, ess(%)
K

K ep
ss

= −
⎛
⎝
⎜

⎞
⎠
⎟

1 100
1

(%)
τ τCL

ss=
⎛
⎝
⎜ ⎞

⎠
⎟

e (%)
100

e
e

dDss
Dss=

⎛
⎝
⎜ ⎞

⎠
⎟

(%)
| |

100

Disturbance rejection error percentage,

eDss(%) of yref
K

K
d

e yp
Dss ref

= −
⎛
⎝
⎜

⎞
⎠
⎟

1 100
1

| |
(%)

τ τCL
Dss ref=

⎛
⎝
⎜

⎞
⎠
⎟

e y
d

(%)
| |100

| | | |e
KK

rRss
p

=
+

1
1

Step 5: Perform any simulation studies necessary to investigate performance issues.
Step 6: Implement Kp

Problem In the WJK Chemical Works, Process Unit No. UV46 gave a 5% offset to a 10% input change, and
the open-loop time constant was found to be 10 minutes. It is desired to find a proportional gain to
achieve a closed-loop time constant of 3 minutes.

Solution We use Procedure B for proportional control of processes and assume a first-order model for the
process.

Step 1: First-order model. The data yields τ = 10 minutes and

K
y
u

= =
°

= °
Δ
Δ

ss

ss

5 C
10%

C per %)05. (. Model is G s
s

()
.

=
+

05
10 1

Step 3: Controller target specification

Data: τ = 10, K = 0.5

Desired closed-loop time constant, τCL = 3

Therefore K
Kp

CL
=

⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟ −⎛
⎝
⎜

⎞
⎠
⎟ =

1 1
05

10
3

1 467
τ

τ .
.

Associated performance: eRss = 0.3r and eDss = –0.3d
There is a significant steady state offset for both reference tracking and disturbance rejection
performance.

Step 4: Performance issues are covered by the predictions above.

Step 5: Implement Kp = 4.67. For this process, manual tuning took eight experiments and three
hours of experimental run times. Clearly the use of process knowledge has saved time and
resource costs.

326 PID control: the background to simple tuning methods

12.4 Proportional and integral control of a system with a first-order model

We consider the general reference tracking and disturbance rejection framework of Figure
12.7, where the controller is of proportional and integral type (PI) type:

K(s) = Kp +
K
s
i

The closed-loop expression is

Y s
K K s K

s KK s KK
r
s

s s
s

()
()

()
()

=
+

+ + +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

+p i

p iτ
τ

τ2 1
1

2 1+ + +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟()KK s KK

d
sp i

and the reference tracking and disturbance rejection terms can be identified as:

Y s Y s Y s() () ()= +R D

with

Y s G s R s
n s
d s

R s
K K s K

sR CL
CL

CL

p i
() () ()

()
()

()
()

(
= = =

+
+ +τ 2 1 KK s KK

r
sp i) +
⎛
⎝
⎜

⎞
⎠
⎟

and

Y s S s D s
n s

d s
D s

s s
s KK sD

S

CL p
() () ()

()
()

()
()

()
= = =

+
+ +

τ
τ

1
12 +

⎛
⎝
⎜

⎞
⎠
⎟

KK
d
si

We consider the steady state specification and the transient specifications on overshoot
and settling time.

Steady state offset specification for reference tracking and disturbance rejection
We assume that we can find a PI controller that will stabilise the closed loop. This means
that we are able to find controller coefficients Kp, Ki so that the closed-loop characteristic
equation has roots in the Left Half Plane:

dCL(s) = τ s2 + (1 + KKp)s + KKi = 0

With this assumption of closed-loop stability we can use the Final Value Theorem to
investigate the steady state properties of the closed-loop system. The following steady
state outputs can be found:

y y t s
K K s K

s KK s KKt s
Rss Rss

p i

p
= =

+
+ + +→∞ →

lim () lim
()

()0 2 1τ i

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

r
s

r

with steady state error eRss = r – yRss = 0.
Also, for the disturbance rejection:

y y t s
s s

s KK s KKt s
Dss Dss

p i
= =

+
+ + +

⎛

→∞ →
lim () lim

()
()0 2

1
1
τ

τ⎝
⎜⎜

⎞

⎠
⎟⎟ =

d
s

0

with steady state error eDss = 0 – yDss = 0. The above analysis is only true provided we can
design the PI controller to give a closed-loop stable system, but if this is achieved, the
analysis shows perfect steady state tracking to step reference signals, where eRss = 0 and
perfect steady state rejection to step load disturbance signals, with eDss = 0.

12.4 Proportional and integral control of a system with a first-order model 327

Overshoot and settling time specification for transient response
In Chapter 9, standard second-order systems theory was used to link some simple design
performance values to the parameters ζ and ωn. We recall these results as:

Overshoot
The link between overshoot and damping ratio was given by

OS(%) exp
() /=

−
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ < <100

1
0 12 1 2

ζπ
ζ

ζ

If OS(%) > 0% then set

Los = ln
OS(%)

100
⎛
⎝
⎜

⎞
⎠
⎟

and the required damping ratio is

ζ =
L

L
os

2
osπ + 2

If OS(%) = 0% then set ζ = 1.

Settle time
The link between settle time, damping ratio and natural frequency was given by

ts
n

(%)5
3

=
ζω

and this rearranges to give ζωn
s

=
3
5t (%)

ts
n

(%)2
4

=
ζω

and this rearranges to give ζωn
s

=
4
2t (%)

The above formulas can be used to translate overshoot and settle time specifications into
damping ratio and natural frequency values. The link to the control design is obtained
using the closed-loop characteristic equation, dCL(s) which is a function of the first-order
system model parameters (K and τ) and the coefficients of the PI control law, Kp, Ki.

The standard second-order system characteristic equation is

d s s s2nd n n() = + +2 22ζω ω

and we compare this to the scaled closed-loop characteristic equation,

d s
s

KK
s

KKCL p i()
τ τ τ

= +
+⎛

⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟ =2

1
0

Hence, if design values for the closed-loop system damping ratio, ζ, and natural frequency
ωn are given, along with the model parameters K and τ we can equate coefficients to
obtain the required PI controller coefficients. The equations which can be rearranged to
give the controller parameters are

1
2

+
=

KKp
nτ

ζω and
KKi

nτ
ω= 2

and these give

K
Kp
n=

−2 1ζω τ
K

Ki
n=

ω τ2

328 PID control: the background to simple tuning methods

We are able to collect these links together as tools useful to design a PI controller to meet
the transient response specifications.

Specify overshoot/settle time

⇓

OS(%) and ts(X%)

⇓

Solve equations for desired closed-loop system

damping and natural frequency

⇓

ζ and ωn

⇓

Solve equations for proportional and integral

controller coefficients

⇓

Kp and Ki

⇓

Equivalent to fixing the poles of the closed-loop

system using second-order system links
d s

s
KK

s
KK

s s

d

CL p i

n n

()
τ τ τ

ζω ω

= +
+⎛

⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜ ⎞

⎠
⎟

= + +
=

2

2 2

1

2

2nd()s

To formalise this we create the following design procedure.

Procedure C: Proportional and integral control of a process with a first-order
model

Step 1: Use process identification methods to find a first-order model for the system
response. The model transfer function is

Step 2: Controller target specification

(a) PI control guarantees zero steady state offset for both step reference signals tracking
and step reference disturbance signals.

(b) Specify overshoot OS(%):

If OS% > 0 then ζ =
| |L

L
os

2
osπ + 2

and Los = ln
OS(%)

100
⎛
⎝
⎜

⎞
⎠
⎟

If OS% = 0 then ζ =1

(c) Specify settle time requirement: ts(5%) or ts(2%):

If ts(5%) then ζωn = 3/ts(5%)

If ts(2%) then ζωn = 4/ts(2%)

Step 3: Compute controller coefficients, Kp, Ki.

Solve
1

2
+

=
KKp

nτ
ζω to give K

Kp
n=

−2 1ζω τ

12.4 Proportional and integral control of a system with a first-order model 329

t
È ˘= Í ˙+Î ˚

()
1

K
G s

s

Solve
KKi

nτ
ω= 2 to give K

Ki
n=

ω τ2

Step 4: Use simulation tools to assess the performance and examine the disturbance
rejection performance.

Step 5: Implement PI controller

Problem In the WJK Chemical Works, Process Unit No. UV46 gave a 5 °C offset to a 10% actuator input
change, and the open-loop time constant was found to be 10 minutes. It is desired to find a
three-term controller to ensure no steady state offset to step reference signals, to achieve a 5%
settle time of less than 20 minutes at most and to have only a little overshoot.

Solution We use the steps of Procedure C, and assume a first-order model for the process.

Step 1: First-order model identification. The data yields an open-loop time constant τ = 10 min
and the system gain parameter is found from:

K
y
u

= =
°

= °
Δ
Δ

ss

ss

5 C
10%

C per %)05. (Model is G s
s

()
.

=
+

05
10 1

Step 2: Controller target specification
Zero steady state offsets require PI control; therefore use

K s K
K
s

() = +p
i

ts(5%) = 20 min hence ζωn = 3/ts(5%) = 0.15

Little overshoot implies that the closed-loop damping ratio should be close to unity, so choose
ζ = 0.9 and hence ωn = 0.15/ζ = 0.167.

Step 3: Compute controller coefficients
We need to solve:

1 05

10
2

+
=

. Kp
nζω and

05
10

2. Ki
n= ω

With ζ = 0.90, ζωn = 0.15 and ωn = 0.167 we obtain

Kp = 40. and Ki = 056.

Step 4: Use simulation tools to assess the performance and examine the disturbance rejection
issues. We give the result of a reference tracking simulation (Figure 12.8) to see if we have met
the desired specification on settling time, overshoot and steady state error. We see that the value
for ts(5%) is just over 10 minutes, but well under the desired specification of 20 minutes. The
overshoot is less than 5% and the steady state error is zero.

Step 5: Implement PI controller

K s
s

()
.

= +4
056

330 PID control: the background to simple tuning methods

i
p()

K
K s K

s
È ˘= +Í ˙Î ˚

Remark When this PI tuning problem was solved by manual tuning, a total of five hours of experiment
time and production disruption occurred. The manual tuning method eventually determined
suitable PI settings as Kp = 4.75 and Ki = 0.5. By way of contrast, the model based procedure
above quickly gave very similar PI settings. Again the use of an engineering procedure led to a
significant saving in person power costs and significantly reduced lost production.

12.5 Proportional and derivative control procedures

In most applications of three-term control, the structure of the controller will use the P and
I terms. The reason is, as we have seen, that PI control will eliminate steady offsets in refer-
ence tracking and remove similar offsets caused by constant load disturbances. Recently
this guaranteed property was referred to as the magic of integral control; indeed it is a very
powerful practical property widely exploited in industrial applications. By way of contrast,
the derivative term is a rather specialist tool in the PID toolbox, nonetheless it has its uses.

Proportional-derivative control is often found in electric motor-driven position
systems (Figure 12.9). The mathematical relationship between angular position, θ and
angular velocity ωof a rotating shaft is given by

ω
θ

θ ω τ τ= = ∫d
d

or d
t

t
t

() ()

and this leads to a pure integrator in the system transfer function model. Consider the
following sequence of modelling diagrams, as given in Figure 12.10.

Thus it can be seen that the motor–shaft system has a pure integrator (or a pole at the
position of s = 0) in the transfer function model. Proceeding now to the control design
stage, the first step in the general procedure for designing a control system was to know

12.5 Proportional and derivative control procedures 331

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

Time, minutes

5% settling time specification

±5% settling time band
O

ut
pu

t t
em

pe
ra

tu
re

, °
C

Figure 12.8 PI design with a model-based approach.

the plant. Let us consider an analysis for this general form of transfer function plant
model, which is known as a Type 1 system.

Remark Definition of system type
One form of system classification is concerned with the number of pure integrators existing in
a system model. Write

G s
n s

s d s
()

()
()

=
�

where n s b s bm
m() = + +… 0 and d s s a s an

n
n() = + + +−
−

1
1

0… ; then the index � is known as the
system type index.

A Type 0 plant has no pure integrators
A Type 1 plant has one pure integrator
A Type 2 plant has two pure integrators

Example: Reference tracking and output/load disturbance rejection for a Type 1 system
For the analysis we use the usual reference tracking and load disturbance rejection block diagram
(Figure 12.11) and consider the proportional control of a Type 1 plant.

332 PID control: the background to simple tuning methods

Load

Applied
voltage, ()V t

Electric
motor

Shaft

w

q

M

Figure 12.9 Schematic of d.c. motor position control.

Motor system
1
s

V s() w()s q()s

Motor system
V t() w()t q()t

Gm()s
s

V s() q()s

Figure 12.10 Block diagram for position control system showing integrator.

Gm(s)
E s() Y s()

D s() =
d
s

R s() = r
s Uc()s

Kp

–

+ 1
s

+
+

Figure 12.11 Proportional control of Type 1 system.

The closed-loop expressions are

Y s G s R s S s D s
G s K

s G s K
R s

s
s G

() () () () ()

()

()
()

= +

=
+

+
+

CL

m p

m p m p()
()

s K
D s

from which it follows that

Reference tracking performance: Y s
G s K

s G s K
R sR

m p

m p
()

()

()
()=

+

Disturbance rejection performance: Y s
s

s G s K
D sD

m p
()

()
()=

+

We make the assumption that Gm(s) is stable with finite system gain and we also assume that Kp
has been selected to stabilise the closed-loop system. This allows us to investigate the steady
state properties of the closed-loop system for a step reference signal R(s) = (r/s) and a constant
load disturbance of the form D(s) = (d/s), and we find

y y t sY s s
G s K

s G st s s
Rss R R

m p

m
= = =

+→∞ → →
lim () lim () lim

()

(0 0)K
r
s

r
p

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

and

y y t sY s s
s

s G s Kt s s
Dss D D

m p
= = =

+

⎛

⎝
⎜

→∞ → →
lim () lim () lim

()0 0
⎜

⎞

⎠
⎟⎟ =
d
s

0

Thus the outcome of this analysis is that proportional control of a Type 1 plant will have perfect
steady state reference tracking, and perfect steady state disturbance rejection. We have demon-
strated these properties with only some mild assumptions on the Gm(s) transfer function, and we
have shown that for the Type 1 plant we do not need the integral term in the three-term controller.
The question now is: what advantage does derivative control bring to the design?

To gain insight into the value of derivative control we introduce a first-order model for
the process Gm(s) and look at some alternative structures of the PD controller.

Textbook PD control
We use the full closed-loop assessment diagram with a PD controller in the forward path
of the closed-loop (Figure 12.12).

The usual block diagram analysis yields:

Y s Y s Y s() () ()= +R D

with

Y s G s R s
K K K s

s KK s KK
R sR CL

p d

d p
() () ()

()

()
()= =

+
+ + +τ 2 1

and

Y s S s D s
s s

s KK s KK
D sD

d p
() () ()

()
()

()= =
+

+ + +
τ

τ
1

12

12.5 Proportional and derivative control procedures 333

The closed-loop stability of the system will be given by the denominator of GCL(s) and
S(s), which is seen to be

d s s KK s KKCL d p() ()= + + + =τ 2 1 0

If we divide through by τ then we can make the important identification with the stan-
dard second-order transfer function form involving closed-loop design parameters ζ and
ωn:

d s
s

KK
s

KK
s s d sCL d p

n n nd
()

()
τ τ τ

ζω ω= +
+⎛

⎝
⎜

⎞
⎠
⎟ + = + + =2 2

2
1

2

From this come the design equations:

KKp
nτ

ω= 2 and
1

2
+

=
KKd

nτ
ζω

where Kp can be used to set ωn and Kd used to set the damping ratio ζ, or vice versa. Thus
the design utility of PD control is that it can be used to meet the closed-loop stability
requirements and shape the transient response of the closed-loop. However, there are
some remarks to be made before we adopt a design procedure.

Remark 1. If we look again at the form of GCL(s), this is as follows:

G s
K K K s

s KK s KKCL
p d

d p
()

()

()
=

+
+ + +τ 2 1

We see that GCL(0) is unity, and this guarantees good steady state reference tracking, but we
also note that the numerator nCL(s) = K(Kp + Kds) has a zero and so GCL(s) is not quite the
usual second-order system form, which does not have the zero. In some cases this zero will
restrict the speed of the response obtainable by the controller or cause excessive overshoot.

2. The second problem arising is one from the practical implementation of PD control. For
this, consider the control law where we have

U s K K s E s

K E s
c p d

p

Proportional action

() [()] ()

()

= +

= +
���

K s R s Y sd

Derivative action

[() ()]−� ��� ���

Looking at the derivative term only, we know that the reference signal will be a sequence of
step change signals, while the measured output signal will be slower and smoother in
changing. Both of these signal types will be differentiated by the derivative control term.

334 PID control: the background to simple tuning methods

K
ts + 1

E s() Y s()

D s()

R s() Uc()s
Kp+Kds

–

+ 1
s

+
+

Figure 12.12 PD control of system.

When the reference signal is constant, then its derivative is zero, but at the point where the
step changes value the derivative action will produce an impulse-like feature or spike on the
control signal. This is known as derivative kick. This effect could lead to, say, a voltage spike
entering the actuator device circuitry, which is not likely to be beneficial. To accommodate
this real-world practical effect, it is common to use a slightly different structure for PD
control. We use this new structure as the basis for a PD design procedure in this chapter.
We should note that there are other important practical aspects to be considered for deriva-
tive control, but these must wait until Chapter 18 for a more detailed presentation.

12.5.1 Proportional control on error, derivative control on measured variable
To overcome the problems of derivative kick, and to obtain a closer link to the standard
second-order transfer function form, we apply PD control in the structure of Figure 12.13.

The block diagram analysis follows as:

Y s D s
K

s s
K R s Y s K sY s() ()

()
[(() ()) ()]= +

+
− −

τ 1 p d

giving

Y s
KK

s KK s KK
R s

s s
s KK s K

()
()

()
()

()
=

+ + +
+

+
+ + +

p

d p dτ
τ

τ2 21
1

1 K
D s

p
()

and

Y s G s R s
KK

s KK s KK
R s

Y s S s

R CL
p

d p

D

() () ()
()

()

() ()

= =
+ + +

=

τ 2 1

D s
s s

s KK s KK
D s()

()
()

()=
+

+ + +
τ

τ
1

12
d p

where we see that the transfer function GCL(s) resembles our standard second-order
transfer function with no zero in the numerator. We have previously used standard
second-order systems theory to link simple design performance values to the parameters
ζ and ωn. We recall these results in Table 12.3.

We use the above formulas to translate overshoot and settle time specifications into
closed-loop damping ratio and natural frequency values. The link to the control design
then uses the closed-loop characteristic equation, dCL(s), which is a function of the Type
1 system model parameters K and τ and the coefficients of the PD controller, Kp and Kd.
The standard second-order system characteristic equation is given by

d s s snd2
2 22() = + +ζω ωn n = 0

12.5 Proportional and derivative control procedures 335

K
ts + 1

E s() Y s()

D s()

R s() Uc()s
Kp

–

+ 1
s

+
+

–

+

Kds

Figure 12.13 Derivative term acting on the error signal.

We compare this to the expression

dCL(s) = τ s2 + (1 + KKd)s + KKp = 0 or equivalently s2 +
()1+ KKd

τ
s +

KKp

τ
= 0

Equating the coefficients of d2nd(s) and dCL(s) gives the required PD controller
coefficients:

1
2

+
=

KKd
nτ

ζω and
KKp

nτ
ω= 2

and these give

K
Kd
n=

−2 1ζω τ
K

Kp
n=

ω τ2

We are able to collect these links together to design a PD controller to meet transient
response specifications. This procedure is formalised as follows.

Procedure D: Proportional and derivative control of a process with a simple Type 1
model

Step 1: Use the process identification method to find a first-order component model for
the system response. The model transfer function is assumed to have the form:

G s
K

s s
()

()
=

+τ 1

Step 2: Controller target specification

(a) The Type 1 model assumption ensures zero steady state offset for both step reference
signals tracking and constant outputdisturbance signals.

(b) Specify overshoot OS(%):

336 PID control: the background to simple tuning methods

Design specification Closed-loop plant parameters

Overshoot OS(%) > 0%
Los = ln

(%)OS
100

⎛
⎝
⎜ ⎞

⎠
⎟, ζ

π
=

+

| |L

L

os

os
2 2

Overshoot OS(%) = 0% ζ = 1

Settle time, ts(5%) ζωn
s

=
3
5t (%)

Settle time, ts(2%) ζωn
s

=
4
2t (%)

Damping ratio, ζ and natural frequency, ω n, or damped

natural frequency, ωd specified
Target d s s sCL n n() = + +2 22ζω ω

or d s s a s aCL() = + +2
1 0

Table 12.3 Second-order system design links.

If OS(%) > 0 then ζ =
| |L

L
os

osπ2 2+
with Los = ln

OS(%)
100

⎛
⎝
⎜

⎞
⎠
⎟

If OS(%) = 0 then ζ = 1

(c) Specify settle time requirement ts(5%) or ts(2%)

If ts(5%) then ζωn = 3/ts(5%)

If ts(2%) then ζωn = 4/ts(2%)

(d) Specify damping ratio, ζ, and damped natural frequency, ω d.

(e) The above specification can be cast as a target closed-loop characteristic equation of
either of the forms

d s s sCL n n() = + +2 22ζω ω

or

d s s a s aCL() = + +2
1 0

Step 3: Compute controller coefficients, Kp, Kd.
Solve

1
1

+
=

KK
ad

τ
which gives K

a
Kd =
−1 1τ

Solve

KK
a

p

τ
= 0 which gives K

a
Kp = 0τ

Step 4: Use simulation tools to assess the performance and examine the disturbance
rejection performance.

Step 5: Implement PD control law as

U(s) = KpE(s) + Kds Y(s)

Problem Figure 12.14 shows the Type 1 model of an experiment where a d.c. motor is being used for posi-
tion control.

A design for proportional control on error and derivative control on measured variable, θ(t), is
required which satisfies the following design specification:

Specification: the closed loop is to have damping ratio of ζ = 0.6 and a damped natural frequency
of 10 rad/s.

(a) Calculate the appropriate proportional and derivative gains.

(b) Investigate the system response to a reference step of r(t) = 0.1.

12.5 Proportional and derivative control procedures 337

1
s + 1

1
s

V s() w()s q()s

Figure 12.14 d.c. motor example.

(c) Examine the control signal being applied to the system input. Comment on the practical feasi-
bility of such a control input.

Solution (a) We use the steps of Procedure D, but since a Type 1 model has been given for the process
we go directly to Step 2.

Step 2: Controller target specification
The closed loop is to have damping ratio of ζ = 0.6 and a damped natural frequency of 10 rad/s.
We use the relation between ωd, ωn and ζ to find a value for ωn.

ω ω ζd n= −1 2

Hence

10 1 062= −ωn . yields ωn = =
10
064

125
.

.

The Type 1 model information is K = 1 and τ = 1. The design specification is ζ = 0.6 and
ωn = 12.5, which gives a target closed-loop characteristic equation of

a

a
1

0
2

2 150

15625

= =

= =

ζω

ω
n

n

.

.

with dCL(s) = s2 + a1s + a0.

Step 3: Compute controller coefficients, Kp, Kd.
Solve

1
1

+
=

KK
ad

τ
which gives K

a
Kd =
−

=1 1
140

τ
.

Solve

KK
a

p

τ
= 0 which gives K

a
Kp = =0 15625
τ

.

Step 4: We use the PD controller in the form: U(s) = 156.25E(s) + 14.0Y(s).

(b) Investigate the system response to a reference step of r(t) = 0.1
We use a Simulink simulation for the step reference investigation with a step occurring at
t = 0.5 seconds. The model used is given in Figure 12.15.

The reference step response trace is given in Figure 12.16 and shows a response with about
6% overshoot.

(c) Using the same Simulink simulation the control signal is given in Figure 12.17.
Clearly, even with the more practical proportional control on error and derivative control on
measured variable structure, we have a control signal input which is not very desirable. It has a
spike, and it has large magnitude despite the fact that the reference change is only a small one.
This is an example of proportional kick, which can be another implementational problem. The
reference change is r = 0.1, the proportional gain is 156.2 and the control signal is approximately
15.6 = 0.1 × 156.2. A real PD controller like this could not be used, and as we see later in
Chapter 18, various modifications are made to make PID control practical.

338 PID control: the background to simple tuning methods

As a closing remark on this PD control section, it is worth mentioning that the motiva-
tion was the classical d.c. motor position and tachogenerator control loop applications.
We have used a load or output disturbance in Figure 12.12 and Figure 12.13 because PD
control, Type 1 plant and these disturbances have some good analytical properties.
However, in any practical situation, the analysis and the control design must use the
disturbances as they affect the plant. For example, if the application were subject to
torque disturbances at the motor input, then we would find that not all the good proper-
ties found here for PD control would apply and we would advise some other PID
controller solution.

12.5 Proportional and derivative control procedures 339

t

Time

y

OutputStep

Kp

Proportional gain

s
1

Integrator
14

Derivative
gain

du/dtDerivative
block

u

Control signal

Clock

1+ +
–– s + 1

First-order
plant

Figure 12.15 Simulink model of d.c. motor.

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

Time (seconds)

Position of output shaft, rads

Figure 12.16 Step response of d.c. motor.

12.6 PID controller design by pole placement

In devising methods to achieve a three-term control design we have introduced a simple
transfer function model for the system and used closed-loop requirements to help us
derive the controller coefficients. This approach exploits any knowledge we have on the
process or requires us to find a simple model using system modelling or identification
methods. As the design became more involved we learnt how we often have to resort to
simulation to see how the design is meeting other design requirements. For example, we
might design for good reference tracking, but need reasonable disturbance rejection
performance too. We also learnt something of the intuitive and guaranteed properties of
the terms in the PID controller.

One of the ideas which has been emerging from the work is that of turning the specifi-
cation into a target closed-loop characteristic polynomial and then selecting the
controller coefficients to match this polynomial. We conclude this chapter by looking at
a simple pole placement method for PID control.

Pole placement process model
We assume a second-order model for the process given by:

G s
b s b

s a s a
() =

+
+ +
1 0

2
1 0

The value of the pole placement method will rely on the versatility of this model to repre-
sent a wide range of typical processes. We note only two useful ones here:

340 PID control: the background to simple tuning methods

0 0.5 1 1.5 2
–5

0

5

10

15

20

Control output signal, volts

Time, seconds

Figure 12.17 Control signal for d.c. motor.

1. Second-order oscillatory system
Set b1 = 0; then

G s
b

s a s a
b a

a s a a s
K

()
/

(/) (/) (/)
=

+ +
=

+ +
=0

2
1 0

0 0

0
2

1 0
21 1 1 ωn s s2 2 1+ +(/)ζ ωn

Thus underdamped oscillatory systems can be represented by the model.

2. First-order system with time delay
Let

G s
K

s

sT
() =

+

−e d

τ 1

and replace the time delay by a first-order Padé approximation, namely,

e d d

d

− =
−
+

sT T s
T s

(.)
(.)
1 0 5
1 0 5

and hence

G s
K T s
s T s

KT s K
T s

()
(.)

()(.)
.

.
≅

−
+ +

=
− +1 0 5

1 1 0 5
0 5

0 5
d

d

d

dτ τ 2

2

0 5 1

0 5

0 5
0

+ + +

=
−⎛
⎝
⎜

⎞
⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟

+
+

(.)

.

.

τ

τ
τ

τ

T s

K
s

K
T

s
T

d

d

d
. .5

1
0 5

1 0
2

1 0
T

s
T

b s b
s a s a

d dτ τ
⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟
=

+
+ +

PID control block diagram
We use the textbook from of the PID controller given by

G s K
K
s

K sc p
i

d() = + +

We introduce the closed-loop controller assessment block diagram as in Figure 12.18.

Analysis of the block diagram yields

Y(s) = YR(s) + YD(s)

with

Y s G s R s
n s
d s

R s Y s S s D sR CL
CL

CL
Dand() () ()

()
()

() () () ()= = = =
n s

d s
D sS

CL

()
()

()

12.6 PID controller design by pole placement 341

E s()R s()

Y s()

D s()

Uc()s
K +

K
s + K sp

i
d

–

1b 0s b+
2s 1 0a s + a+

+ +
+

Figure 12.18 Block diagram for general pole placement problem.

where the common denominator polynomial is given by

d s s s a s a K s K s K b s bCL d p i() () ()()= + + + + + +2
1 0

2
1 0

and the numerator polynomials of GCL(s) and S(s) are

n s K s K s K b s b

n s s s a s a

CL d p i

s

() ()()

() ()

= + + +

= + +

2
1 0

2
1 0

Design specification
The pole placement method requires that the engineer specifies a design closed-loop pole
polynomial, and then the controller coefficients are chosen to match the design polyno-
mial. In this case, the assumed four-parameter second-order model structure and the use
of a full PID controller lead to a third order closed-loop polynomial dCL(s). An appropriate
choice of a target closed-loop polynomial is to use one real pole (at s = –α ωn) and a
quadratic pair as

d s s s sdesign n n n() ()()= + + +α ω ζω ω2 22

The two components of the specification are completed as follows:

1. Second-order pole pair in the quadratic factor:

d s s s2nd n n() ()= + +2 22ζω ω

As the notation suggests, this pole pair can be chosen as an underdamped pole specifi-
cation or as desired LHP closed-loop pole positions selected by the control engineer.
Overshoot, settle time, damping ratio or other relationships can be used in this step.

2. Real pole in the factor:

d s s1st n() ()= +α ω

We choose this pole to be faster than the quadratic pair so that the response is domi-
nated by the second-order response characteristic.

Design equations

d s s s s s sdesign n n n n() ()() () (= + + + = + + + +α ω ζω ω α ζ ω2 2 3 22 2 1 2 2 3αζ ω α ω) n ns+

The closed-loop polynomial expands as

d s K b s a K b K b s a K b K b sCL d d p p i() () () ()= + + + + + + +1 1
3

1 0 1
2

0 0 1 + K bi 0

To equate powers use:

d s
K b

s
a K b K b

K b
s

a KCL

d

d p

d

p()
()1 11

3 1 0 1

1

2 0

+
= +

+ +
+

⎛

⎝
⎜

⎞

⎠
⎟ +

+ b K b

K b
s

K b
K b

0 1

1

0

11 1

+
+

⎛

⎝
⎜

⎞

⎠
⎟ +

+
⎛

⎝
⎜

⎞

⎠
⎟i

d

i

d

Equating coefficients of like powers yields:

For s2: a1 + Kdb0 + Kpb1 = (1 + Kdb1)(α + 2ζ)ωn

For s: a0 + Kpb0 + Kib1 = (1 + Kdb1) (1 + 2αζ)ωn
2

For s0: Kib0 = (1 + Kdb1)α ωn
3

342 PID control: the background to simple tuning methods

This leads to a simple linear system of equations where α, ζ and ωn are known from the
design specification and a1, b1 and a0, b0 are known from the process model. The equa-
tions can then be solved for the PID coefficients Kp, Ki, Kd:

It is worth remarking that the above pole placement equations do not guarantee a feasible
controller because the constraint that the PID gains must be positive has not been built
into the formulas. Sometimes a PID gain will be computed as a negative value and it is
necessary to modify the specification to obtain a sensible answer. When this happens, the
method is really indicating that the control problem is difficult to solve and deserves
closer investigation.

Procedure E: PID controller design by pole placement
Step 1: Use process identification or modelling methods to find a transfer function repre-
sentation of the form:

G s
b s b

s a s a
() =

+
+ +
1 0

2
1 0

Identify the values of the parameters, b1, b0, a1, a0.

Step 2: Controller design closed-loop characteristic polynomial specification

(a) For the quadratic factor, d s s s2nd n n() ()= + +2 22ζω ω , use

Design specification Closed-loop plant parameters

Overshoot OS(%) > 0%
Los = ln

OS(%)
100

⎛
⎝
⎜ ⎞

⎠
⎟ ζ =

| |L

L

os
2

osπ + 2

Overshoot OS(%) = 0% ζ = 1

Settling time, ts(5%) ζωn
s

=
3
5t (%)

Settling time, ts(2%) ζωn
s

=
4
2t (%)

Damping ratio, ζ, and natural frequency, ωn or

damped natural frequency, ω d, specified
Target d s s sCL n n

2() = + +2 2ζω ω

or d s s a s aCL() = + +2
1 0

(b) Real pole in the factor d1st(s) = (s + α ωn), select the parameter, α, to give a faster pole
than the quadratic pair.

(c) Tabulate α, ζ, ωn.

Step 3: Compute controller coefficients, Kp, Ki, Kd. Use the matrix equations

12.6 PID controller design by pole placement 343

1 0 1 n 1 np
2 2

0 1 1 n i 0 n
3 3d0 1 n n

0 (2) (2)

(1 2) (1 2)

0

b b b aK

b b b K a
Kb b

a z w a z w

az w z w

aw aw

- + - + +È ˘ È ˘Ê ˆ
Í ˙ Í ˙Á ˜- + = - + +Í ˙ Í ˙Á ˜Í ˙ Í ˙Á ˜Ë ¯- Í ˙Í ˙ Î ˚Î ˚

Step 4: Use simulation tools to assess the performance and examine the disturbance
rejection performance.

Step 5: Implement PD control law as

U s K
K
s

K s E s() ()= + +⎛
⎝
⎜

⎞
⎠
⎟p

i
d

Problem A simple boiler system is modelled by a second-order transfer function with d.c. gain of unity, damping
ratio of 0.2 and natural frequency of 0.5 rad/s. A PID design is required for plant implementation.

(a) Use the pole placement method such that the dominant second-order closed-loop has poles
at s =− ±07 07. .j .

(b) Use a Simulink simulation to examine the unit step response.

Solution (a) We follow the Procedure E.
Step 1: Use process identification or modelling methods to find a transfer representation of the
form:

G s
b s b

s a s a
() =

+
+ +
1 0

2
1 0

Identify the values of the parameters, b1, b0, a1, a0.
The data gives the process model as

hence b1 = 0, b0 = 0.25, a1 = 0.2, a0 = 0.25.

Step 2: Controller design closed-loop characteristic polynomial specification
For the quadratic factor, d s s s2nd n n() ()= + +2 22ζω ω , use the data as s =− ±07 07. .j . This gives the
parameter values as ζ = 0.71 and ωn = 0.99.

For the real pole in the factor d1st(s) = (s + α ωn), select the parameter, α, to give a faster pole
than the quadratic pair; chose s = –1, giving α = 1.01.

Step 3: Compute the controller coefficients, Kp, Ki, Kd, using the matrix equation. Enter the
parameters a0, a1, b0, b1, ωn , ζ and α in MATLAB as a0, a1, b0, b1, om, z and alpha. Then intro-
duce MATLAB code as follows:

% Model Parameters
b1=0; b0=0.25; a1=0.2; a0=0.25;

%Design Parameters
z=0.71; om=0.99; alpha=1.01;

344 PID control: the background to simple tuning methods

w z w

È ˘
= Í ˙

+ +Í ˙Î ˚

= =
+ ¥ + + +

2 2
n n

2 2 2

()
(1/) (2 /) 1

1 0.25

(1/0.5) (2 0.2/0.5) 1 0.2 0.25

K
G s

s s

s s s s

1 0 1 n 1 np
2 2

0 1 1 n i 0 n
3 3d0 1 n n

0 (2) (2)

(1 2) (1 2)

0

b b b aK

b b b K a
Kb b

a z w a z w

az w z w

aw aw

- + - + +È ˘ È ˘Ê ˆ
Í ˙ Í ˙Á ˜- + = - + +Í ˙ Í ˙Á ˜Í ˙ Í ˙Á ˜Ë ¯- Í ˙Í ˙ Î ˚Î ˚

%Matrix Equation Entries
M(1,1)=b1; M(1,2)=0; M(1,3)=b0-b1*(alpha+2*z)*om;
M(2,1)=b0; M(2,2)=b1; M(2,3)=-b1*(1+2*alpha*z)*om*om;
M(3,1)=0; M(3,2)=b0; M(3,3)=-b1*alpha*om*om*om;
x(1,1)=-a1+(alpha+2*z)*om;
x(2,1)=-a0+(1+2*z)*om*om;
x(3,1)=alpha*om*om*om;
%Solution for PID
pid=inv(M)*x;

A run of the code gives the PID coefficients as: K K Kp i d= = =8 4874 39200 88228. , . , . .

(b) Use a Simulink simulation to examine the unit step response
This part covers Steps 4 and Step 5 of Procedure E. The simulation is given in Figure 12.19 and
The unit step response plot is shown in Figure 12.20. The response shows a high amount of over-
shoot (approaching 30%) and if this is unacceptable, we would have to go back and reselect the
parameters of our pole placement design polynomial.

12.6 PID controller design by pole placement 345

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Output signal

Time

Figure 12.20 Output signal resulting from pole placement design.

t

Time

Step

PID+
–

PID controller

y

Output

Clock

0.25
s + 0.2s + 0.252

First-order plant

Figure 12.19 Simulink model for pole placement exercise.

What we have learnt

� Five procedures for tuning systems:

Procedure A: manual P, PI controller tuning

Procedure B: proportional control of a process with first-order system model

Procedure C: proportional and integral control of a process with a first-order model

Procedure D: proportional and derivative control of a process with a simple Type 1 model

Procedure E: PID controller design by pole placement

� Tuning PID controllers manually is a very time-consuming and inefficient procedure.

� Derivative control is especially suited in the PD control of systems represented by
Type 1 system models.

� Using the knowledge gained on first and second-order models enables us to
develop PID tuning procedures which are effective and efficient.

Multiple choice

346 PID control: the background to simple tuning methods

M12.1 The PID controller given by U(s) =
[Kp + (Ki/s) + Kds]E(s) is referred to as:
(a) a cascade form
(b) a decoupled form
(c) an industrial form
(d) a series form

M12.2 If steady state accuracy is required, then:
(a) choose a P controller
(b) choose a PD controller
(c) choose a PI controller
(d) choose any of the above

M12.3 Manual PI controller tuning involves:
(a) tuning the proportional gain, Kp, until an

acceptable response occurs
(b) tuning Ki after tuning Kp
(c) finding a balance between the values for Kp

and Ki
(d) all of the above

M12.4 A disadvantage with manual tuning is:
(a) the time it takes to do all the tuning runs
(b) the wrong values of Kd often results
(c) only PI controllers can be manually tuned
(d) only unit step responses can be used with

the process

M12.5 For simple first-order systems, if we fix the
value of Kp to give a required closed-loop time
constant:
(a) the required steady state value will also be

achieved
(b) the required steady state value will not be

achieved
(c) the required steady state value might be

achieved
(d) the value of Kp has no effect on ess.

M12.6 Choosing a PI controller to stabilise a
control system means choosing the values of Kp
and Ki such that:
(a) there is no overshoot
(b) the steady state error is zero
(c) the closed-loop characteristic equation has

roots on the real axis
(d) the closed-loop characteristic equation has

roots in the LHP

M12.7 A PD controller:
(a) introduces a pole at the origin in the

open-loop transfer function
(b) introduces a poles at the origin in the

closed-loop transfer function
(c) introduces a RHP zero in the closed-loop

transfer function
(d) introduces a LHP zero in the closed-loop

transfer function

Questions: practical skills

Q12.1 It is common to find that step response tests are used to give a preliminary idea of the type of PID
control needed in particular application. List at least four features that might be found in a step
response test. Explain why these features are important for decisions about a possible PID design.

Q12.2 First-order system descriptions are commonly used as simple models. Give the transfer function
for a first-order system. Identify and describe the d.c. gain and the time constant. Why is the d.c. gain
so called? What multiple of the time constant corresponds to the 95% point? Prove your answer.

Q12.3 Knowledge of the system type will give immediate information on the system response. Complete
the following table and answer the control questions given.

System System type Control question

G s
k

s
() =

+τ 1
? What is the outcome of unity feedback with proportional control and a

step reference input?

G s
k

s s
()

()
=

+τ 1
? What is the outcome of unity feedback with proportional control and (a)

a step reference input and (b) a ramp input?

G s
k

s s
()

()
=

+2 1τ
? What is the outcome of unity feedback with proportional control and (a)

a step reference input, (b) a ramp input and (c) an acceleration input?

Q12.4 A boiler output step response is shown below, where the boiler input signal is changed from 4 m3

per minute to 4.5 m3 per minute. The initial steady output water temperature was 85 °C.
(a) Using the step response plot, determine the parameters of a first-order transfer function model, K,

and τ for the transfer function, G(s) = K/(τ s + 1).
(b) It is proposed to use proportional control in a unity feedback control loop as shown. If the propor-

tional gain is Kp = 4, use the transfer function you have found to show that the steady state offset
to a reference change of 10 °C is 0.3 °C.

(c) What structural change to the controller would you recommend to completely eliminate the offset?

12.6 PID controller design by pole placement 347

M12.8 Applying the D-term to the process output:
(a) removes integral action
(b) avoids derivative kick
(c) produces proportional kick
(d) gives reduced system damping

M12.9 A PID controllers:
(a) cannot provide zero steady state error in the

output
(b) cannot be tuned to provide reasonable

disturbance rejection
(c) cannot be tuned to provide a fast system

response
(d) cannot guarantee disturbance rejection and

reference tracking for all systems

M12.10 Pole placement design:
(a) involves equating terms in the design poly-

nomial with the open-loop polynomial
(b) involves equating terms in the closed-loop

characteristic equation with the design
polynomial

(c) involves producing a set of parameters to
give no overshoot

(d) involves producing a set of parameters to
give a damping ratio of 0.707.

Q12.5 An engineer is testing a motor drive position system before designing a PID control system. The
test procedure involves the usual plus- and minus-going step responses and the positive step
response is shown in the figure.

348 PID control: the background to simple tuning methods

Kp

Controller

K
st +1+

–

R s() Y s()

Key: Reference input, () = 10/R s s
Temperature output, ()Y s

Process

0 10 20 30 40 50 60 70 80 90
85

85.5

86

86.5

87

87.5

88

88.5

89

Time (minutes)

O
ut

pu
t t

em
pe

ra
tu

re
, °

C

Boiler temperature response

0 5 10 15 20 25 30
5

5.2

5.4

5.6

0 5 10 15 20 25 30
40

40.1

40.2

40.3

40.4

P
os

iti
on

(d
eg

re
es

)

Time (minutes)

In
pu

t v
ol

ta
ge

(a) Examine the plot carefully and list at least two particular aspects of the traces that might be impor-
tant for the PID control design.

(b) Use the trace to find a suitable Simulink simulation based on first-order system models. Verify your
simulation against the trace.

(c) Itemise the decisions that should be taken about the structure of the PID controller to be
designed.

(d) Use the manual test procedure to design a suitable PID controller which reaches 40.3 degrees in
less than 5 minutes and exhibits no steady state error.

Problems

P12.1 The figure below shows a process with proportional control:

The closed-loop transfer function for the system is given by

Y(s) =
K

s
CL

CLτ +1
R(s)

Investigate the following problems:
(a) Prove that the closed-loop gain may be expressed as

K
K K

K KCL
p

p
=

+()1

(b) Prove that the closed-loop time constant is given by

τ
τ

CL
p

=
+()1 K K

(c) If R(s) = r/s, where this is a step of magnitude r, show that as Kp →∞ then KCL →1. What does
this mean for ess = r – yss?

(d) Show that as Kp →∞ then τCL →0. What does this mean?
(e) How are the above theoretical results used in the tuning of proportional control of a first-order

system?

P12.2 A speed control loop in a manufacturing plant gave a 0.5 m s–1 change in speed when a 2% refer-
ence change was made. The speed measurement was found to be subject to a significant amount of
measurement noise. The speed loop time constant was found to be 5 minutes. It is desired to find a
three-term controller to ensure no steady state offset to step reference signals, to achieve a 5% settle
time of less than 10 minutes at most and to have as little overshoot as possible. Use the steps of Proce-
dure C, assume a first-order model for the speed loop and design a suitable three-term controller.

P12.3 The position control loop based on a d.c. motor actuator is a very common student laboratory
experiment. The loop uses a Type 1 model and demonstrates how differential control can be used to
tune system damping. A design for proportional control on error and derivative control on measured
variable, θ(s), is required, as shown in the figure. The system time constant is given as 0.5 s and
control specification is for critical damping with a natural frequency of 5 rad s–1.

Problems 349

Kp

Controller

K
st +1+

–

R s() Y s()

Process

(a) Calculate the appropriate proportional and derivative gains.
(b) Investigate the system response to a reference step of r(t) = 0.2.

(c) Comment on the practical feasibility of the control input produced.

P12.4 Knowledge of the expected behaviour of the common PID control configurations is valuable. In the
following the investigation centres on PID with a second-order plant model.

(a) Find G1(s), Yr(s), G2(s) and Yd(s), according to the diagram below.

(b) If the controller is set to Kc(s) = Kp + (Ki/s), for which Kp > 0 and Ki > 0 and the closed loop is
stable, then prove that there is no tracking reference offset, and that there is complete rejection of
do(s) in steady state.

(c) The controller is set to Kc(s) = Kp + Kds, for which Kp > 0 and Kd > 0 and the closed loop is
stable. Prove that, if the closed-loop system is represented in standard second-order transfer
function form, then ωn depends on Kp, ζ can be fixed by Kd and the selection of Kd has no effect
on the steady state performance of Yr(s), Yd(s).

350 PID control: the background to simple tuning methods

K sc()
K

s a s a2 1 2+ +
+

–

R s r s() = /

d0() = /s d s

Y s()

++

G s1()
R s()

Y s()+
+

G s2()
d0(s)

Yr ()s

Yd()s

K
ts + 1

E(s) q()s

D s()

R(s) Uc()s
Kp

–

+ 1
s

+
+

–

+

Kds

Root locus for analysis and design13
Pole location and system response

Pole-zero conservation principle

Root locus investigation Examples

Examples
Useful root locus rules

Second-order system performance indices
and the root locus diagram

Effect of adding a zero to the
root locus

Effect of adding a pole to the
root locus

Time delay and inverse
response systems

What is a
non-minimum
phase system?

rltool rlocusand

Parameter root locus

Help? Time to readGaining confidence Skill sectionGoing deeper

In Chapter 10, we learnt the benefits of knowing where the poles and the zeros lie in the s-plane.
We emphasised the useful information on the system stability and performance which may be
extracted from the knowledge of the position of the poles. We saw that for a stable closed-loop
system all the closed-loop poles must strictly lie in the LHP. Since stability is the prime objective
of a control system design, we always ensure that our controller stabilises the system by relo-
cating the poles such that they all lie in the LHP.

Once we have ensured closed-loop stability, we then refine the controller to achieve the
desired performance. The performance is often specified in terms of time domain indices (time
constant, rise time, damping ratio, ...) which we have already met, and frequency domain indices
(bandwidth, phase margin, ...), which we meet later in this book. Knowing the location of the poles
can help us to design controllers which meet these specifications. For example, the time domain
performance indices such as time constants for first-order systems and damping ratio and natural
frequency of second-order system are related to the distance of the poles from jωaxis.

To achieve pole placement or relocation we can manipulate the position of the closed-loop
poles by varying the controller gain K. A graphical aid for drawing the locus of closed-loop poles
was introduced in 1948 by W. R. Evans. This method still remains a very useful control system
design and analysis tool.

When the method was introduced, computers were not available. Hence many rules were
developed for sketching the root locus diagram. It is now very easy to plot a root locus diagram
using control engineering packages such as MATLAB. Thus we will not discuss in detail how to
draw or sketch the root locus. We should, however, be able to understand how a root locus
changes when we vary the controller gain from zero to infinity.

Learning objectives

� To understand the relationship between the system dynamics and the root locus.

� To become familiar with the basic principles of the root locus technique.

� To develop some skills in drawing and analysing the root locus diagram.

13.1 The relationship between the poles and system dynamic
response: a summary

Figure 13.1 summarises what we have learnt in previous chapters about the relationship
between system stability and the closed-loop poles (roots of the characteristic equation).
Our main conclusion was that for a system to be stable the system poles should lie in the
LHP; otherwise the system is unstable.

Our discussion on the relationship between the location of poles and the type of
responses that are expected is summarised in Figure 13.2. For a stable system, the domi-
nant poles are usually those with the smallest negative real parts. The system step
responses become faster as the dominant poles move away from the jω axis and deeper
into the LHP. However, the unstable poles are dominant in any system.

In designing a controller using feedback, we attempt to move the poles of the system to
desired locations in the LHP. Then the resulting closed-loop system may have better
stability properties and, hopefully, improved performance. We firstly study how the
system poles change using a proportional controller of gain K.

352 Root locus for analysis and design

13.2 Introducing the root locus

Consider the general unity feedback closed-loop system shown in Figure 13.3.

If we let G(s) = n(s)/d(s), where n(s) and d(s) are the numerator and denominator polyno-
mials of the system transfer function G(s), the open-loop poles are the roots of d(s) = 0.
The closed-loop system transfer function is defined as:

Y(s) =
KG s

KG s
()

()1+
R(s) = GCL(s)R(s)

which can be rewritten using our numerator and denominator polynomials as

13.2 Introducing the root locus 353

Real ()s

Imaginary ()s

Poles in the LHP
produce stable
responses

Poles in the RHP
make the system
unstable

A system with
poles on the jw
axis is unstable.

s-plane

Figure 13.1 System stability and location of roots.

Re()s

Im()s

Real poles in the LHP plane
produce decaying exponential
type step responses.

Complex conjugate poles
in the LHP produce
exponentially damped
sinusoidal step responses.

Complex conjugate
poles on the jw axis
produce oscillatory
step responses.

s-plane

Figure 13.2 The relationship between system step responses and location of the poles.

K
R s() Y s()E s()

G s()
+

–

Figure 13.3 A unity feedback system.

GCL(s) =
K

n s
d s

K
n s
d s

Kn s
d s Kn s

()
()

()
()

()
() ()1+

=
+

The closed-loop poles can be determined from the roots of the denominator polynomial,
C(s), which we refer to as the closed-loop pole polynomial:

C(s) = d(s) + Kn(s) = 0

This equation shows that the controller K will directly change the polynomial and hence
the system poles. By changing K, we change the position of the system poles on the
s-plane. If we change K from 0 to infinity, we can calculate the position of the poles for all
values of K. The plot of these poles on the s-plane is the locus of the closed-loop system
poles and is called the root locus. It is a graphical representation of the closed-loop pole
positions for increasing values of gain K.

We can see, very simply, that if we set K = 0, then C(s) = d(s) = 0, and we find the
open-loop poles of the system.

We demonstrate the root locus principle by calculating manually what the root locus
sketch will be. We then find that there are several useful rules which aid our sketching.
And, of course, MATLAB will produce a root locus plot painlessly, but if we wish to
understand and interpret the information we need to have some understanding of how
the locus is formed.

We will need knowledge of the poles and zeros of the system transfer function to under-
stand the root locus plot. We calculated the system zeros for a transfer function
G(s) = n(s)/d(s) by solving n(s) = 0. These zeros turn out to be the finite zeros of the system.
In root locus applications we must be aware of the pole–zero conservation principle. This
can be stated quite simply:

Key result: Pole–zero conservation principle

Given a transfer function G(s) = n(s)/d(s), with np poles and nz finite system zeros, we find

np = nz + nz∞

where nz is the number of the finite (or system) zeros and nz∞ is the number of zeros at infinity.

In essence, we must have the same number of zeros as poles, whether the zeros are finite
or at infinity.

Skill section Determining poles and finite or infinite zeros

Problem For the following transfer functions, find the poles and zeros and apply the pole–zero conserva-
tion principle to find the number of zeros at infinity.

(a) G1(s) =
1

3 5()()s s+ +

(b) G2(s) =
s

s s
+

+ +
3

3 52()

354 Root locus for analysis and design

(c) G3(s) =
s

s s
−
+
2
4()

Solution (a) Poles: solve d(s) = 0. (s + 3)(s + 5) = 0. p1 = –3, p2 = –5. np = 2

Zeros: solve n(s) = 0. No finite zeros. nz = 0.

Pole–zero conservation principle: np = nz + nz∞

Using np = 2 and nz = 0, there are two zeros at infinity.

(b) Poles: solve d(s) = 0. (s2 + 3s + 5)(s + 6) = 0. p1,2 = –1.5 ± 11 2/ , p3 = –6. np = 3.

Zeros: solve n(s) = 0. (s + 3) = 0. nz = 1.

Pole–zero conservation principle: np = nz + nz∞

Using np = 3 and nz = 1, there are two zeros at infinity.

(c) Poles: solve d(s) = 0. s(s + 4) = 0. p1 = 0, p2 = –4. np = 2.

Zeros: solve n(s) = 0. s – 2 = 0. nz = 1.

Pole–zero conservation principle: np = nz + nz∞

Using np = 2 and nz = 1, there is one zero at infinity.

Problem An engineer has modelled a servo system and found the open-loop transfer function representa-
tion to be:

G s
s

s s
() =

+
+ +

2
4 32

(a) What are the zeros of the system? What are the open-loop poles?

(b) Identify the closed-loop pole polynomial equation, C(s) = d(s) + Kn(s) = 0, needed for a root
locus plot.

(c) Solve the equation for K = 0.

(d) Show that as K →∞, the closed-loop poles approach the system zero positions.

(e) Tabulate the closed-loop pole positions for a range of proportional gains

K = 0.5, 1, 1.5, 2, 2.5, ...

and draw a sketch of the closed-loop poles.

(f) Run the MATLAB rlocus command and verify the results.

Solution (a) The system zeros are found by solving

n(s) = 0 ⇒(s + 2) = 0

This gives s = –2. Therefore there is a zero at z = –2.
The open-loop poles are found by solving

d(s) = 0 ⇒(s2 + 4s + 3) = 0

This results in s = –3 and s = –1. There are two poles at p1 = –3 and p2 = –1. By the
pole–zero conservation principle, we must have the same number of zeros as poles: in this

13.2 Introducing the root locus 355

case we have two poles and one system zero. We must therefore also have one zero at
infinity.

(b) The closed-loop pole polynomial equation is given by C(s) = s2 + 4s + 3 + K(s + 2) = 0:

C(s) = s2 + (4 + K)s + (3 + 2K) = 0

(c) For K = 0, we obtain

C s s K s K s s s s() () () ()()= + + + + = + + = + + =2 24 3 2 4 3 1 3 0

giving s = –1 and s = –3. We can see from the answer to (a) that these are the open-loop pole
positions.

(d) To investigate what happens as K → ∞ , we solve the closed loop polynomial equation as
follows:

C(s) = s2 + 4s + 3 + K(s+2) = s2 + (4 + K)s + (3 + 2K) = 0

Applying the quadratic root formula gives

s
K K K K K

=
− + ± + − +

=
− + ± +() [() ()] () (). .4 4 4 3 2

2
4 4

2

2 05 2 05

Rearranging gives

s
K K

K
=
− +

± +⎛
⎝
⎜

⎞
⎠
⎟

() .4
2 2

1
4
2

05

For very large K, the two closed loop poles become

s
K K

=
− +

±
()4

2 2

and s = –2 and s →– ∞ . Therefore as K → ∞ , one closed loop pole goes to the finite zero
location at s = –2, and the other closed loop pole goes to s = – ∞, the infinite zero location.

(e) To tabulate the closed-loop pole positions, we have to solve the second-order equation for
C(s). For example, if K = 0.5 then we solve

C(s) = s2 + (4 + K)s + (3 + 2K) = s2 + (4 + 0.5)s + (3 + 1) = s2 + 4.5s + 4 = 0

We then find that C(s) has two real roots s = –3.28 and s = –1.219 and these are the
closed-loop poles of the system for the gain K = 0.5. Repeating this process for K = 1, 1.5, ..., we
find the results in Table 13.1. We notice that one pole ends at the value s = –2, the open-loop
finite zero, and the other pole tends to infinity (the zero at infinity), as we predicted in part (d). The
closed-loop poles are shown on the s-plane (Figure 13.4).

(g) We can use MATLAB to help us plot the root locus. We need only enter the open-loop
transfer function and MATLAB calculates the polynomial C(s) and solves the equation
C(s) = 0 for us. The following MATLAB code produces the plot shown in Figure 13.5.

356 Root locus for analysis and design

K 0.0 0.5 1.0 1.5 2.0 2.5 ∞

p1 –3.0 –3.28 –3.62 –4.00 –4.41 –4.85 –∞

p2 –1.0 –1.22 –1.38 –1.50 –1.59 –1.65 –2

Table 13.1 Table of closed loop poles for different values of K.

s=tf('s');
g=(s+2)/(s^2+4*s+3);
rlocus(g);

13.2 Introducing the root locus 357

–4 –3 –2 –1 0 1 2

Real

Imag

System zero

Open loop poles

K = 1.5K = 1.5
K = 0.5

K = 1.0K = 2.0

K = 2.5

Increasing K
Increasing
K

K = 0.5

K = 2.5

Figure 13.4 Sketch of closed-loop pole positions.

–4 –3 –2 –1 0 1 2
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Real axis

Im
ag

.a
xi

s

Open loop poles

System zero

Figure 13.5 MATLAB root locus plot of (s + 2)/(s2 + 4s + 3).

13.3 Preliminary MATLAB root locus investigations

In the example above we saw how the manual construction of a root locus is
time-consuming and calculation-heavy. MATLAB will enable us to generate root locus
plots very easily, so we are going to examine the main features of a plot using MATLAB.

Example 1
We consider the system

G(s) =
K

s s()+2
There are no system zeros for this system, and two open-loop poles, p1 = 0 and p2 = –2. By the
pole–zero conservation principle, we have the same number of zeros (finite or at infinity) as poles;
therefore we will have two zeros at infinity. We use the following MATLAB code to plot the root
locus.

s=tf('s');
g = 1/(s*(s+2));
rlocus(g);

This produces the plot shown in Figure 13.6.

The open-loop poles are shown on the root locus diagram; there are no finite system zeros, but
we have two zeros at infinity. The root locus plot shows the locus for increasing values of K. These
root locus plots start at the open-loop poles and end at the zeros at infinity. In this example, there

358 Root locus for analysis and design

–3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

Real axis

Im
ag

. a
xi

s

Open loop poles

Branches tending to
zeros at •

Direction of
increasing K

Figure 13.6 Root locus plot of K/[s(s + 2)].

were two poles and no system zeros, so we have two zeros at infinity to balance the poles and
zeros of the transfer function.

We have two open-loop poles, each with its own locus which ended at a zero; we call each
locus a branch.

In this example, the branches meet at a point and break away along two asymptotes. The
asymptotes are symmetrical with respect to the real axis.

We consider another example to see if the same features occur.

Example 2
We consider the system

G(s) =
s

s s s
−

+ + +
4

1 2 3()()()

There is one zero in the RHP at z = 4. There are three poles: p1 = –1 and p2 = –2 and p3 = –3. We
use the following MATLAB code to plot the root locus.

s=tf('s');
g = (s–4)/(s+1)/(s+2)/(s+3);
rlocus(g);

This produces the plot shown in Figure 13.7.

We note that there is one zero in the RHP. The three open-loop poles give rise to three branches:
one branch ends at the zero in the RHP, while the other two meet at a breakaway point and tend to
two zeros ‘at infinity’. The two branches which are contained wholly in the LHP provide stable

13.3 Preliminary MATLAB root locus investigations 359

–5 –4 –3 –2 –1 0 1 2 3 4 5 6
–25

–20

–15

–10

–5

0

5

10

15

20

25

Real axis

Im
ag

.a
xi

s

System zero

Open loop poles

Branches
K = 5.89

Figure 13.7 Root locus plot of (s – 4)/[(s + 1)(s + 2)(s + 3)].

closed-loop poles for all gain K. However, the root locus that ends at the RHP zero tells us that for
values of K above a specific value (K = 5.89), the closed-loop system will have a pole outside the LHP,
and therefore the closed-loop system will be unstable. Therefore by plotting the root locus we can
determine how large we can make the gain K before we incur instability in the closed-loop system.

Once again we note that the root locus is symmetrical with respect to the real axis.

13.4 Some useful root locus rules

From the previous examples we can formulate a number of useful rules. We do this
without going through the proofs, which are not necessary for learning how to use the
root locus technique.

Key result: Root locus rules

1. Number of branches
The number of branches is equal to the number of closed-loop poles

2. Symmetry of branches
The branches are symmetric with respect to the real axis.

3. Poles of the open-loop system
The open-loop poles lie on the root locus at K = 0

4. Zeros of the open-loop system
If the system has a number nz of finite zeros, then the same number of closed-loop poles will go to
these zero positions as K →∞ . The remaining poles will go to the zero positions at infinity.

5. Locus on real axis
A segment of the root locus will lie on the real axis only if the number of poles and finite zeros to the
right of this segment is an odd number.

6. Start and end points
The branches start at the open-loop poles for K = 0 and end at the open-loop zeros.

7. Breakaway points
Breakaway points on the real axis are found by solving the following equation for values of s.

d
d
OLG s
s

()
= 0

Complex breakaway points must also satisfy this equation, but, in addition, the pole positions must
satisfy the closed-loop pole polynomial equation for a real value of gain K.

d(s) + Kn(s) = 0

8. Asymptotes of the locus
If G(s) has np poles and nz system zeros, the root locus are asymptotic to (np – nz) straight lines making
angles with the real axis of:

φ =
+ × °

−
()1 2 180k

n np z
, k = 0, 1, 2, ..., (np – nz) – 1

360 Root locus for analysis and design

Example We consider the servo system shown in Figure 13.8.

The system has an open-loop zero at s = –6 and two poles at s = 0 and s = –4. We use MATLAB to
plot the root locus diagram as seen in Figure 13.9, and study the rules as described above.

1. Number of branches
The closed-loop system is given by

GCL(s) = G s
s

s s Ks KCL() =
+

+ + +
6

4 62

The closed-loop poles are found by solving the closed-loop pole polynomial equation

C(s) = s2 + 4s + K(s + 6) = 0

This is of second-order and it has two poles. The number of branches is therefore equal to two.

2. Symmetry of branches
The branches are symmetric with respect to the real axis. This symmetry occurs since the poles
are either real (on the Real axis) or complex conjugate pairs – one on each side of the real axis.

3. Poles of the open-loop system
The open-loop poles are at p1 = 0 and p2 = –4.

13.4 Some useful root locus rules 361

–12 –10 –8 –6 –4 –2 0 2
–4

–3

–2

–1

0

1

2

3

4

Real axis

Im
ag

. a
xi

s

Branch 1

Branch 2

Figure 13.9 Root locus of K(s + 6)/[s(s + 4)].

K ()
s

s s
+
+

6
4

R s() Y s()E s()
+

–

Figure 13.8 Servo system.

4. Zeros of the open-loop system
There is one system zero at z1 = –6. The pole–zero conservation principle tells us that

np = nz + nz∞

Therefore, since np = 2 and nz = 1, we will have one zero at infinity, z2 = ∞ , and only one branch
will go to infinity.

5. Locus on real axis
The locus exists only to the right of z1 = –6 and to the right of p2 = –4 since the total number of
poles and system zeros is an odd number: np + nz = 2 + 1 = 3. The locus does not lie to the right of
p1, since the number of poles and finite system zeros is an even number.

6. Start and end points
Branch 1 starts at p2 = –4 and ends at z2 = ∞ . Branch 2 starts at p1 = 0 and ends at z1 = –6.

7. Breakaway points
We solve the following equation and determine whether we have real or complex breakaway
points.

d
d
OLG s
s

()
= 0

d
ds

s
s s

s s
s s

+
+

⎛
⎝
⎜

⎞
⎠
⎟ =

− + +
+

=
6
4

12 24
4

02

2

2 2
()

()

By setting the numerator to zero (s2 + 12s + 24 = 0) we find two real breakaway points at

s = –9.5 and s = –2.5

8. Asymptotes of the locus
G(s) has np = 2 poles and nz = 1 system zeros. The asymptotes are given by

φ =
+ × °

−
()1 2 180k

n np z
, k = 0, 1, 2, ..., (np – nz) – 1

Therefore the root locus are asymptotic to one straight line, making an angle of φ= 180° for k = 0.

13.5 Second-order system performance: root locus contours

We would like to consider what we can find out about the closed-loop system perfor-
mance from the root locus.

For second-order systems, we have found in Chapter 10 that systems with the same
damping ratio have poles that lie on the same radial line from the origin. Likewise,
systems with the same value of natural frequency, ωn, have poles that lie on the same
circle centred on the origin. These contours of damping and natural frequency can be
overlaid on any s-domain plot. The MATLAB command for this is sgrid. Consider the
transfer function G(s) given by:

G(s) =
1

0 5 1 12(.)()s s s+ + +

For this example, the MATLAB code would be

362 Root locus for analysis and design

s = tf('s');
g = 1/((s+1)*(s^2+0.5*s+1));
rlocus(g)
axis equal
sgrid

The root locus plot is shown in Figure 13.10.

Example We consider the example of a d.c. motor: Figure 13.11. The transfer function of the motor
between the controller input signal U(s) and the output shaft velocity, ω(s) is given by a simple
first-order lag where τ = 0.5 seconds. The position of the shaft is represented by θ(s). The
controller, K, is a proportional controller.

The open-loop transfer function is given by G(s) = K/[s(s + 2)]. The system has two poles at p = 0
and p = –2 and no open-loop zeros. The root locus plot in Figure 13.12 shows the position of the
closed-loop poles as we change K from 0 to ∞ .

The MATLAB Control Toolbox command rltools is used to generate the root locus diagram.
By moving the small square cursors along the loci, we are effectively changing the position of the
closed-loop poles. The associated change in gain K is shown. The damping and natural frequency
are also shown for values of ζ < 1, that is, when the loci do not lie on the real axis. In this example,
we note that for K ≤1the closed-loop poles are real and for K > 1 the poles are complex. The

13.5 Second-order system performance: root locus contours 363

–3 –2 –1 0 1 2
–2.5

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

Real axis

Im
ag

. a
xi

s

Circles of constant wn

Lines of constant z

Figure 13.10 Contours of damping and natural frequency.

K

R s() q()sE s()
+

–

1
s + 2

1
s

w()sU s()

Figure 13.11 D.c. motor.

values of gain K are also shown at some points on the diagram; we find that we can complete the
following table:

Gain Damping ratio, Natural frequency, n Response type

0 < K < 1 Not shown but ζ > 1 since both poles lie on real axis Overdamped

K = 1 ζ = 1 ω n = 1 Critically damped

K = 1.55 ζ = 0.8 ωn = 1.25 Underdamped

K = 4 ζ = 0.5 ωn = 2 Underdamped

In this example, the closed-loop poles approach each other as we increase the gain K. Note that
the two poles are real for 0 < K < 1, and hence the system is over damped. At K = 1, the two poles
have the same location and the system becomes critically damped. For K > 1, the two poles
moves toward the two zeros at infinity and the system becomes under damped.

13.6 Effects of adding a pole or a zero to the root locus of a second-
order system

We discussed how we could change the value of gain K to change the position of the
closed-loop poles. This corresponds to placing a proportional gain, K, in cascade with the
system G(s) and finding the closed-loop poles for different values of gain, K. However,
proportional control is a simple form of control; it does not provide us with zero steady

364 Root locus for analysis and design

–4 –3 –2 –1 0 1
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2
Root locus design

Real axis

p1 0

= 4K

Branch

p2

= 1.5K

= 1.5K

= 4K

= 1K

Figure 13.12 Root locus plot for d.c. motor.

state error and it will limit the type of time response we can produce from a system. For
example, in some control design problems, to produce the performance required in the
design specifications we need to move the poles to some positions on the s-plane, which
may not lie on a root locus defined by the simple proportional gain K. To be able to move
the poles to any position on the s-plane, we need to use a more complicated controller.
For example, we may need to add a zero or a pole to the controller and see how this will
affect the root locus and hence the position of the closed-loop poles. Examples of control-
lers with poles or zeros are:

PI control: K(s) = Kp +
K
s

K s K

s
i p i=

+

Lag controller: K(s) =
s
s
τ

α τ
+
+
1
1

(τ , α are controller parameters)

Thus, we need to know how the root locus will change if we add a pole or a zero. To
investigate this, we will use a simple example.

13.6.1 Effects of adding a zero on the root locus for a second-order system
Consider the second-order system given by

G(s) =
1

1 2()()s p s p+ +
p1 > 0, p2 > 0

The poles are given by s = –p1 and s = –p2 and the simple root locus plot for this system is
shown in Figure 13.13(a). When we add a zero at s = –z1 to the controller, the open-loop
transfer function will change to:

G1(s) =
K s z

s p s p
()

()()
+

+ +
1

1 2
, z1 > 0

13.6 Effects of adding a pole or a zero to the root locus of a second- order system 365

Im
ag

. a
xi

s

Im
ag

. a
xi

s
Im

ag
. a

xi
s

–6 –4 –2 0 2
–2

–1

0

1

2

Real axis

–6 –4 –2 0 2
–2

–1

0

1

2

Real axis
–8 –6 –4 –2 0 2

–2

–1

0

1

2

Real axis

(b)

(c) (d)

–p1

–p1–p1

–p2

–p2 –p2

–6 –4 –2 0 2
–2

–1

0

1

2

Real axis

Im
ag

. a
xi

s

(a)

–p1–p2

Figure 13.13 Effect of adding a zero to a second-order system root locus.

We can put the zero at three different positions with respect to the poles:

1. To the right of s = –p1 Figure 13.13(b)

2. Between s = –p2 and s = –p1 Figure 13.13(c)

3. To the left of s = –p2 Figure 13.13(d)

We now discuss the effect of changing the gain K on the position of closed-loop poles
and type of responses.

(a) The zero s = –z1 is not present.
For different values of K, the system can have two real poles or a pair of complex
conjugate poles. This means that we can choose K for the system to be overdamped,
critically damped or underdamped.

(b) The zero s = –z1 is located to the right of both poles, s = – p2 and s = –p1.
In this case, the system can have only real poles and hence we can only find a value
for K to make the system overdamped. Thus the pole–zero configuration is even more
restricted than in case (a). Therefore this may not be a good location for our zero,
since the time response will become slower.

(c) The zero s = –z1 is located between s = –p2 and s = –p1.
This case provides a root locus on the real axis. The responses are therefore limited to
overdamped responses. It is a slightly better location than (b), since faster responses
are possible due to the dominant pole (pole nearest to jωaxis) lying further from the jω
axis than the dominant pole in (b).

(d) The zero s = –z1 is located to the left of s = –p2.
This is the most interesting case. Note that by placing the zero to the left of both
poles, the vertical branches of case (a) are bent backward and one end approaches the
zero and the other moves to infinity on the real axis. With this configuration, we can
now change the damping ratio and the natural frequency (to some extent). The
closed-loop pole locations can lie further to the left than s = –p2, which will provide
faster time responses. This structure therefore gives a more flexible configuration for
control design.

We can see that the resulting closed-loop pole positions are considerably influenced by
the position of this zero. Since there is a relationship between the position of closed-loop
poles and the system time domain performance, we can therefore modify the behaviour of
closed-loop system by introducing appropriate zeros in the controller.

13.6.2 Effects of adding a pole on the root locus for a second-order system
We demonstrate the effect of adding a pole by using the second-order system of the
previous example. We add a pole at s = – p3 to the controller. The open-loop transfer func-
tion will change to:

G2(s) =
K

s p s p s p()()()+ + +1 2 3
p1 > 0, p2 > 0, p3 > 0

Once again, the root locus of the original system G(s) is shown in Figure 13.14(a). We can
put the pole at three different positions with respect to p1 and p2:

366 Root locus for analysis and design

1. To the right of s = –p1, Figure 13.14(b)

2. Between s = –p2 and s = –p1, Figure 13.14(c)

3. To the left of s = –p2 Figure 13.14(d)

We discuss each of the three cases of different pole locations.

(a) The pole s = –p3 is not present.
For different values of K, the system can have two real poles or a pair of complex
conjugate poles. However, for any value of K, the closed-loop pole will remain in the
LHP and the closed-loop system will be stable. We can choose K for the system to be
overdamped, critically damped or underdamped.

(b) The pole s = –p3 is located to the right of s = –p1.
Adding a pole to the right of s = –p1 changes the position of the root locus on the hori-
zontal axis. Two branches of the root locus lie on the real axis between the two poles
closest to the jω axis, and the branches meet at a breakaway point (s = –1.45 found
from MATLAB) and move towards zeros at infinity. The rule on asymptotes causes
the root locus to bend towards the RHP. This has the consequence that at some value
of K, the closed-loop system will become unstable. The third branch lies to the left of
the leftmost pole and lies on the real axis; the locus moves again towards a zero at
infinity. We note that as we increase the gain K, two of the poles become complex,
and hence the closed-loop system becomes underdamped.

(c) The pole s = –p3 is located between s = –p2 and s = –p1.
This case is similar to (b), with the exception that the breakaway point is at s = –2.4.
The closed-loop complex conjugate poles move towards the RHP as the gain
increases; at high gain we will have instability.

13.6 Effects of adding a pole or a zero to the root locus of a second- order system 367

–6 –4 –2 0 2
–2

–1

0

1

2

Real axis

–6 –4 –2 0 2
–4

–2

0

2

4

Real axis

(a)

(c)

–p2 –p1

–6 –4 –2 0 2
–4

–2

0

2

4

Real axis

Im
ag

. a
xi

s

Im
ag

. a
xi

s

Im
ag

. a
xi

s

Im
ag

. a
xi

s

(d)

–p2 –p1–p3–p2 –p1–p3

–6 –4 –2 0 2
–4

–2

0

2

4

Real axis

(b)

–p2 –p1 –p3

Figure 13.14 The effect on the root locus of adding a pole to a second-order system.

(d) The pole s = –p3 is located to the left of s = –p2.
This case is also similar to (b), but the breakaway point has moved slightly to s = –2.7.

We can see that adding a pole will slow the closed-loop response, since the root locus has
branches that move towards the jω axis. This will also reduce the system stability margin.

13.7 Time delays and inverse response systems

Many industrial systems contain time delay effects. For example, we often find that long
pipework leads to transport delays in the supply of liquid feedstock. Another example is
the computational delay associated with the time taken to perform a control calculation
and output the control signal value. In these cases the input u(t) and the output y(t) of a
time-delayed system are related by:

y(t) = u(t – Td)

where Td is the dead time or transport delay time. The transfer function of such systems
can be determined as:

Y(s) = e d− sT U(s)

A time-delayed process may have the transfer function

G(s) = e d− sT Gp(s)

Another type of industrial system is the system which exhibits ‘inverse response’. This
was discussed in Chapter 10 on poles and zeros, where we found that this system is char-
acterised by having a zero in the RHP. Typically this effect is due to the process having
competing effects which produce the type of response shown in Figure 13.15.

368 Root locus for analysis and design

Time (seconds)

A
m

pl
itu

de

Step response

0 5 10 15
–0.5

0

0.5

1

1.5

2

2.5

3

3.5

Inverse response

Figure 13.15 Inverse response from system.

13.7.1 Why systems with RHP zeros are called non-minimum phase
Consider a system with a left half plane zero:

GL(s) =
s

s s
+

+ +
1

2 3()()

The system will have its phase given by

∠GL(jω) = φ (ω)

Now consider a modification of GL(s) which has its zero in the right half plane:

GR(s) =
s

s s
−

+ +
1

2 3()()

We can write the RHP system as

GR(s) =
s
s

s
s s

−
+

⎛
⎝
⎜

⎞
⎠
⎟

+
+ +

⎛

⎝
⎜

⎞

⎠
⎟1

1
1

2 3()()
= Gm(s)GL(s)

where GL(s) has all its zeros in the LHP and Gm(s) = (s – 1)/(s + 1) contains the zero in the
RHP. If we look at the frequency properties by setting s = jω , we find:

GR(jω) = Gm(jω) GL(jω)

where

Gm (jω) =
j
j
ω
ω
−
+

1
1

We find the two properties, magnitude and phase, for GR(jω):

|GR(jω)| = |Gm(jω)GL(jω)| = |Gm(jω)| |GL(jω)| = |GL(jω)|

since the magnitude of |Gm(jω)| = 1,

∠GR(jω)= ∠Gm(jω)GL(jω) = ∠Gm(jω) + ∠GL(jω)

= –2tan–1ω+ φ (ω)

because ∠Gm(jω) = –tan–1ω – tan–1ω = –2tan–1ω .
Clearly the gain and phase properties of the system with the RHP zero, GR(s), can be

related to those of the system with the LHP zero. At each frequency, ω ,

|GR(jω)| = |GL(jω)|

and

∠GR(jω) = –2tan–1ω+ φ (ω)

Therefore it is only the phase properties which differ. The minimum phase lag φ(ω) occurs
for the LHP zero transfer function, which is termed minimum phase. Relative to this, the
transfer function with the RHP zero has extra phase lag and is therefore termed
non-minimum phase.

13.7.2 Transfer functions for time delay and inverse response systems
We found that the inverse response system always had a zero in the RHP:

13.7 Time delays and inverse response systems 369

G(s) = (s – z)Gp(s)

The time delay system can be modelled by the transfer function

G(s) = e d− sT Gp(s)

where we can replace the complex exponential by a Padé approximation:

e d− ≅sT 1 2
1 2
−
+

s T
s T
(/)
(/)

d

d

However, this gives G(s) a zero in the RHP. We find that due to the presence of this RHP
zero, the root locus plots for the two types of industrial system (time delay and inverse
response) look similar.

Example Consider a simple unity feedback system which has a time delay, Td, of 0.3 seconds:

G s
K s

()
.

=
−e

s +1

03

We replace e d−T s by its Padé approximation. Note that we can use the following MATLAB
commands to produce a first-order approximation

order=1;
delay = 0.3;
[num,den] = pade(delay,order);

For Td = 0.3, this results in

e d− =
− +
+

T s s
s

667
667

.
.

and we can approximate G(s) by:

G s
K s
s s

()
(.)

(.)()
≅

− +
+ +

667
667 1

We can see that this time-delay system has a zero at z1 = 6.67 which is on the RHP and thus the
system is non-minimum phase. The system has the root locus diagram shown in Figure 13.16. The
root locus shows that time-delay systems can be easily made unstable by increasing the value of
gain K, since at least one branch of the root locus (in this case both branches) will end at the zero
in the RHP.

We have shown that time-delay systems and non-minimum phase systems will often present
problems in control design due to the RHP zero that appears in the numerator polynomial of the
transfer function. We must be careful in those circumstances not to increase the gain to cause the
closed-loop poles to move to the RHP.

13.8 Parameter root locus

When we use a root locus plot, we take an open-loop transfer function G(s) given by

G(s) = K
n s
d s

()
()

370 Root locus for analysis and design

and examine how the poles of the closed-loop system change for variations in parameter
K. We are effectively examining the roots of the following equation for different values of
K:

d(s) + Kn(s) = 0

If we can pose a problem in the same format, that is, ‘Given two transfer functions n(s)
and d(s), how do the roots alter for changes in parameter K?’, we can exploit the root locus
theory to our benefit. One clever use of this is illustrated as follows. Let G(s) be given by

G(s) =
s

s s s
+

+ + +
6

4 2 13 2 α

where αmay be a system component or parameter. The closed-loop poles are given by the
roots of

s3 + 4s2 + 2αs + 1 = 0

Suppose now that we would like to find the closed-loop poles for a range of values of α.
To do this, we can rewrite the polynomial in the form:

(s3 + 4s2 + 1) + α(2s) =0

which is now in the same form as d(s) + Kn(s) = 0, where

d(s) = s3 + 4s2 +1

n(s) = 2s

and α takes the role of K.
If we enter the fictitious transfer function into MATLAB:

Gfict(s) =
2
4 13 2
s

s s
n s
d s+ +

=
()
()

13.8 Parameter root locus 371

–30 –20 –10 0 10 20 30
–15

–10

–5

0

5

10

15
Root locus design

Real axis

Im
ag

. a
xi

s

Figure 13.16 Root locus of a time-delay system.

we can use the root locus plot to find how the closed-loop poles vary for different values of
α(= K). We do not use the fictitious transfer function for our closed-loop responses; it is
merely used to formulate the problem of examining how the closed-loop poles vary for
changes in α.

Skill section Parameter root locus: what transfer function should we enter?

Problem For the following systems, what transfer function should you enter to investigate changes in
parameter K?

Solution (a) Find the closed-loop transfer function, GCL(s).

Y(s) =
2
1 2

2
3 5 1 23 3 2

()
() ()

()
()

()
s K

s s K
R s

s K
s s s K

R s
+

+ + +
=

+
+ + + +

Closed-loop pole polynomial given by:

C(s) = s3 + 3s2 + 5s + 1 + 2K = 0 = d(s) + Kn(s)

Assign denominator and numerator of fictitious transfer function:

d(s) = s3 + 3s2 + 5s + 1

n(s) = 2

K = K

Fictitious transfer function to be entered is:

Gfict(s) =
2

3 5 13 2s s s+ + +

(b) Find the closed-loop transfer function, GCL(s).

Y(s) =
Ks

s s s Ks
R s

Ks
s s s

+
+ + + +

=
+

+ + +
05

2 1 3 1 05
05

6 5 053 2
.

()() .
()

.
. +Ks

R s()

Closed-loop pole polynomial given by:

C(s) = 6s3 + 5s2 + s + 0.5 + Ks = 0 = d(s) + Kn(s)

Assign denominator and numerator of fictitious transfer function:

d(s) = 6s3 + 5s2 + s + 0.5

372 Root locus for analysis and design

R s()

–
Y s()

+

E s() Uc()s
2

(a) (+)s K
(s + 1)3

R s()(b)

–
Y s()

+

E s() Uc()sKs + 0.5
s

1
(2s+ 1)(3s+1)

n(s) = s

K = K

Fictitious transfer function to be entered is:

Gfict(s) =
s

s s s6 5 053 2+ + + .

Problem An engineer is designing a d.c. servo system and the motors available cover a range of time
constants, τ . The open-loop transfer function description is given by

G s
s s

()
()

=
+

10
1τ

The engineer would like to find the range of values of the time constant τ for which the
closed-loop system is stable and the response is underdamped.

Solution Assuming G(s) is under unity feedback with the gain K = 1, we find the closed-loop transfer
function:

G s
s s

s s
s sCL()

()

()

= +

+
+

=
+ +

1
1

1
1

1

1
12

τ

τ
τ

The closed-loop poles are given by the roots of the denominator of GCL(s):

τ s2 + s + 1 = 0 = s2 +
1
τ
(s + 1) = 0

If we write this as d(s) + Kn(s) = 0, we would find

d(s) = s2

n(s) = s + 1

and

K = 1/τ

This gives Gfict(s) = (s + 1)/s2.
We can now plot the root locus for this system to study the effect of K = 1/τ on the closed-loop

performance. The root locus of the system is shown in Figure 13.17.
We can see that as we increase the value of K the closed-loop poles move from the poles at the

origin to a breakaway point to the left of the zero. Thereafter, one branch approaches the zero at
s = –1 and the other approaches the zero at infinity. We examine the system behaviour for
different ranges of K.

Range of K Range of Response type

0 < K < 4 ∞> τ > 0.25 underdamped

K = 4 τ = 0.25 critically damped

4 < K < ∞ 0.25 > τ > 0 overdamped

13.8 Parameter root locus 373

13.8.1 How a parameter root locus might arise in a control example
In designing the d.c. motor system, as shown in Figure 13.18, we might be very interested
in how the performance depends on motor selection (choice of Km, τm) or the
tachogenerator feedback gain (choice of Kt). The parameter root locus can help us investi-
gate these problems.

We first need to find the closed-loop transfer function in terms of the design parameters
Kc, Km, τm and Kt. We do this in two steps:

Inner loop transfer function ω (s) =
K

s K K
m

m m tτ + +1
U(s)

Open-loop transfer function GOL(s) =
K K

s K K
c m

m m ts(τ + +1)

Closed-loop transfer function θ(s) =
G s

G s
sOL

OL
ref1+

()
()

()θ

=
K K

s K K s K K
c m

m m t c mτ 2 1+ + +()
θref(s)

374 Root locus for analysis and design

–4 –3.5 –3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1
–1.5

–1

–0.5

0

0.5

1

1.5

Real axis

Im
ag

.a
xi

s

Root locus design

K = 4

Double pole at
origin

Figure 13.17 Parameter root locus.

Kc
Km

tms + 1
1
s

K t

qref()s q()sU s()

–

+

–

w()s

Figure 13.18 Block diagram for d.c. motor.

The closed-loop poles of the d.c. motor system are found by solving

C(s) = τms2 + (1 + KmKt)s + KcKm = 0

Now the parameter root locus can be used. For example, suppose we had Kc = 0.95 and
motor parameters Km = 10 with τm = 0.25. If we wanted to investigate closed-loop perfor-
mance for a range of tachogenerator gains Kt > 0, we use the following:

C(s) = 0.25s2 + (1 + 10Kt)s + 9.5 = 0

= (0.25s2 + s + 9.5) + Kt(10s) = 0

For the parameter root locus we identify

d(s) = (0.25s2 + s + 9.5)

n(s) = 10s

and Kt takes the role of K.
The fictitious plant needed is

Gfict(s) =
10

0 25 9 52
s

s s. .+ +

and a root locus plot will tell us about the expected closed-loop and dynamic performance
that we can expect as we change the value of K (= Kt).

13.9 Using MATLAB rltool and rlocus routines

rlocus
rlocus(g) computes and plots the root locus of the MATLAB system, g (= G(s)), for K = 0 to ∞.
We note that the information given by the help function will show a different feedback
loop, where gain K is in the feedback path. Although the closed-loop transfer functions
for the two systems, Figure 13.19(a) and (b) will be different:

(a) GCL(s) =
KG s

KG s
()

()1+

(b) GCL(s) =
G s
KG s

()
()1+

the closed-loop denominator polynomial will be the same. In both cases, we enter both K
and G(s) in MATLAB to form the open-loop transfer function, GOL(s) = KG(s). The root
locus is then given by

rlocus(gol)

13.9 Using MATLAB rltool and rlocus routines 375

G s()

K

G s()K
+

– –

+

Customary feedback loop

(a)

rlocus configuration

(b)

Figure 13.19 rlocus configuration.

rltool
rltool is an interactive MATLAB programme, which we can use to design a controller
(compensator as it is called in MATLAB) using root locus techniques.

If we run rltool, the window in Figure 13.20 pops up.

Note that the feedback system is more general than the one we discussed. It refers to P(s)
as the process and K(s) as the controller. It has the system H(s) in the feedback loop and
F(s) in the forward path. H(s) and F(s) are initially set to 1 by default and there is no need to
change these values if we use the standard system we discussed.

The plant model G(s) can be first entered into MATLAB workspace in the main
MATLAB window. This model can then be imported into the programme by selecting the
Import Model item from the File menu.

376 Root locus for analysis and design

Figure 13.20 rltool window.

Figure 13.21 rltool: import compensator window.

By highlighting the plant model, g, and clicking on the arrow on the left-hand side of P
(Figure 13.21) we can enter the plant model. Press OK to complete model import. The root
locus diagram will then be automatically plotted.

Example Enter the following MATLAB commands:

s=tf('s');
g=(s+4)/(s*(s+1)*(s+6));
rltool

and import the model to obtain the root locus diagram (Figure 13.22).

The open-loop poles are shown by crosses and the zeros by circles. The squares show the
positions of the closed-loop poles, and the corresponding gain K = 28.01 can be read in the gain
window. By clicking and holding on the squares we can move them along the root locus to follow
the positions of the closed-loop poles. The gain K changes as the pole positions change and can
be read in the gain window.

The Step, Impulse, Bode, Nyquist or Nichols plots can be plotted by clicking in the square
boxes on their left-hand side.

Poles and/or zeros can be added by double-clicking on the Compensator window to bring up
the data entry window:

13.9 Using MATLAB rltool and rlocus routines 377

Figure 13.22 Root locus plot for G(s) = (s + 4)/s(s + 1)(s + 6).

We can then add poles or zeros by clicking on the appropriate button and entering the values of
poles or zeros. The poles and zeros can also be entered directly onto the root locus plot: clicking
on the small white square with a cross for zero or with a circle for a pole, and then click on the
desired position on the s-plane. For example, we may wish to modify the structure of the controller
to include additional poles and zeros. We could then use the rltool design tool to explore the
effect on the root locus diagram, and hence on the closed-loop system performance and stability,
of adding these extra poles and zeros.

What we have learnt

� To plot the root locus for simple systems.

� To understand simple features of a root locus plot, start and end points, the
branches and asymptotes.

� To relate systems and controllers to stability and performance properties using a
root locus plot.

� To understand the special effects of RHP zeros on a root locus plot.

� That adding poles and zeros to the compensator changes the root locus plot and
can cause the closed-loop poles to move into the RHP.

� That adding poles and zeros can move the closed-loop poles to positions on the
s-domain with desirable closed-loop performance.

� To link the effect of time delays and inverse response systems on the root locus plot
behaviour.

� To use the root locus plots for other system parameters, a method known as the
parameter root locus.

� To use the MATLAB rltool for root locus investigations.

Multiple choice

378 Root locus for analysis and design

M13.1 A root locus is used for:
(a) control design
(b) simulation
(c) modelling
(d) (b) and (c)

M13.2 Which statement is correct?
(a) a branch starts at a pole and ends at a zero
(b) a branch starts at a zero and ends at a pole
(c) a branch starts at the origin and ends at a

pole
(d) a branch starts at a zero and ends at the

origin

M13.3 A system of order 3 has a root locus with:
(a) 1 branch
(b) 2 branches
(c) 3 branches
(d) 4 branches

M13.4 A transfer function has a second-order
denominator and constant gain as the
numerator.
(a) the system has one zero at infinity
(b) the system has two finite zeros
(c) the system has two zeros at the origin
(d) the system has two zeros at infinity

Questions: practical skills

Q13.1 What are the poles and zeros (both finite and infinite) of the following systems?

(a) G1(s) =
s

s s
+

+ +
3

4 22

(b) G2(s) =
20

4 5()()s s+ +

(c) G3(s) =
2

3 1 5 1s s s()()+ +

Practical skills 379

M13.5 For a system with three poles and two finite
zeros:
(a) 1 branch goes to infinity
(b) 2 branches go to infinity
(c) 3 branches go to infinity
(d) 4 branches go to infinity

M13.6 To start the root locus design tool in
MATLAB, we use:
(a) rttool
(b) rltool
(c) rstool
(d) rtool

M13.7 A feedback system has G(s) in the forward
path and H(s) in the feedback path. To draw the
root locus, we use:
(a) rlocus(G)
(b) rlocus(H)
(c) rlocus(G*H)
(d) rlocus(G/H)

M13.8 The root locus for the unity feedback system
G(s) = 5 is:
(a) a horizontal straight line
(b) a vertical straight line
(c) a line passing through the origin
(d) does not have a root locus

M13.9 The root locus for G(s)=1/s2 is:
(a) a horizontal straight line on the real axis
(b) a vertical straight line passing through

(–1,0)
(c) a vertical straight line passing through (1,0)
(d) a vertical straight line passing through (0,0)

M13.10
A system has two real poles and one real zero
where p1 < z1 < p2 < 0.
(a) a branch of the root locus lies on the real

axis between z1 and p2
(b) a branch of the root locus lies on the real

axis between z1 and p1
(c) a branch of the root locus lies on the real

axis between p2 and ∞
(d) has no branch on the real axis

Q13.2 Find the open-loop transfer function for the root locus given below.

Q13.3 Find the system which has the following root locus:

380 Root locus for analysis and design

Root locus2

1.5

1

0.5

0

–0.5

–1

–1.5

–2

Real axis

Im
ag

. a
xi

s

–6 –5 –4 –3 –2 –1 0 1 2

Root locus2

1.5

1

0.5

0

–0.5

–1

–1.5

–2

Real axis

Im
ag

. a
xi

s

–2 –1.5 –1 –0.5 0 0.5 1

Q13.4 Consider the system shown:

(a) How many branches does the root locus of the open-loop system have?
(b) Is there any symmetry in the plot?
(c) Where are the open-loop poles and zeros on the root locus?
(d) Where does the root locus start and where does it end?
(e) Where is the locus on the real axis?

Q13.5 Sketch the root locus for the unity feedback system, G(s) = K/s. For what value of K does the
closed-loop system have a time constant of 10 seconds.

Q13.6 What transfer function do we have to use to plot the parameter (α) root locus for the following
open loop transfer functions in a unity feedback system configuration.

(a) G1(s) =
20

4 3 12s s+ +α

(b) G2(s) =
α

α

2

2 2s s+ +

Problems

P13.1 Consider the unity feedback system where GOL(s) = K/s2.
(a) Plot the root locus.
(b) Add a zero to the system to make it stable.
(c) Find the value of K for the system to be critically damped.

P13.2 Use MATLAB to draw the root locus of the unity feedback system with the open-loop transfer
function

G s
K

s s s
()

()()
=

+ +2 4

(a) What is the greatest value of K before the system becomes purely oscillatory?
(b) Determine the frequency of oscillation in (a).
(c) Determine the value of K such that the dominant pair of complex poles of the system has a

damping ratio of 0.5.

P13.3 A unity feedback system has an open-loop transfer function

G s
K

s s
()

()
=

+2 4

(a) Using the root locus, show that the system is unstable for all values of K.
(b) Add a zero at s = –a, 0 < a < 2, and show that this stabilises the system.
(c) Investigate the effect of changing K on the closed-loop damping for the dominant pole pair.

Problems 381

K s(+ 8)
(s s+ 4)

R s() Y s()
+

–

P13.4 The block diagram of a control system is given:

(a) Determine the closed-loop transfer function from R(s) to Y(s) by working out the inner loop transfer
function first.

(b) Draw the root locus of the system with α as a varying parameter.
(c) Discuss the effect of the derivative feedback on the closed-loop damping.
(d) Determine the value of α for the system to be critically damped.

P13.5 Consider a unity feedback system which has the open-loop transfer function

G s
s

s s s s
()

()()()
=

+
+ + +

6
5 10 15

Design a feedback controller using the root locus method for the closed-loop system to have a
damping greater than 0.5 and a damped natural frequency of greater than 5.00 rad s–1.

382 Root locus for analysis and design

1
10s+ 1

R s() Y s()
+

–

as

1
s

+

–

The frequency domain14
Sinusoidal signals Magnitude and phase

System gain Decibels

System phase

Logarithmic frequency
scales

Presentation of gain
and phase information

Bode plot

Nichols plot

Nyquist plot Exercise

Frequency response and
system features

Amplification and attenuation

DC gain

Roll-off rate

Phase graph

Problems

Special
frequency
points

Gain crossover point Phase crossover point

Bandwidth

Performance specification:
stability Gain margin

Phase margin

Representation on Bode, Nichols and
Nyquist plots

Help? Time to readGaining confidence Skill sectionGoing deeper

The link between time functions and frequency functions

We are familiar with systems that are dynamic, that is, systems whose output signals vary with
time. Examples are shown in Figure 14.1.

However, difficulties arise in interpreting a frequency response plot because graphs of func-
tions in the frequency domain are not common in everyday life or in non-engineering situations.
We are therefore not practised at understanding the link between time domain systems, such as
heating systems which alter room temperature on a daily (time) basis, and their equivalent
frequency response plot. A key point underlying the link between time and frequency is the idea
that a time-varying signal may be resolved into a sum of sinusoidal functions (cosine or sine
waves) of different frequencies (Fourier analysis).

Example: Link between time domain signal and sinusoids of differing frequencies
We can illustrate the link between time domain signals and frequencies by examining how a
square wave can be approximated by the sinusoidal functions of Figure 14.2

We can see that in plot (a) we have used one sinusoid to approximate the square wave. As we
include a combination of sinusoids of differing magnitudes (plots (b) and (c)) we form a closer
approximation to the square wave. Hence we can consider a square wave as being composed of

384 The frequency domain

Time

Speed of vehicle

v (km/hr)

0 Time

Temperature

T (°C)

0 Time

Liquid level

h (mm)

0

Figure 14.1 System output signals varying with time.

–4 –3 –2 –1 0 1 2 3 4
–2

0

2

–4 –3 –2 –1 0 1 2 3 4
–2

0

2

–4 –3 –2 –1 0 1 2 3 4
–2

0

2

Magnitude
()y t

Time

y t() =
4
p

y t() =
4
p

y t() =
4
p

(a)

(b)

(c)

sin t

sin 5t

3
1

sin 3tsin t +
⎛
⎜⎝

⎞
⎟⎠

3
1 1

5
sin 3t +sin t +

⎛
⎜⎝

⎞
⎟⎠

Figure 14.2 Approximating a square wave.

an infinite number of sinusoids. The question that arises now is how this relates to signals from
everyday systems, such as house heating systems.

Example: Heating system

Consider a heating system (Figure 14.3) where the desired room temperature is 20 °C. The
temperature controller alters the input energy to the system to try to maintain the temperature at
the desired temperature. The input energy signal will vary depending on the actual temperature
measured, and the room temperature will change depending on, for example, the outside temper-
ature or the number of times the doors and windows are opened. Graphs of the variation in both
the input energy signals and in the room temperature are shown in Figure 14.4.

It can be shown that these signals (which are functions of time) can be decomposed into a
number of sinusoidal signals of differing frequencies with varying magnitudes and phases. (This
can be done using Fourier analysis.) The varying temperature or energy signals (function of time)
can be represented by graphs showing the magnitudes or strengths of the different frequency
components. Hence, both the input energy signals and the output temperature signals can be
expressed as functions of frequency, with varying magnitudes and phases.

By applying sinusoidal signals of different frequencies to a system and monitoring the change in
amplitude and phase at the system output, we can determine the frequency domain information
about the system.

Learning objectives

� To understand the meaning of gain and phase applied to a system.

� To read a frequency scale.

� To recognise that there are different ways of presenting gain and phase information.

� To recognise features on a frequency response plot.

The link between time functions and frequency functions 385

Thermal
response of
room

Input
energy

Actual room
temperature

Temperature
controller

Set point for
room temperature

Figure 14.3 Heating system for room.

Input energy (units)

Time (seconds)

5

Temperature (degrees)

Time (seconds)

20

Figure 14.4 Heating system input and output signals.

� To find special frequency points on a frequency response plot.

� To interpret a frequency response plot.

We will take the following route through the basic analysis of frequency response plots.

Step 1: Identify magnitude and phase values of a sinusoid
Step 2: Appreciate gain and phase information of a system
Step 3: Familiarise ourselves with the frequency axis
Step 4: Present gain/phase/frequency information on frequency response plots: Bode

plots, Nichols plot and Nyquist plots
Step 5: Identify features on the frequency response plot: amplification, attenuation,

roll-off rate, shape of phase plots
Step 6: Identify points of special significance: gain crossover, phase crossover, bandwidth
Step 7: Evaluate some frequency domain specifications that can be used for control design

14.1 Identification of magnitude and phase values from a sinusoidal
signal

Skill section

The standard form of a sinusoidal signal is

u(t) = A sin(ω t + φ)

where ω represents the frequency in rad/s, A the amplitude (or strength) of the signal and φ the
phase shift.

Example Let the following three signals be the main components of a time varying signal.

(a) u1(t) = 6 sin(4t)

(b) u2(t) = 2 sin(6t – π/4)

(c) u3(t) = 1.2 sin(10t – π/2)

What are the frequencies, magnitudes and phases of the signals? Assume the units of frequency
are rad/s, A is in amplitude units and the phase is in radians.

Solution (a) ω= 4 rad/s, A = 6 (units), φ = 0 rad

(b) ω= 6 rad/s, A = 2 (units), φ = –π/4 rad

(c) ω= 10 rad/s, A = 1.2 (units), φ = –π/2 rad

14.1.1 Magnitude and phase at different frequencies leads to the frequency response
Consider the signals and system shown in Figure 14.5. Known sinusoidal signals are
injected at the input to the process. By varying the input signal frequency ω over a range
of frequencies, the magnitude and phase effect of the system on the input signals can be
determined for the frequency range tested. This is termed the frequency response.

386 The frequency domain

By examining the input and output signals and their magnitudes and phases, the effect
introduced by the linear system can be inferred. The characteristics of the input and
output sinusoids are tabulated:

Input: u(t) Output: y(t)

Frequency ω rad/s ω rad/s

Magnitude A B

Phase φ1 rad φ2 rad

The first important point to note is that the frequency of the input and output sinusoid
remains the same. This will be true for linear systems. The frequency is usually
expressed in rad/s, though sometimes you will see it in Hz.

14.1.2 System gain
The system gain is calculated from the ratio of the amplitudes of the input and output
sinusoids.

Amplitude of y(t) = system GAIN × amplitude of u(t)

System gain =
Amplitude of ()
Amplitude of ()

y t
u t

B
A

=

The physical units of the gain are denoted by :

[Gain] =
[]
[
Physical units of output
Physical units of input]

For example, if the input signal represented a temperature in °C and the output signal was
in volts, the gain would be given in volts/°C.

The gain can also be expressed in terms of dB (deciBels):

GaindB = 20 log10 Gain

14.1.3 Little gems of information: where do deciBels come from?
The units of bels and decibels are not often explained in control engineering textbooks, so
that we often use these units without a full appreciation of their origin. Consider the
open-loop situation of a system for which we measure the system gain as a power ratio of
output power, Po, to input power, Pi:

Gain =
output power
input power

o

i
=

P
P

To manipulate frequency response plots easily, we measure gain using the logarithmic
quantity:

Gain = log10
P
P
o

i

⎛
⎝
⎜

⎞
⎠
⎟ Bels

14.1 Identification of magnitude and phase values from a sinusoidal signal 387

Physical
system

u t A() = sin(wt + f1) y t B() = sin(wt + f2)

Figure 14.5 Response to a sinusoidal input signal.

where the power ratio has been evaluated as a logarithm to the base 10 and the units are
taken as bels. Introduce now a subdivision of the bel unit such that:

1 Bel = 10 deciBels = 10 dB

and where dB is shorthand for deciBel. This enables the expression for system gain to be
written as

Gain = 10 log10
P
P
o

i

⎛
⎝
⎜

⎞
⎠
⎟ dB

In practice, the power ratio would not be measured but instead (motivated by an elec-
trical engineering background), we would probably measure the ratio of output voltage to
input voltage. Consider now, the power relationships for Po and Pi across an identical
resistance, R, so that

P
V
Ro
o=
2

and P
V
Ri
i=
2

Hence

GaindB = 10 log10
P
P

o

i

⎛

⎝
⎜

⎞

⎠
⎟ dB

= 10 log10
V

V
o
2

i
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ dB

GaindB = 20 log10
V
V

o

i

⎛
⎝
⎜

⎞
⎠
⎟ dB

This analysis explains where the mysterious 20 comes from in dB formulas. Thus to
convert a set of output/input readings to dB values we take logarithms to base 10 of the
{output/input} ratio and multiply by 20. To reverse this procedure, if GdB is given and we
wish to return to absolute gain values, we would use the formula:

Gain = 10Gain(dB)/20

Example A gain of 107 expressed in dB would be

GaindB= 20 log10 107 = 40.59 dB

A value of 15 dB converts to an absolute gain of

Gain = 1015/20 = 5.62

It is useful to be conversant with the scale of dB values, for example:

Gain 0.0001 = 10–4 0.1 = 10–1 1 = 100 10 = 101 100 = 102 10000 = 104

(dB) –80 –20 0 20 40 80

Very small output/input ratios, less than 1, correspond to fairly large negative dB values,
while a ratio of 1 corresponds to 0 dB and output/input ratios greater than 1 correspond to
positive dB values.

388 The frequency domain

Two very common values which should be noted are:

1. If Gain = 1, then because 1 = 100

GaindB = 20 log10 100 = 0 dB

2. If Gain = 0.707, then

GaindB = 20 log10 100.707 = –3 dB

14.1.4 System phase shift
The phase of the output signal, φ 2, is effectively the phase of the input signal , φ 1, plus any
phase effect the system has on the input signal:

φ2 = φ1 + Phase shift

Hence the system phase shift is calculated as the phase difference between the output and
the input sinusoids.

Phase shift = φ2 – φ1

If the frequency is measured in rad/s, then it is customary to express the phase in appro-
priate units to this; that is, in radians. (We often then convert this to degrees by multi-
plying by 180/π.) The phase shift is often negative, which indicates a phase lag; that is,
the output is lagging behind the input signal. The input sinusoid often has unity magni-
tude with 0° phase (u(t) = cos ω t). In this case, the phase of the output signal with respect
to the input signal will give the system phase shift directly.

Problem A current-to-pressure transmitter system produces a pressure output signal of y(t) = 10 sin(8t – π)
bar when an input signal of u(t) = 5 sin(8t – π/3) amps is injected. Determine the gain and phase
shift of the system.

Solution Form a table detailing the important characteristics:

Input: u(t) Output: y(t)

Frequency 8 rad/s 8 rad/s

Magnitude 5 amps 10 bar

Phase –π/3 rad –π rad

Gain: The gain can be calculated easily:

Gain =
10
5

bar
amps

= 2 bar/amp

Phase shift: The phase difference is calculated as:

Phase shift = –π – (–π/3) = –2π/3 rads

This implies that there is a lag in the output signal of 2π/3 rads at this particular frequency.

If we continued to inject, systematically, a range of different frequencies into the system
we would be able to analyse the effect the system produced on the input signals and
produce a frequency response of the system.

14.1 Identification of magnitude and phase values from a sinusoidal signal 389

14.2 Frequency and logarithmic frequency scales

We will often work in the frequency domain. For control system studies this usually
requires some reorientation for two reasons. Firstly, for other engineering applications
we may have worked in hertz (Hz); that is, the number of cycles or revolutions/second.
Control studies suddenly require you to work in angular frequency, namely rad/s on
the frequency axis. Secondly, we may have met different frequency ranges in other engi-
neering areas, for example ultrasonics (~20 kHz), radio frequencies (10 kHz to 1
GHz), radar frequencies (~1 GHz) and microwaves. But in most control studies we will
often work in the 0 to 100 Hz frequency range. This is often quite a surprise to some
students. We show a scale in Figure 14.6 giving the frequency location of the different
activities.

We use angular frequency measured in rad/s for frequency plots and bandwidths and the
link between hertz (Hz or cycles/second) and angular frequency (radians/second) is given
by:

ω rad/s = 2πf where f is in Hz.

Consequently our frequency axis may be drawn as Figure 14.7. We note that we do not
start the axis at ω= 0 rad/s, but at a low frequency value dependent on the system we are
studying.

While we use the frequency units rad/s, we also often find that our graphs have a log
frequency scale. Hence in using software packages to set up frequency response plots and
other graphs we must be careful not to request log100, since this would produce an error.
For this reason, when using control design packages we would probably use a frequency
range of 10–3 < ω < 103 rad/s. This brings us to the logarithmic scale.

390 The frequency domain

10–1
0

10
102

103
104

105
106

107
108

109
1010

1011
1012

1013
1014

1015
1016

Frequency
(Hz)

To zero
frequency

Control
engineering
frequency

Human
hearing
frequency

Radio
frequencies
frequency

Infrared
Radar

Figure 14.6 Location of control engineering frequencies in the electromagnetic spectrum.

10–1 0 10 102 10310–2

To low
frequency

0.0016 0.016 0.16 1.6 16 160 Hz To high
frequency

rad/s

Figure 14.7 The frequency axis in Hz and rad/s.

Frequency is often plotted on the x-axis as x = log10ω .
To be able to use this construction, a table of log frequency values is drawn up: Table

14.1.

This table enables us to position the log10 scale intervals as shown in Figure 14.8(a).
Finally, the log10 scale will be seen on plots as Figure 14.8(b).

The user has to be able to read correctly from this scale; for example, can you find 5, 11,
and 50 on this scale?

Finally, we call each change of frequency occurring by a multiple of 10 a frequency
change of one decade. For example, if we were given the frequency ω o = 3 and wished to
know the frequency that was one decade higher, we would look for (10 × ω o) = 30; two
decades higher and we would seek (102 × ω o) = 300; three decades higher and we would
seek (103 × ω o) = 3000. The frequency that is one decade below ω o = 3 is (10–1 × ω o) =
ω o/10 = 3/10 = 0.3. Thus on a logarithmic scale this would be shown as in Figure 14.9.

14.2 Frequency and logarithmic frequency scales 391

x = log10 x = log10

1 0 10 1.000

2 0.301 20 1.301

3 0.477 30 1.477

4 0.602 40 1.604

5 0.699 50 1.699

6 0.778 60 1.778

7 0.845 70 1.845

8 0.903 80 1.903

9 0.954 90 1.954

Table 14.1 Table of log10ω .

1 = 10

(a)

(b)

0

2 3 4 5 6 7 8 9

10 = 101

0.
30

1

0.
47

7

0.
60

2

0.
69

9

0.
77

8
0.

84
8

0.
90

3
0.

95
4

20 30 40 50 60 70
80

90

100 = 102

100 101 102

Figure 14.8 (a) The logarithmic scale x = log10ω ; (b) the logarithmic scale.

In general, if ω o is the given frequency then we have

ωA = ω o × 10n, where ωA is n decades above ω o

and

ωB = ω o × 10–n, where ωB is n decades below ω o

We will find that we never have to construct a logarithmic scale from first principles
because in our laboratories and exercises we will use semi-log paper or computer
programs. If you are using control systems design software the flexibility in selecting
scales is sometimes bewildering, but the common route is to plot Gain versus
log10 frequency or Gain dB versus log10 frequency. It is essential that you know how to
read and interpret these scales correctly.

14.3 Presentation of gain and phase information

From our system analysis, we can provide triplets (frequency, gain, phase) of information
which indicate to us how a system affects the gain and phase of an input sinusoid at a
particular frequency. In engineering terms, the system will process the information
carried in the input signals at different frequencies. We often represent this information
in one of three different graphical forms:

� a Bode plot

� a Nichols plot

� a Nyquist plot

We will show each of the different forms of frequency, gain and phase information for the
following system, which represents a slightly underdamped second-order system:

G(s) =
1
06 12s s+ +.

In particular, to show the connection between the plots we have selected three frequency
points (Table 14.2) and shown them on each presentation format.

14.3.1 General system remarks
A frequency response can usually be divided into a low frequency range, mid-frequency
range, and a high frequency range. The phase will alter and, in very general terms, will
show some decrease in a particular frequency range as frequency increases. It is also
common for the magnitude of the frequency response to decrease at high frequencies; the
system will attenuate high-frequency signals. This effectively tells us that systems in
general only respond weakly to high frequency signals.

392 The frequency domain

1 = 100 10 = 101
100 = 1020.1= 10–1

3030.3

One decade below 3 rad/s One decade above 3 rad/sw = 3 rad/s

Figure 14.9 Log scales and decade intervals.

14.3.2 The Bode plot
The Bode plot is a graphical representation of the frequency response in the semilog
Cartesian coordinate system. It comprises two plots:

1. a Magnitude plot: The gain of the system versus frequency

2. a Phase plot: The phase shift induced by the system versus frequency

Frequency axis
The semilog plot has a log scale only on the x (frequency) axis with a linear scale on the
y-axis; the magnitude and the phase are plotted against log10ω ; the ‘log10’ is often omitted
when labelling the frequency axis, even though the scale on the frequency axis is log10ω ;
the log10 axis does not start at zero.

Magnitude axis
The gain can be plotted in terms of its actual magnitude, but is commonly plotted in
units of dB, that is, 20 log10 gain versus log10 ω .

Phase axis
The phase axis is linear and usually has units of degrees.

Comment on the system response
There are two graphs produced for a Bode plot: one that describes how the system gain changes
over frequency and one that shows the change in phase. In this example (Figure 14.10), we see
that the gain is constant at low frequency and has a value of 0 dB. This corresponds to a gain of
1. The gain rises in the mid-frequency range and decreases in the high frequency range. The
phase plot starts at 0° and decreases in the mid-frequency range and finally tends to –180°.
Finally we note that given three frequency points, ω1, ω2, ω3, we can complete the following
table. This can be done using MATLAB by plotting the Bode plot using the command bode(g).
Using the ginput(3) MATLAB function will produce a crosshair cursor which can be used to
click on three points on the graph to obtain the coordinates of those points.

1 2 3

Gain (dB) 1.191 4.396 –10.26

Phase (deg) –16.10 –90.88 –158.3

14.3 Presentation of gain and phase information 393

1 = 0.4 rad/s 2 = 1.0 rad/s 3 = 2.0 rad/s

Polar (angle and

radius) measure

Gain (absolute) 1.15 1.67 0.31

Gain (dB) 1.20 4.45 –10.2

Phase (deg) –16° –91° –158°

Cartesian (rectan-

gular) measure

x-coordinate 1.15cos(–16°)

= –1.106

1.67cos(–91°)

= –0.029

0.31cos(–158°)

= –0.287

y-coordinate 1.15sin(–16°)

= –0.317

1.67sin(–91°)

= –1.67

0.31sin(–158°)

= –0.116

Table 14.2 Gain and phase for three particular frequency points for G(s) = 1/(s2 + 0.6s + 1).

14.3.3 Nichols plots
The Nichols plot uses two axes representing the gain and phase. Frequency is an implicit
parameter on the frequency response line.

Horizontal (phase) axis
The horizontal axis is used to represent the phase and usually has units of degrees.

Vertical (magnitude) axis
The vertical axis represents the gain and is commonly divided into units of dB, that is,
20 log10 gain.

Comment on system response
We note that the frequency is not represented on an axis in this format (Figure 14.11). Any
point on the frequency response has an associated frequency value. We can see that the
magnitude diminishes as the frequency increases; that is, the frequency response line
takes values lower down the vertical, or magnitude, axis. The phase also decreases as
frequency increases; however, we note that decreasing phase is indicated by a line
moving to the left.

As we did with the Bode plot we can produce a table of values from the plot. However,
we note that we are not able to find a frequency value directly from this plot and we
would have to find the value of frequency from other sources.

1 2 3

Gain (dB) 1.191 4.396 –10.26

Phase (deg) –16.10 –90.88 –158.3

394 The frequency domain

Frequency (rad/sec)

P
ha

se
 (d

eg
re

es
)

Bode diagrams

Gain plot

Phase plot

M
ag

ni
tu

de
 (d

B
)

–40

–30

–20

–10

0

10

10–1 100 101–200

–150

–100

–50

0

w1 w2 w3

w1

w2

w3

Figure 14.10 Bode plot showing frequencies ω1 < ω2 < ω3.

One of the other uses of Nichols plots is to overlay lines of closed-loop information.
When this is done it is referred to as a Nichols chart (Chapter 17), and it is this chart that
is often used for control design.

14.3.4 Nyquist plots
This plot has a Cartesian grid (Figure 14.12); there is no frequency axis, nor any gain or
phase axis. The gain and phase are plotted as polar coordinates (angle and magnitude from
the origin). Therefore lines of constant gain are circles from the origin. Each point on the
response curve corresponds to a specific frequency point.

Problem
Use MATLAB to find the real and imaginary parts from the Nyquist plot and the associated gain
and phase calculations.

Solution MATLAB information: finding points in a file of data

s = tf('s');
g = 1/(s^2+0.6*s+1)
w = logspace (–1,1,500); % Create frequency variable, w, of 500 points

% from 0.1 (10–1) to 10 (101) rad/s.
[Re,Im]=nyquist(g,w); % Calculates the values required for a Nyquist

% plot using the frequency variable, w. Stores the
% results in the variables 'Im' and 'Real'.

i = find(w>0.4); % Creates a variable i which contains the
% indices of all variables satisfying the test
% criteria.

14.3 Presentation of gain and phase information 395

Open–loop phase (degrees)

O
pe

n–
lo

op
 g

ai
n

(d
B

)

Nichols charts

–180 –160 –140 –120 –100 –80 –60 –40 –20 0
–120

–100

–80

–60

–40

–20

0

20

w3

w2 w1

Increasing frequency direction
< <w w w321

Figure 14.11 Nichols plot showing frequencies ω1 < ω2 < ω3.

i(1) % provides the first index number, that is the
% index number for which w > 0.4.

ans =
152

w(152);
ans =

0.4029 % using this index will provide the index of
% real and imaginary parts at that frequency

Re(152), Im(152)
ans =

1.1020
ans =

–0.3180
Mag = sqrt(Re(152)^2+Im(152)^2)
ans =

1.1470
Phase = atan(Im(152)/Re(152)) *180/pi
ans =

–16.10

Table 14.3 tabulates the results from the MATLAB calculations.

Remark One point to remember when using a ‘tan–1’ function is that the tangent function repeats itself
and therefore the inverse is given either between 0 and 180°, or between –90° and + 90°. We
must use our inside knowledge to interpret the result. In the above example, the phase values
were given as 89.12 and 21.68 degrees. From experience with the Bode and Nichols plots we
found that the phase decreased towards higher frequencies and we would not expect it to
rise. Bearing in mind that the answer could be 180° shifted, we subtract 180° from these posi-
tive results to give the correct results in the table.

Comments on system response
If we look at Figure 14.12 we see that as frequency increases and the gain and phase
decrease, the response line spirals in towards the origin (zero gain). For example, a gain of
0 dB corresponds to a gain of 1 which can be represented by a circle of radius 1 centred on
the origin. We note that the unit ‘circle’ appears squashed if the axes used by MATLAB are
not square.

396 The frequency domain

1 2 3

Real 1.1020 –0.0255 –0.2851

Imag –0.3180 –1.6586 –0.1133

Gain = Re Im2 2+ 1.1470 1.6588 0.3068

Phase = tan–1 (Im/Re) –16.10° –90.88° –158.3°

Table 14.3 MATLAB results for gain and phase calculations.

Each of these forms of presenting information (Bode, Nichols, Nyquist) has advantages
when using different control design methods. In this chapter we look at recognising the
information from the graphs and finding some important frequency points. These frequency
points can then be used to help us to determine the stability of the closed-loop system.

14.4 The frequency response and system features

We can use the system’s frequency plot to predict the behaviour of the system (Figure
14.13). If we know the frequency of the input signal, we can use the frequency response to
show us how the system, or process, G(s) affects the input signal.

For the following explanations we shall refer to the following system model:

G(s) =
400

10 04 42()(.)s s s+ + +

which represents a third-order system with low damping. We will illustrate each feature
on the frequency response plot using the Bode plot, Nichols plot and Nyquist plot.

14.4 The frequency response and system features 397

Process: ()G s

A sin wx t

??

Figure 14.13 Using the frequency response to predict the output.

Real axis

Im
ag

in
ar

y
ax

is

Nyquist diagrams

–1 –0.5 0 0.5 1 1.5
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

w1

w2

w3

Unit circle

Figure 14.12 Nyquist plot showing frequencies ω1 < ω2 < ω3.

14.4.1 Amplification and attenuation

(a) An input signal component at frequency ω is amplified if the gain on the frequency
response plot is greater than 1 (or greater than 0 dB) at that frequency.

(b) An input signal component at frequency ω is attenuated if the gain on the frequency
response plot is less than 1 (or less than 0 dB) at that frequency.

If the gain on the frequency response plot is exactly 1 (or 0 dB), the input and output signal
component will have the same magnitude and the input component is therefore neither
amplified nor attenuated.

If we examine our three graphical representations of information we find the ranges of
amplification and attenuation illustrated (Figure 14.14).

398 The frequency domain

Frequency (rad/sec)

Bode diagrams

M
ag

ni
tu

de
 (d

B
)

P
ha

se
 (d

eg
re

es
)

–80

–60

–40

–20

0

20

40

10–1 100 101 102
–300

–250

–200

–150

–100

–50

0

Frequency
range of
amplification

Frequency
range of
attenuation

Open–loop phase (deg)

O
pe

n–
lo

op
 g

ai
n

(d
B

)

Nichols charts

–300 –250 –200 –150 –100 –50 0
–200

–150

–100

–50

0

50

Range of
gain > 1

Range of
gain < 1

Real axis

Im
ag

in
ar

y
ax

is

Nyquist diagrams

–30 –20 –10 0 10 20 30
–60

–40

–20

0

20

40

60

Circle radius 1
inside circle shows
attenuation

Amplification
and

attenuation

Figure 14.14 Amplification and attenuation.

Bode plot
The amplification and attenuation are shown on the magnitude plot. The magnitude
scale is given in dB; a value of 0 dB corresponds to a magnitude of 1. The graphs show that
low-frequency input signals will be amplified (or magnified) while the effect of
high-frequency signals will be attenuated (or lessened). In the low-frequency range the
gain level is 20 dB, which corresponds to a gain of 10. Therefore any input sinusoidal
signal in this frequency range will be amplified by a factor of 10.

In the high-frequency range the gain is much lower than 0 dB and decreasing. Therefore
in the high-frequency range we say that the input sinusoidal signal magnitudes are
attenuated.

Nichols plot
The vertical axis on the Nichols plot is the magnitude axis. A system with a gain greater
than 1 (or 0 dB) will provide amplification of input signals.

Nyquist plot
On the Nyquist plot, the frequency response can be represented by polar coordinates.
Therefore the gain magnitude is the distance from the origin. For a signal to be amplified,
the gain magnitude must be greater than 1. By drawing a circle of unity radius, we can find
the points where the input signals would be attenuated (those that lie inside this circle).
The points on the frequency response outside the circle will be magnified.

14.4.2 D.C. gain
We are often interested in an engineering system’s effect on a constant or d.c. signal:
effectively a signal with ‘zero’ frequency. On a frequency response plot, we therefore look
at the low-frequency section. If the low-frequency amplification or attenuation level is
constant, we refer to this as the d.c. gain. We use Figure 14.15 for finding the d.c. gain.

Bode plot
On a Bode plot, the d.c. gain is found on the magnitude plot. Since this is a semilog plot
where the frequency scale is in log10ω , the value of ‘0’ is not marked (since in log10 the
frequencies decrease as 0.1, 0.01, 0.001, 0.0001, ...). It is sufficient to take the value in the
low-frequency range. The system response shows the d.c. gain to be 20 dB and therefore the
engineering system would amplify any slowly varying (low-frequency) signal by a gain of 10.

Nichols plot
On the Nichols plot we can find the value of the d.c. gain from the vertical (magnitude)
axis. The low-frequency section on a Nichols plot often starts at the top right-hand side
(near 0° phase value).

Nyquist plot
On a Nyquist plot the d.c. gain is a magnitude and hence will be the distance from the
origin. Since the low-frequency section often starts at 0° phase, this is represented by the
real axis and the d.c. gain will be the point on the real axis at which the plot starts.

14.4 The frequency response and system features 399

14.4.3 Roll-off rate
The roll-off rate is often referred to when using Bode plots. In the high-frequency range of
the frequency response plot the gain is decreasing, the level is less than 0 dB and the
magnitude of the input signal component will be attenuated. Since the gradient is
constant and the graph is decreasing, as we increase the frequency of the input signal, the
magnitude of the output signal becomes less and less, giving large attenuation to the
high-frequency signals. For example, noise on electrical signals often occurs at high
frequency and this will be attenuated, or lessened, by a system which has low gain at high
frequencies. The steepness of this line is important for systems that are designed to atten-
uate certain disturbances or noise. Hence the gradient of the slope is often referred to as
the high-frequency roll-off, the high-frequency asymptote or the cut-off rate of the
system.

The gradient is calculated by determining the change in magnitude over one decade of
frequency. The roll-off rate is then stated, for example, as –20 dB/decade or –40
dB/decade.

In the system response shown in Figure 14.16, the system is third order and this is asso-
ciated with a roll-off rate of –60 dB/decade.

400 The frequency domain

Frequency (rad/sec)

M
ag

ni
tu

de
 (d

B
)

P
ha

se
 (d

eg
re

es
)

–80

–60

–40

–20

0

20

40

10–1 100 101 102
–300

–250

–200

–150

–100

–50

0

Open–loop phase (deg)

O
pe

n–
lo

op
 g

ai
n

(d
B

)

Nichols charts

Bode diagram

d.c. gain

–300 –250 –200 –150 –100 –50 0
–200

–150

–100

–50

0

50

Real axis

Im
ag

in
ar

y
ax

is

Nyquist diagrams

d.c. gain

–30 –20 –10 0 10 20 30
–60

–40

–20

0

20

40

60

d.c. gain

d.c. gain

Figure 14.15 Finding the d.c. gain.

14.4.4 Phase graphs
The shape of a phase curve is important when we discuss the phase lag introduced by a
system. If there is almost no phase lag, that is, for slowly varying (or low-frequency)
signals, the output signal follows the input signal with little perceptible lag. As the
frequency of the input signal increases the output signal starts to lag behind the input
signal. The combination of amplification and phase lags of –180° can cause closed-loop
system instability. This is discussed later as part of the design specifications for
frequency domain design.

Example: Phase lag
Consider a heating system. We can inject a slowly varying energy signal into the heating system
and watch the corresponding temperature change; slow changes to demanded temperature are
followed fairly easily. If you provide a quickly varying input energy signal (higher frequency), the
room or building that you are heating cannot change temperature fast enough (due to the thermal
inertia of the room). Therefore any fast changes do not appear in the output signal. The point at
which the input signal alters from being a ‘slowly changing’ signal to a ‘rapidly changing’ signal
usually occurs in the middle frequency range and depends on the actual system.

14.4.5 Comment on phase change (Figure 14.17)

Bode plot
From the phase graph in the Bode plot, we can see a rapid change in phase between 1 and 3
rad/s. Hence any design which depended on frequencies in this range would have to allow
for the fact that the phase changes dramatically over this short frequency range. At higher
frequencies the phase changes more gradually.

14.4 The frequency response and system features 401

Frequency (rad/sec)

M
ag

ni
tu

de
 (d

B
)

P
ha

se
 (d

eg
re

es
)

–80

–60

–40

–20

0

20

40
Bode diagrams

10–1 100 101 102
–300

–250

–200

–150

–100

–50

0

Slope of line gives
roll-off rate

Figure 14.16 Finding the roll-off rate.

Nichols plot
The Nichols plot gives us the opportunity to examine how the gain and phase changes
occur together. We see that the gain starts off with a value greater than 0 dB at low phase
values. Since there is no frequency axis, we cannot immediately see the rate of change of φ
with frequency. However, we find that the phase changes from 0° to –270°.

Nyquist plot
The phase on the Nyquist plot is given by the angle between the line drawn from the
origin to the frequency response line and the real axis. At low frequency, the Nyquist plot
will usually start on the real axis (0° phase). In this example, the frequency response line
spirals into the origin. Therefore the gain is eventually decreasing (to effectively zero)
and the phase alters from 0° to a maximum of –270°.

402 The frequency domain

Frequency (rad/sec)

Bode diagrams

M
ag

ni
tu

de
 (d

B
)

P
ha

se
 (d

eg
re

es
)

–80

–60

–40

–20

0

20

40

10–1 100 101 102
–300

–250

–200

–150

–100

–50

0

Open–loop phase (deg)

O
pe

n–
lo

op
 g

ai
n

(d
B

)

Nichols charts

–300 –250 –200 –150 –100 –50 0
–200

–150

–100

–50

0

50

Real axis

Im
ag

in
ar

y
ax

is

Nyquist diagrams

–30 –20 –10 0 10 20 30
–60

–40

–20

0

20

40

60

Phase change

Rapid phase
change

More gradual
phase change

Phase change
read on ‘ -axis’x

f = phase shift

Figure 14.17 Phase change on Bode, Nichols and Nyquist plots.

Skill section

Problems Consider the following plots. Answer the following questions, indicating whether it is an inappro-
priate question for the plot and information given.

(a) What is the d.c. gain?

(b) State the frequency range where the amplification is above 10 dB.

(c) At what frequency do we find 10 dB of attenuation?

(d) What is the roll-off rate?

(e) What is the gain when the phase reaches –135°?

Solution: Bode plots

(a) D.c. gain = 20 dB: absolute gain of 10

(b) Amplification above 10 dB: low frequency to 5 rad/s

(c) Attenuation of 10 dB occurs at 20 rad/s

(d) Roll-off rate is –40 dB/decade

(e) Gain value when phase = –135°: about 3 dB

14.4 The frequency response and system features 403

Frequency (rad/sec)

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

Bode Diagrams

–40

–30

–20

–10

0

10

20

10–1 100 101 102
–200

–150

–100

–50

0

Solution: Nichols plot

(a) D.c. gain approx 28 dB

(b) Amplification above 10 dB: no frequency range given on graph

(c) Attenuation of 10 dB = gain of 0.316: no frequency range given on graph, but point on
frequency response can be plotted

(d) Roll-off rate: not appropriate for Nichols plot

(e) Gain value when phase = –135°: about 5 dB

Solution: Nyquist plot

404 The frequency domain

Open–loop phase (deg)

O
pe

n–
lo

op
 g

ai
n

(d
B

)

Nichols charts

–180 –160 –140 –120 –100 –80 –60 –40 –20 0
–120

–100

–80

–60

–40

–20

0

20

40

Real axis

Im
ag

in
ar

y
ax

is

Nyquist diagrams

–1 –0.5 0 0.5 1 1.5
–1.5

–1

–0.5

0

0.5

1

1.5

(a) D.c. gain = 1. In this case, the gain on the frequency response curve is 1 when the frequency
response curve lies on the real axis (0° phase)

(b) Amplification above 10 dB: no frequency range given on graph, although we can see that
there is amplification since the distance from the origin(gain) is greater than unity in a region
of the response

(c) Attenuation of 10 dB = gain of 0.316: no frequency range given on graph, but point on
frequency response can be plotted

(d) Roll-off rate: not appropriate for Nyquist plot

(e) Gain value when phase = –135°: magnitude from origin = (approx) 06 072 2. .+ = 0.922

14.5 Special frequency points

There are two special frequency points which we use later when we look at the stability
of closed-loop systems. In this section we introduce these points and examine where they
occur on our three graphical representations.

Key result: Crossover points

� Gain crossover frequency = ω gco = frequency at which the gain crosses 0 dB

� Phase crossover frequency = ω pco = frequency at which the phase crosses –180°

Gain crossover: in simple systems where we assume that there is only one gain crossover,
the system will amplify signals before the gain crossover and attenuate signals after this
frequency. Therefore as the crossover frequency of a system increases, it will be able to
respond with reasonable magnitude over an increasing frequency range of input signals. If
the gain crossover is at high frequencies, this corresponds to being able to react faster to
certain input signals. A low crossover frequency could indicate a slowly responding
system. The determination of ‘low’ or ‘high’ is system-dependent.

Phase crossover: the main point to note is that not all systems will have a phase cross-
over. In a first-order system, the phase change is only 0° → –90° and the phase does not
cross –180°. Even for a pure second-order system, the phase change only reaches –180°
and does not actually cross this point. The importance of this point is related to the fact
that if a sinusoid is injected into a system and the system inverts sinusoids at this
frequency, then the output signal is exactly 180° out-of-phase with its input. This has
consequences in control systems where we use negative feedback to compare the output
signal with the desired set point.

The gain and phase crossover points for a third-order system are shown for the three
presentation plots, namely Figures 14.18(a), (b) and (c).

14.5 Special frequency points 405

14.5.1 Bandwidth
Bandwidth is a parameter that can be applied to both signals and systems; it indicates the
range of frequencies of significant signal power or the range of frequencies over which the
system will have a significant magnitude of output signal. There are slightly different,
but important, interpretations of this parameter when it is related to either signals or
open-loop/closed-loop systems. We state firstly the use of the term bandwidth for signals
and open-loop systems before discussing the importance of the closed-loop bandwidth for
closed-loop system performance.

406 The frequency domain

Frequency (rad/sec)

M
ag

ni
tu

de
 (d

B
)

P
ha

se
 (d

eg
re

es
)

Bode diagrams

–80

–60

–40

–20

0

20

10
(a)

–1 100 101 102
–300

–240

–180

–120

–60

0

Phase crossover point

Gain crossover point

wgco

wpco

Open–loop phase (deg)

O
pe

n–
lo

op
 g

ai
n

(d
B

)

Nichols charts

(b)
–300 –270 –240 –210 –180 –150 –120 –90 –60 –30 0

–200

–180

–160

–140

–120

–100

–80

–60

–40

–20

0

20

40
Gain crossover point

Phase crossover point

Figure 14.18 (a) Crossover points on Bode diagrams. (b) Crossover points on Nichols plot.

Signal bandwidth
The signal bandwidth is defined for

1. those signals which have a midband range or peak (Figure 14.19(a))

2. those signals with a constant d.c. gain (Figure 14.19(b))

It is defined as the range of frequencies over which the gain is greater than G/ 2 = 0.707G.
Since we use often use log scales for gain, we note that the value of 0.707 = –3 dB.

In Figure 14.19(a), the bandwidth is given by

ω bw:ωL to ωH

These two frequencies, ωL and ωH, are referred to as the lower and upper half-power
points, since the signal power will be reduced to one half of the signal power in the band-
width range outside these frequency points. (At the point where the power falls by a half,
the gain (= power) falls by a factor of 1/ 2 = –3 dB.) However, in Figure 14.19(b), where the
d.c. gain is constant, there is no lower half-power point and the bandwidth is simply
referred to by the frequency at the upper half-power point, ω bw.

14.5 Special frequency points 407

Real axis

Im
ag

in
ar

y
ax

is

Nyquist diagrams

–1 –0.5 0 0.5 1 1.5 2
–1.5

–1

(c)

–0.5

0

0.5

1

1.5

Gain crossover point

Phase crossover point
Unit circle

–180°

Gain =1

Figure 14.18 (c) Crossover points on Nyquist diagram.

10 102 103 104 105 106

Gain

G

G/

wbw

Frequency (Hz)Frequency (Hz)
10 102 103 104 105 106

G

G/

wL wH

Gain

(a) (b)

2 2

Figure 14.19 Signal bandwidth.

Open-loop system bandwidth
The system bandwidth is only defined for those systems with a constant d.c. gain.

Open-loop system bandwidth = ω bw = the frequency range over which the gain is
3 dB down on the d.c. gain

In Figure 14.20(a) the bandwidth is given by ωbw and is the frequency that corresponds to a
magnitude which is 3 dB lower than the d.c. level. In control systems we usually refer to
the bandwidth occurring at the –3 dB point. Another example of the frequency response of
an open-loop system is shown in Figure 14.20(b). However, we cannot state the open-loop
system bandwidth for this system since the requirement for a constant d.c. gain has not
been satisfied.

Closed-loop system bandwidth

Closed-loop system bandwidth = ω bw = the frequency range over which the gain is
3 dB down on the zero frequency gain

The application of feedback to open-loop systems such as those shown in Figures 14.20(a)
and (b) produces a system whose frequency response has a finite d.c. gain. An example is
shown in Figure 14.21, where the gain is unity (or 0 dB) at low frequencies. This is desirable
since it implies that all low-frequency signals (for example slowly changing control demand
signals) will be passed through by the system and not attenuated. The shape of the gain in the
mid-range frequency will change depending on the actual system, while the high-frequency
range shows a roll-off which will reduce the effect of high frequencies (noise) within the
control system. Since it is desirable for the low-frequency signals to pass through the system
unchanged, the 0 dB level at zero frequency is quite common. The bandwidth in this case is
actually at the –3 dB level, and indicates the speed of response of the control system and the
frequency above which the system may reduce the effects of noise.

408 The frequency domain

Gain (dB)

w (rad/s)

GdB

GdB–3 dB

wbw

(a)

Gain (dB)

w (rad/s)

(b)

Figure 14.20 Bandwidth interpretations for open-loop systems.

Gain
dB

w rad/s
0 dB

–3 dB
wbw

Figure 14.21 Bandwidth interpretation for closed-loop frequency response.

The closed-loop system bandwidth can, for simple systems, be closely related to the
open-loop system gain crossover. This is important for control systems design, which is
often performed by shaping the open-loop frequency response plot. The design specifica-
tion on system bandwidth is therefore translated to an equivalent gain crossover specifi-
cation which can be applied to design on the open-loop frequency response.

14.6 Interpretation of frequency response plot

Consider the mechanical example shown in Figure 14.22. It is a simple version of many
mechanical oscillating systems, such as suspension systems. The values of the mass,
spring and damper are chosen such that the system oscillates when an input force is
applied at certain frequencies. For these values, the output signal (the position of the
mass) is 1 metre when the input force signal is given as 1 newton. The corresponding
frequency response plot is shown in Figure 14.23.

Examine the response in the frequency ranges we have discussed.

� Low-frequency range: here we can see that the magnitude is 0 dB (gain of 1). Hence
every low-frequency input signal injected to the system will give a system output
which is neither amplified nor attenuated but is of the same magnitude. The phase
shift in this region is 0°, which implies that the output signal will not lag behind the
input. For the mechanical system it implies that the mass will follow the direction and
magnitude of the input force.

� Middle frequency range: the system amplifies the input signals in part of this range,
with a maximum amplification of 6 dB (= a gain of 2). The gain crossover frequency is in
this range and is indicated by ω gco. After ω gco the system attenuates all input signals. If
we consider the phase response, we can see that the phase plot shows a rapid decrease
in phase for this system. This indicates that over this middle frequency range the
output signals will lag further and further behind the input signals. Physically, the
mechanical system will have a resonant frequency in this middle range and near this
frequency small magnitude input forces will result in large changes in the mass’s posi-

14.6 Interpretation of frequency response plot 409

Mass

Position

Force

Figure 14.22 Simple mechanical system.

Phase,
degrees

0
Freq. (rad/s)

Gain,
dB

6 dB Freq. (rad/s)
0 dB

–180
wgco

Figure 14.23 Frequency response for simple mechanical system.

tion. As the frequency of the force input signal increases, the mass–spring–damper
system cannot follow the changes of the input signal and begins to lag behind.

� High frequency range: the magnitude plot shows a clear increasing attenuation of the input
signals. At very high frequency, the amplitude of the output signals will be very small. The
phase response for this example shows the phase lag levelling off to –180°. This indicates
that at high frequencies the output signals will be fully ‘out of phase’ with the input signals.
This becomes important later when we discuss stability. If we apply very fast-changing
force signals to the mechanical system, the system is not capable of responding – the higher
the frequency the smaller the change in the output position becomes.

Problem: Rotating disk system
The storage disk assembly of a computer system is shown in Figure 14.24(a). The input signal is a
torque on the drive system and the output signal is the position of the disk. The corresponding
frequency response plot is shown in Figure 14.24(b). Describe the features on the frequency
response plot, specifically referring back to the physical rotating disk example.

Solution Examine the frequency plots in the low, middle and high frequency ranges.

� Low frequency range: the input signals are amplified in this range and there is no constant d.c.
gain. In fact, as the frequency decreases towards zero, the gain keeps increasing, giving an infi-
nite d.c. gain. This is also known as ‘high gain at low frequencies’. In physical terms, if you apply a
constant input signal to the system, the disk will keep rotating, therefore the position of the disk
from its initial position will continue to increase. By applying a low-frequency torque, you are
effectively applying a very slowly changing input signal which will have a similar interpretation to
the constant torque input. The output position will lag 90° behind the input torque in this range.

� Middle frequency range: the gain crossover frequency lies in this range. The output signal
changes from being amplified by the system at frequencies above the gain crossover frequency,
to being attenuated below this frequency. The phase lag increases in this region. This corre-
sponds to the disk system not responding fast enough to the changes in the input signal.

� High frequency range: in this range we see that the input signal is severely attenuated; the disk
cannot physically follow a high-frequency sinusoidal input. The output signal is 180° out of
phase with the input.

14.7 Performance specification: gain and phase margins

We have looked at how to read two important frequency points from a frequency response
plot. These points were the gain crossover point, where the magnitude of the system
crosses a value of 1, and the phase crossover point, where the phase of the system crosses
–180°. We now examine why these points are important.

410 The frequency domain

Disk

Direction of
rotation

Gain,
dB

Freq. (rad/s)

0 dB
wgco

Phase,
degrees

0
Freq. (rad/s)

–180

—90

Figure 14.24 Frequency response for rotating system.

Consider an open-loop system as shown in Figure 14.25. We see that at ω x rad/s, the
process gain is given by K and the phase shift is –180°. An output signal which is 180°
(π radians) out of phase with the input will be the inversion of the sinusoidal signal, and
hence we can apply a negative sign to the signal. For example, if we let the amplitude of
the input signal, A, be 2 and the process gain and phase at 5 rad/s be 3 and –180° respec-
tively, we find that:

input sinusoid = 2 sin 5t

output sinusoid = –6 sin 5t

We now examine how a sinusoidal signal would be passed round a feedback loop applied
to this process (Figure 14.26). In this example we have let the frequency, ωx = 5 rad/s.

We will examine what would happen for three values of gain: K = 0.5, K = 1 and K = 2.

Example 1: Gain K = 0.5

At point P: At point Q:

2 sin 5t –0.5 × 2 sin 5t = –1 sin 5t

0 – (–1 sin 5t) = 1 sin 5t –0.5 × 1 sin 5t = –0.5 sin 5t

0 – (–0.5 sin 5t) = 0.5 sin 5t –0.5 × 0.5 sin 5t = –0.25 sin 5t

0 – (–0.25 sin 5t) = 0.25 sin 5t –0.5 × 0.25 sin 5t = –0.125 sin 5t

0 – (–0.125 sin 5t) = 0.125 sin 5t –0.5 × 0.125 sin 5t = –0.0625 sin 5t

0 – (–0.0625 sin 5t) = 0.0625 sin 5t –0.5 × 0.0625 sin 5t = –0.03125 sin 5t

14.7 Performance specification: gain and phase margins 411

Process: ()G s
| (jG wx)| = K
–G(jwx) = –180°

A sin wxt
× sin (K A wxt –)p

= – × sin (K A wxt)

Figure 14.25 Open-loop frequency response.

+

–

2 sin5t

P Q0 Process: ()G s
| (jG wx)| = K
–G(jwx) = –180°

Figure 14.26 Stability of systems.

We can see that the magnitude of the sine wave is decaying and is not becoming an
unbounded signal. We shall now repeat the example, but let the value of K be 1.

Example 2: Gain K = 1

At point P: At point Q:

2 sin 5t –1 × 2 sin 5t = –2 sin 5t

0 – (–2 sin 5t) = 2 sin 5t –1 × 2 sin 5t = –2 sin 5t

0 – (–2 sin 5t) = 2 sin 5t –1 × 2 sin 5t = –2 sin 5t

In this example, we find that the system output does not increase or decrease, but
continually oscillates. This is because the total phase shift round the loop is –360°; –180°
from the process plus –180° from the negative feedback summation, and the gain is unity.
Any signal passed round the loop remains in phase with itself and does not alter in
magnitude.

The last example looks at a value of K greater than 1: K = 3.

Example 3: Gain K = 3

At point P: At point Q:

2 sin 5t = 2 sin 5t –3 × 2 sin 5t = –6 sin 5t

0 – (–6 sin 5t) = 6 sin 5t –3 × 6 sin 5t = –18 sin 5t

0 – (–18 sin 5t) = 18 sin 5t –3 × 18 sin 5t = –54 sin 5t

0– (–54 sin 5t) = 54 sin 5t –3 × 54 sin 5t = –162 sin 5t

We can see that, very quickly in this case, the output signal is becoming unbounded.
The phase shift of –180° combines with the negative feedback sign to provide a signal in
phase with itself but since the gain is greater than one, the magnitude of the signal is
increased with each pass round the loop, giving an unbounded signal at the output.

We can intuitively deduce from the above, that if, when the open-loop phase of the
system is –180°, the stability of the output will depend on the magnitude of the open-loop
gain:

Key result: Test for closed loop instability

� If the open-loop gain is greater than unity when the phase crosses –180°, the closed-loop
system will be unstable.

We can also write that:

� If the phase is greater than –180° when the open-loop gain is 1, the closed-loop system will be
unstable.

The above is important, since it shows that we can deduce the stability of the
closed-loop system by knowing the open-loop gain and phase.

412 The frequency domain

14.7.1 Stability determination
We can use the gain and phase indicators of stability to provide a specification for the
open-loop system. For example, we can plot the open-loop gain and phase and check to
ensure that the closed-loop system is stable. If we consider a general feedback system
(Figure 14.27), the open-loop transfer function would be given by

GOL(s) = G(s)K(s)H(s)

though often in our simple examples we assume that H(s) = 1. We also assume in this text-
book that we do not have system with multiple gain crossover or phase crossover
frequency points. These can lead to conditionally stable systems which are not dealt
with at this level.

The following is the procedure for checking if the closed-loop system is stable:

Test 1
From the Bode plot of the open-loop transfer function:

1. Find the gain crossover, ω gco.

2. Determine the phase at that point, φ (ω gco).

3. Is the phase below –180°? If so, then the closed-loop system is unstable.

Test 2
From the Bode plot of the open-loop transfer function:

1. Find the phase crossover, ω pco.

2. Determine the gain at that point, |G(ω pco)|.

3. Is the gain greater than 1? If so, the closed-loop system is unstable.

Remark We note from the above that although either test will prove that the closed-loop system is
unstable, we need to perform both tests to determine whether the system is stable.

Example Determine from the Bode plot in Figure 14.28 of an open-loop system whether the closed-loop
system would be stable.

From Test 1, we find that the gain crossover point, ωgco, is at 3 rad/s. The phase value at this
point is almost –210°, that is, below –180°, and the closed-loop system is unstable. We could
stop here now, since this is sufficient to prove closed-loop instability, but for practice we shall
also do Test 2.

We find that the phase crossover point is at 2 rad/s. The value of gain at this frequency is
around 15 dB, well over 0 dB, and the system is unstable.

14.7 Performance specification: gain and phase margins 413

K s() G s()

H s()

R s() Y s()+

–

Figure 14.27 General feedback system.

14.7.2 Frequency domain specifications
We would not expect our system models (often given as transfer functions) to be abso-
lutely accurate; therefore we would like to include a margin of error in our design specifi-
cations. We would like to have a gain margin and a phase margin so that the resulting
systems are not performing near the bounds of their stability.

In practice, at the gain crossover (when the gain crosses 1 (or 0 dB)), we would like the
phase not to be ‘just above’ –180° but to take values of at least –135° to –120°; that is, for
the phase plot to have a phase margin of 45° to 60°.

Likewise, at the phase crossover (when the phase crosses –180°), we would like the gain
not to be ‘just below’ the 0 dB line, but to take values of –6 dB to –8 dB, giving gain margins
of 6 dB to 8 dB.

In other words, the gain margin represents how much gain you can add (in dB) to the
gain plot before the closed-loop system would be unstable. The phase margin represents
how much phase you can lose before instability occurs.

We can adapt Test 1 and Test 2 above to form a procedure for finding the gain and phase
margins.

Phase Margin (PM) procedure

1. Find the gain crossover, ω gco.

2. Determine the phase at that point, φ (ω gco).

3. Calculate the phase margin: PM = φ (ω gco) – (–180°).

If the PM is negative the system is unstable. If the PM is less than 45°, then it may be
appropriate to consider redesigning the controller, K(s), to improve the PM of the
open-loop system.

414 The frequency domain

Frequency (rad/sec)

Bode diagrams

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

–100

–50

0

50

10–1 100 101 102
–270
–240
–210
–180
–150
–120

–90
–60
–30

0
wgco

wpco

Phase crossover point

Gain crossover point

Figure 14.28 Bode plot of open-loop process.

Gain Margin (GM) procedure

1. Find the phase crossover, ω pco.

2. Determine the gain at that point, G(ω pco).

3. Calculate the gain margin: GM = 0 dB – G(ω pco).

If the GM is negative the system is unstable. If the GM is less than 6 to 8 dB , then it may
be appropriate to consider redesigning the controller, K(s), to improve the GM of the
system.

Remark We note that positive gain and phase margins indicate a stable closed-loop system. If either
the gain or phase margin is negative, the closed-loop system would be unstable.

Example: Bode plot gain and phase margins
In Figure 14.29, determine the gain and phase margins.

Phase margin procedure

1. ωgco is at 0.8 rad/s

2. φ (ωgco) is about –116°

3. PM = –116 – (–180°) = 64°

The PM is positive and therefore does not indicate an unstable closed-loop system.

14.7 Performance specification: gain and phase margins 415

Frequency (rad/sec)

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

Bode diagrams

–60

–40

–20

0

20

10–1 100 101
–270
–240
–210
–180
–150
–120

–90
–60
–30

0

Gain crossover point

wpco
wgco

wpco

Phase crossover point

Gain margin at

Phase margin at wgco

Figure 14.29 Example of gain and phase margins.

Gain margin procedure

1. ωpco is at 1.8 rad/s

2. G(ωpco) is about –12 dB

3. GM = 0 dB – (–12 dB) = 12 dB

The GM is positive and therefore does not indicate an unstable closed-loop system.
Since both the gain and phase margins are positive, the closed-loop system is stable.

We can show likewise the gain and phase margins and the tests for stability using the
Nyquist plots and the Nichols plot. These are illustrated below by example.

Example: Nichols plot gain and phase margins
For the Nichols plot in Figure 14.30, determine the gain and phase margins and indicate these
clearly on the plot.

We follow the procedure for determining the gain and phase margins. We remember three
points about Nichols plots:

� there is no frequency axis

� the open-loop gain is on the vertical axis (and hence the gain margin will be read from this axis)

� the open-loop phase is on the horizontal axis (and therefore the phase margin will be read from
this axis)

Phase margin procedure

1. Find the gain crossover, ωgco, that is, where the magnitude response line crosses 0 dB (= 1)

416 The frequency domain

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

Nichols charts

–240 –210 –180 –150 –120 –90 –60 –30 0
–40

–30

–20

–10

0

10

20

Gain

Gain crossover point

Phase crossover point

Phase margin
margin

Figure 14.30 Gain and phase margin on Nichols plot.

2. Find the phase value at this point: φ(ωgco) = –153°

3. Calculate the phase margin: PM = –153° – (–180°) = 27°

This is positive, but not a large value for a phase margin.
We can indicate the phase margin on the plot by drawing a line from the gain crossover point to

the –180° phase line.

Gain margin procedure

1. Find the phase crossover, ωpco

2. Determine the gain at this point: G(ωpco) = –6 dB

3. Calculate the gain margin: GM = 0 dB – (–6 dB) = 6 dB

This is positive, along with the PM, so we can say that the closed-loop system is stable.
We can show the gain margin on the plot by drawing a line from the phase crossover point to

the 0 dB line.

Example: Nyquist plot gain and phase margins
From the Nyquist plot in Figure 14.31, determine the gain and phase margins for the system and
show these clearly on the polar plot.

We remember five points about the Nyquist plot:

� there is no frequency axis: the axes are the real and imaginary parts of the complex number
representation

� the phase is measured as an angle from the positive real axis

� the gain is measured as the radius from the origin

� the value of 0 dB is given by a magnitude of 1

� the value of –180° phase represents the negative real axis

Phase margin procedure

1. Find the gain crossover, ωgco (this is where the frequency response line crosses the circle of
radius 1)

2. Find the phase value at the gco: φ (ωgco) = –195° (approx.)

3. Calculate the PM: PM = –195° – (–180°) = –15°

This phase margin is negative, so the closed-loop system is unstable.
The phase margin is indicated as the angle between the negative real axis (–180°) and the line

to the gco point.

Gain margin procedure:

1. Find the phase crossover, ωpco (this is the point where the frequency response crosses the
negative real axis)

2. Determine the gain at this point: G(ωpco) = 1.2 (approx.) (note that the gain is the radius from
the origin, so there is no negative sign here)

14.7 Performance specification: gain and phase margins 417

3. Calculate the gain margin:

GMdB = 0 dB – G(ωpco)dB = 0 – 20 × log10(1.2) = –1.58 dB

This is negative, so the closed-loop system will be unstable.
However, in the Nyquist plot we can calculate the gain margin from the plot. Firstly, we

remember from log rules that

20 log10 a – 20 log10 b = 20 log10
a
b

Therefore if we use this rule we find

GMdB = 0 dB – G(ωpco)dB = 20 log10 a – 20 log10 b

where

20 log10 a = 0 dB ⇒a = 1

20 log10 b = 1.58 ⇒b = 1.2

GMdB = 20 log10
1

12.

GM (not in dB) =
a
b
=

1
12.

= 0.83

On the Nyquist plot we can show the line from the origin to the phase crossover point. The value
of the gain margin is therefore 1 over this magnitude.

14.7.3 Link to the time domain
A general rule of thumb which links the phase margin specification to a time domain
specification for systems with dominant second-order characteristics, is that:

the damping ratio ζ = PMdeg/100

418 The frequency domain

Real axis

Im
ag

in
ar

y
ax

is

Nyquist diagrams

–2.5 –2 –1.5 –1 –0.5 0 0.5 1
–2.5

–2

–1.5

–1

–0.5

0

0.5

1

Im
ag

in
ar

y
ax

is

Real axis

Nyquist diagrams

–2.5 –2 –1.5 –1 –0.5 0 0.5 1
–2.5

–2

–1.5

–1

–0.5

0

0.5

1
Gain crossover point

Unit circle

Phase margin (angle)

Phase crossover point

1/gain margin

Figure 14.31 Nyquist gain and phase margins.

where PMdeg represents the phase margin in degrees. We illustrate this for the following
system model, using the Bode plot.

Problem A system model has the bode plot shown in Figure 14.32.

(a) Calculate the phase margin from the Bode plot.

(b) Using the rule of thumb for the damping ratio, predict what the damping ratio for the system
will be.

(c) Verify your answer, given that the system model has the transfer function:

G(s) =
10
08 42s s+ +.

Solution (a) The gain crossover frequency is around 3.7 rad/s. The phase at this point is approximately
–163°, giving a phase margin of 17°.

(b) The rule of thumb for the damping ratio provides:

ζ = PMdeg/100 = 17/100 = 0.17

(c) The second-order system has the standard form:

G(s) =
K

s s s s
ω

ζω ω
n

n n

2

2 2 22
2 4 4

08 4+ +
=

×
+ +
.

.

Equating coefficients of powers of s on the denominator gives

ωn
2 4= and 2ζωn = 0.8

This gives us a value for ζ of 0.2, similar to the result from the Bode plot.

14.7 Performance specification: gain and phase margins 419

Frequency (rad/sec)

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

Bode diagrams

–20

–10

0

10

20

10–1 100 101
–180
–160
–140
–120
–100

–80
–60
–40
–20

0

Figure 14.32 Bode plot for damping/phase margin example.

What we have learnt

� Time-varying signals were related to a frequency domain decomposition using the
amplitude, phase and frequency of component sinusoids.

� Physical systems can alter the magnitude and phase of the sinusoidal components
of an input signal.

� Frequency response plots can be generated from gain, phase and frequency
information.

� Frequency response plots can be interpreted in terms of the low, middle and high
frequency ranges.

� Some important features of a frequency response plot are: ranges of amplification
and attenuation, d.c. gain, high frequency roll-off.

� The main frequency points are gain crossover, phase crossover and bandwidth.

� The frequency response plots can be related to the behaviour of the physical
system.

� How the magnitude and phase of the open-loop process can determine the stability
of the closed-loop system.

� Test procedures which determine, from the values of gain and phase at the phase
and gain crossovers, whether the closed-loop system is stable

� Procedures for determining the gain margin and phase margin of a system. These
provide an indication of how stable the closed-loop system is and are used as
frequency domain specifications on the open-loop system.

Multiple choice

420 The frequency domain

M14.1 What is the phase of the following signals?
(i) u1(t) = 6 sin(t + π/2)
(ii) u2(t) = –1.5 sin(t – π/2)
(a) π/2, –3π/2
(b) π/2, –π/2
(c) –π/2, –π/2
(d) +π, –π

M14.2 What is the equivalent gain in dB of the
following magnitudes?
(i) |G1| = 0.1
(ii) |G2| = +10
(a) –20dB, +10 dB
(b) +1 dB, +20 dB
(c) –10 dB, +10 dB
(d) –20 dB, +20 dB

M14.3 A system has a gain of –20 dB. What is the
equivalent magnitude value?
(a) –0.1
(b) 0.1
(c) 1
(d) –1

M14.4 A system has a phase shift of –30° at
ω= 2 rad/s. A sine wave at 2 rad/s and of
magnitude 5 with a phase shift of +30° is
applied to the input. What is the phase of the
output sine wave?
(a) 30
(b) –30
(c) 60
(d) 0

Questions: practical skills

Q14.1 What are the frequencies, magnitudes and phases of the following signals?
(a) u1(t) = 5 cos(3t + 0.2)
(b) u2(t) = 3 cos(t – 0.3)
(c) u3(t) = 10 cos(6t)
(d) u4(t) = 20 cos(t – 1.2)

Q14.2 What are the equivalent gain values in dB for the following:
(a) |G1| = 30
(b) |G2| = 3
(c) |G3| = 0.4

Q14.3 The following gain values are given in dB. What are the equivalent magnitude values?
(a) G1 dB = 0.707 dB
(b) G2 dB = 20 dB
(c) G3 dB = 6 dB

Q14.4 Consider the Bode plot overleaf.
(a) What is the d.c. gain?
(b) State the frequency range where the amplification is above 10 dB.
(c) At what frequency do we find 10 dB of attenuation?
(d) What is the roll-off rate?
(e) What is the gain when the phase reaches –100°?

Practical skills 421

M14.5 A Nichols plot is a plot of:
(a) gain vs. frequency
(b) phase vs. gain
(c) gain vs. phase
(d) phase vs. frequency

M14.6 Two cascaded systems have phase shifts at
a frequency ωo of 2° and 10° respectively. What
is the overall phase shift?
(a) 20
(b) 5
(c) 8
(d) 12

M14.7 If a system’s gain is given as |G(ωo)| = 0 dB,
what will happen to an input signal at the
frequency ωo?
(a) it will be amplified
(b) it will be attenuated
(c) there will be no output signal
(d) the output signal will be the same magni-

tude as the input signal

M14.8 The phase crossover frequency represents:
(a) a phase of –180°
(b) the frequency when the phase crosses 0°
(c) the frequency when the phase crosses –90°
(d) the frequency when the phase crosses

–180°

M14.9 The roll-off rate for a system indicates:
(a) the spread of response
(b) the steady state output
(c) the high-frequency attenuation
(d) the low-frequency gain

M14.10 An open-loop transfer function G(s) has a
constant phase response of –180°. The system
has a transfer function of the form:
(a) K/s
(b) K/s2

(c) K/s3

(d) K/s4

Q14.5 The Bode plot of a system is shown below.

(a) Find the gain crossover frequency.
(b) Find the phase crossover frequency.
(c) Determine the gain and phase margins for the system and state whether the closed-loop system

will be stable or unstable.

422 The frequency domain

Bode diagram

Frequency (rad/sec)

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

40

20

0

–20

–40

–45

0

–90

–135

–180

–225

–270
10–1 100 101

System:
Frequency (rad/sec): 1.05
Phase (deg.): –181

g

Bode diagram

Frequency (rad/sec)

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

40

20

0

–20

–40
–90

–95

–100

–105
10–2 10–1 100 101

Problems

P14.1 An engineer applies the input u(t) = 2 sin(t) to a chemical process and measures the output as
y(t) = 0.4 sin(t – 1.55). What are the gain and phase of the system?

P14.2 A current-to-pressure transmitter system has a gain of –10 dB and phase of –60° at ω= 10 rad/s.
An input signal of u(t) = 5 cos(10t – π/2) is injected. What is the output signal?

P14.3 The Bode plot of an open-loop system is given below. Determine the stability of the system.

P14.4 The Nichols plot shows the frequency response of an open-loop system. Determine the stability
margins from the Nichols plot. State whether the closed loop will be stable or unstable.

Problems 423

Bode diagram

Frequency (rad/sec)

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

40

20

0

–20

–40
–30

–60

–105
10–1 100 101 102

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

Nichols charts

–300 –270 –240 –210 –180 –150 –120 –90 –60 –30 0
–40

–30

–20

–10

0

10

20

30

40

50

P14.5 A general rule of thumb gives the damping ratio as ζ = PMdeg/100. From the following Bode plot
of a second-order system, determine the approximate damping ratio.

P14.6 Determine from the following Nyquist plot of an open-loop system whether the closed-loop system
will be stable.

P14.7 Many industrial systems have transport or deadtime associated with them. The frequency
responses of time-delayed systems are different from the ones we have studied so far. Consider the
time-delayed system:

G s
s

s
() =

+

−e 5

10 1

424 The frequency domain

Frequency (rad/sec)

M
ag

ni
tu

de
 (d

B
)

P
ha

se
 (d

eg
re

es
)

Bode diagrams

–40

–30

–20

–10

0

10

20

10–1 100 101
–180

–150

–120

–90

–60

–30

0

Real axis

Im
ag

in
ar

y
ax

is

Nyquist diagrams

–1 –0.5 0 0.5 1 1.5 2
–1.5

–1

–0.5

0

0.5

1

1.5

1/gain margin

Phase margin

Use the following MATLAB commands to plot the Bode plot. Notice the use of the set command to
add a transport delay to the system.

s=tf('s');
g=1/(10*s+1);
set(g,'InputDelay',5);
bode(g)

Use the graph to explain how the time delay can cause instability in a system.

Problems 425

Frequency response using Bode plot
presentation

15

Gain and phase calculations freqresp command

Creating Bode plots

Interpretation of frequency ranges:
low, middle and high

Sketching Bode plots Transfer function
components

Gain and phase of transfer
function components

Gain K

s terms

Sketching Tables

First-order terms Procedure to sketch Bode plot

Examples

Second-order
underdamped term

Effect of change in on plotz

Cascade
systems

Effect of
adding 1/s

Effect of
adding a
pole

Effect of
adding a
zero

Sensitivity
function

Magnitude plots of
() and ()S s G sCL

Sketching Tables

Help? Time to readGaining confidence Skill sectionGoing deeper

The process of examining the input and output signals of a system can be performed in the
frequency domain with the help of our Laplace transform representations of signals and systems.
The system block diagram is shown below:

The use of Laplace transforms allows us to calculate Y(s) by algebra:

Y(s) = G(s) × U(s)

The frequency response of G(s) shows the effect that the system, G(s), has on input signals over
a range of frequencies. In this chapter we look at how we represent this frequency response on a
Bode plot. There are two key elements:

(a) To understand how a Bode plot is constructed and to practise sketching simple Bode plots
by hand
Although computers make the production of Bode plots as easy as typing ‘bode’, we cannot
use Bode plots for design without having a clear understanding of how the different compo-
nents within the transfer function affect the shape of the magnitude and phase plots. We find
that if we understand the gain and phase contributions from four types of transfer function
components (gain terms, s-terms, and first- and second-order components), we can easily
sketch the Bode plot for many systems. To help us understand how we add the logged magni-
tudes and phases to form a Bode plot, we introduce a Sketching Table. This method forma-
lises our approach for providing sketches of the Bode plot.

(b) To understand the effect on a Bode plot of the addition of other simple transfer functions; for
this we will use computer-based packages
We now assume that we have gained some familiarity with Bode plot sketching and revert to
using MATLAB representations of Bode plots. In particular, we look at how adding simple
lead or lag terms to a system changes the shape of the Bode plot.

Learning objectives

� To understand how the magnitude and phase points are calculated from a transfer func-
tion representation.

� To be able to enter appropriate data in order to produce a computer-based Bode plot.

� To divide the frequency range into low, middle and high frequency ranges.

� To find out the basic components that make up any simple transfer function.

� To be able to sketch a Bode plot of a simple transfer function.

� To be able to sketch a Bode plot of a cascaded system.

� To understand how adding simple components changes the shape of the Bode plot.

Frequency response using Bode plot presentation 427

U s() Y s()

G(s)

15.1 The Bode plot

The Bode plot is a graphical representation of the frequency response. It is plotted on the
semilog Cartesian coordinate system; that is, a two-axis system where the horizontal
axis represents a log scale (log10 ω) and the vertical scale represents a linear magnitude
scale.

The Bode plot comprises two plots (Figure 15.1); that is:

1. a Magnitude plot: The gain of the system versus frequency

2. a Phase plot: The phase shift induced by the system versus frequency

Frequency axis
This is a semilog scale: the semilog plot has a log scale only on the x-axis, with a linear
scale on the y-axis. The magnitude and the phase are plotted against log10ω . We note that
the ‘log10’ is often omitted when labelling the frequency axis and the log10 axis does not
start at zero.

Magnitude axis
The gain can be plotted in terms of its actual magnitude, but is commonly plotted in
units of dB, that is, 20 log10(gain).

Phase axis
The phase axis usually has units of degrees.

15.2 Gain and phase calculation without using a computer

Given a model of the process, G(s), the frequency response can be calculated by setting
s = 0 + jω and evaluating the magnitude, |G(jω)|, and the phase, ∠G(jω), of G(jω) over the
required frequency range. Therefore the frequency response of a scalar system G(jω) is a
complex number which changes as ω varies over the range ω= 0 to ω →∞ . For each value
of ω in that range, |G(jω)| and ∠ G(jω) give a gain factor and a phase shift relative to some
input signal.

Problem Determine the gain and phase from the Laplace transform of the system given by:

G(s) =
05

05
.

.s +

Solution By substituting s = 0 + jω , we find

428 Frequency response using Bode plot presentation

Phase,
degrees

0°
log10w rad/s

Gain,
dB

0 dB
log10 w rad/s

0.1 1 10 1000.1 1 10 100

Figure 15.1 Example of a Bode plot (magnitude and phase).

G(jω) =
05

05
.

.jω+

Remove the complex number from the denominator by multiplying the numerator and denominator
of G(jω) by the complex conjugate (0.5 – jω) of the denominator. This gives the real (Real) and
imaginary (Imag) part of the complex number:

G(jω) =
05

05
05

05
05
05

05 05.
.

.
.

.

.
. (.)
(j j

j
j

j
ω ω

ω
ω

ω
+

=
+

−
−

⎛

⎝
⎜

⎞

⎠
⎟ =

−
ω ω

ω
ω2 2

2

2 2 2 205
05

05
05

05+
=

+
−

+.)
.

(.)
.

(.)
j

Now the magnitude and phase can be calculated from

|G(jω)| = Real Imag2 2+ , ∠ G(jω) = tan–1 (Imag/Real)

with ∠ G(jω) given in radians. In our example, this gives

|G(jω)| =
05

052 2

.

.ω +
and ∠ G(jω) = tan–1(–ω/0.5)

Skill section

Using the relations

|G(jω)| = Real Imag2 2+ and ∠ G(jω) = tan–1 Imag
Real
⎛
⎝
⎜

⎞
⎠
⎟

solve the following problem.

Problem Calculate the magnitude and phase of the system with Laplace transform

G(s) =
05

05
.

.s +

for frequency values of 0.2 rad/s and 1.8 rad/s.

Solution Use the expression for the magnitude and phase of G (jω) given above.

|G(j0.2)| =
05

02 052 2

.

. .+
= 0.928 and ∠ G(jω) = tan–1 −⎛

⎝
⎜

⎞
⎠
⎟

02
05

.
.

= –0.385 rad = –21.8°

|G(j1.8)| =
05

18 052 2

.

. .+
= 0.268 and ∠ G (jω) = tan–1 −⎛

⎝
⎜

⎞
⎠
⎟

18
05

.
.

= –1.300 rad = –74.5°

Physical interpretation
Let us analyse the answers from the above example. If we inject a sinusoid with a frequency of
0.2 rad/s the system will apply a gain of 0.928 to the input signal and introduce a phase lag of
–21.8° from the original signal (the negative sign indicating the phase lag). At the higher
frequency, 1.8 rad/s, the system reduces the magnitude of the signal even more (a gain factor of
0.268) and the phase lag is increased to –74.5°.

We can summarise the above algebraic manipulations for calculating the gain and phase in
Table 15.1.

15.2 Gain and phase calculation without using a computer 429

We can also use the MATLAB command, freqresp (g, w). This calculates both the

real and imaginary parts of the transfer function g(s) at frequency w.

Example Find the magnitude and phase of the transfer function G(s) = 0.5/(s + 0.5) at ω= 0.2 rad/s.

Solution s=tf('s');
g=0.5/(s+0.5);
p=freqresp(g,0.2)

p=
0.8621 – 0.3448 i

mag = sqrt(real(p)^2 + imag(p)^2)
mag =

0.9285
phase = atan(imag(p)/real(p))

phase =
–0.3805

Alternatively, we can use the commands: mag = abs(p) and phase = angle(p).

15.3 Using computers to form a frequency response plot

We would like to look at the behaviour of the system over a range of frequencies. To do
this we need to produce a frequency response plot. Although this can be performed by
repeating the above calculation for the range of frequencies required, it is more
commonly automated by the use of computer programs. The information you may
require to pass to the computer program is:

1. a range of frequencies (usually two to four decades of frequency, such as 10–2 to 102)

2. a Laplace transform representation of the system transfer function, G(s), or open-loop
transfer function GOL(s).

15.3.1 Computer calculation of Bode plots
We will introduce four ways of producing a Bode plot in MATLAB – each of which
requires a slightly different form of input data. We note that the MATLAB font does not
permit the frequency symbol ω , which will appear as w in any of our MATLAB code. We
also note that the default units for frequency are radians per second: rad/s. This can be
altered if required to, for example, hertz, by editing the plot axes, but we shall continue to
use rad/s.

430 Frequency response using Bode plot presentation

Transfer function in Laplace variable s G(s)

Set s = jω G(jω)

Find real and imaginary parts of complex function G(jω) G(jω) = Real (G(jω)) + j Imag(G(jω))

Calculate magnitude | G(jω) | = Real Imag2 2+

Calculate phase ∠ G(jω) = tan–1(Imag/Real)

Table 15.1 Gain and phase calculations.

Basic Bode plot
We enter a transfer function

G(s) =
6

4 1 1
6

4 5 12()()s s s s+ +
=

+ +

either as a function of s

s=tf('s');
g=6/(4*s^2+5*s+1)

or as vectors of numerator and denominator coefficients

num = [6], den=[4 5 1];
g=tf([num],[den]);

By simply using the command

bode(g)

we will find a bode plot of G(s) in the current window for a default frequency range set by
the MATLAB package.

Basic Bode plot with magnitude and phase information
If we wish to find out further detailed information, such as specific magnitude and phase
values, we can modify the above basic Bode command.

1. Produce a Bode plot over a specific frequency range wmin to wmax

bode(g,{wmin,wmax})

For example

bode(g,{0.1,10})

will produce a bode plot in the range 0.1 to 10 rad/s.

2. Finding specific magnitude and phase values

[mag,phase,w] = bode(g)

This command will return the magnitude, phase and frequency values in the MATLAB
matrices mag and phase, and the vector w.

The results are matrices and not vectors, since MATLAB 5.3 now does not assume
that the system is a single-input, single-output system but allows greater flexibility
for dealing with more complex systems. This does have an effect for us on how we
address the results. If we type mag, we find a screenful of values of the form

mag(:,:,28) = 0.0384
mag(:,:,29) = 0.0239
mag(:,:,30) = 0.0149

For our SISO system, this could equally well be

mag(1,1,28) = 0.0384
mag(1,1,29) = 0.0239
mag(1,1,30) = 0.0149

since we are dealing with the first (and only) columns of matrix mag.

15.3 Using computers to form a frequency response plot 431

We can then find particular triplets of magnitude, phase and frequency by using the
same index:

w(10),mag(1,1,10),phase(1,1,10) or w(10),mag(10),phase(10)

will give the 10th frequency value in the file and the corresponding magnitude and
phase values.

3. Fixing the frequency points
The default frequency points are distributed over a frequency range 0.1 to 10 rad/s. We
find that the closest mid-point frequency is not 1 rad/s but 0.97 rad/s or 1.04 rad/s. By
increasing the number of points, or supplying a frequency vector that includes only the
specific frequency points we are interested in, we can calculate the gain and phase at a
particular frequency. For example, if we supply the vector

w=[0.1;0.3;0.5;0.7;0.9;1.0;3.0;5.0;7.0;9.0;10];

and type

bode(g,w)

or

[mag,phase]=bode(g,w)

MATLAB will use the frequency vector supplied and compute the magnitude and
phase at those frequency points.

4. rltool
This is really a design tool and incorporates root locus, Bode, Nyquist and Nichols
plots. Hence we can use it for our Bode plot. Firstly, we type

rltool

in the MATLAB command window.
By using the ‘Import Compensator’ window under the File menu we can import an

existing transfer function and click on the Bode check box to produce the plot. More
information is given in Chapter 13.

All four of these methods will produce the Bode plot for our system. We may find that one
may be more suitable for a ‘quick look’, while we may use another form for further
design, or another for finding details on magnitude and phase.

15.4 What are low, middle and high frequencies?

The performance of control systems depends on the behaviour and the shape of the
frequency response over different frequency ranges. We usually divide the frequency axis
into three ranges (Figure 15.2).

432 Frequency response using Bode plot presentation

We relate these ranges to the indicators of system stability and performance in later
sections. These ranges are:

� The low frequency range: this range covers the frequencies near zero. For many systems,
the gain is often ‘constant’ over this frequency range, or constantly decreasing.

� The middle frequency range: the gain and phase of the system significantly change
over this frequency range. This range determines the closed-loop system stability.

� The high frequency range: in dB magnitude plots, the slope of the system gain is
constant over this frequency range. This range determines the performance of the
closed-loop system to high-frequency disturbances such as noise.

Problem Consider the plots shown in Figure 15.3. State the approximate frequency ranges that corre-
spond to ‘low’, ‘middle’ and ‘high’ frequency ranges.

Solution � Low frequency range: this covers the range where the amplitude and phase are fairly constant
and therefore corresponds to a frequency range up until approximately 1.0 rad/s.

� Middle frequency range: this range is from 1.0 rad/s to approximately 4 rad/s (where the
magnitude plot slopes off at a constant rate and above the point where the gain crosses 0 dB).

� High frequency range: this range corresponds to the frequencies above 4 rad/s. The magni-
tude plot has a constant slope and the phase is nearly steady at –180°.

Motivation for sketching Bode plots
Although we mainly use computers for plotting Bode plots and for analysing a process
control system, one of the main reasons that Bode plots were used extensively for system
analysis and design was the fact that, given a few rules, they were fairly easy to sketch ‘on
the back of an envelope’. Complex systems could be represented easily. We still use Bode
plots for control system design, since they provide a representation of the frequency
response plot which we can interpret relatively easily. Although we tend to use
computers to plot the points on the Bode plot, practising sketching the following simple

15.4 What are low, middle and high frequencies? 433

Low freq. Middle freq. High freq.

Gain, dB

Phase,
degrees

Freq (rad/s)

Freq (rad/s)

100

0

–100

0

–100

–200

10 10 10 10 10–2 –1 0 1 2

10 10 10 10 10–2 –1 0 1 2

Figure 15.2 Low, middle and high frequency ranges.

first- and second-order plots will give you a deeper understanding the features of the
frequency response and how to retrieve information from the plots.

15.5 Transfer function components

We now introduce a skill section where we practise the identification of a number of
simple transfer function components present in our transfer functions. These compo-
nents combine together to make more complex systems.

Once these components have been identified we can form a Sketching Table. We find
that a Bode plot is formed by the addition of logged magnitudes of all the components
and the addition of the phase of all the components. We show the addition of the gain and
phase in the Sketching Table.

Skill section Transfer function components

We can write any transfer function as a product of a number of components: a number of
first-order terms, second-order underdamped expressions etc. One key point to sketching a
Bode plot is to recognise which terms we have and the influence they will have on the shape of the
frequency response plot. Consider the following two transfer functions:

G s
s s

s s s1 2
20 3 1

10 1 02 1
()

()
()(.)

=
+

+ + +
and G s

s s
s s s2

2

2 2
6 10 100

50 15 1
()

()
()

=
+ +

+ +

We can see that each transfer function is comprised of a number of components: gain, first-order
terms and second-order terms.

We look for the following four terms (Table 15.2) in the transfer function and note whether they
appear in the numerator or denominator.

434 Frequency response using Bode plot presentation

Frequency (rad/sec)

Bode diagrams

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

–30

–20

–10

0

10

20

10–1 100 101
–200

–150

–100

–50

0

Figure 15.3 Example for different frequency ranges.

Table 15.2 Transfer function components.

System gain K

Terms in sp with p > 0 (numerator term) or p < 0 (denominator term)

First-order terms of form (τ s + 1)

Second-order terms:
1 2

12
2

ω
ζ

ωn n
s s+ +

⎛

⎝
⎜

⎞

⎠
⎟

Sometimes we see terms in the transfer functions such as s2 or we find that the basic component
has been raised to a power, p. In these examples we would have s2 = sp (p = 2) or 1/(s + 1)3

= (s + 1)p (p = –3). It is useful for us to determine the different components, since when we come
to examining the Bode plots we will find that each term ‘adds’ its effect to the existing terms.

Finding the Bode plot components

1. Firstly ensure that the transfer function is in ‘unity constant coefficient form’ (Chapter 7). This
enables us to read off the system gain K from the transfer function.

2. Take any second-order component (as2 + bs + 1) and by finding out whether b2 – 4ac (with
c = 1 in this form) is positive or negative, determine whether the roots are complex or real.

3. If the roots are real, determine the values and rewrite the second-order expression as two
first-order terms, else leave the term as a second-order term.

4. List all the first- and second-order components.

Problem List the transfer function components for G1(s):

G s
s s

s s s1 2
20 3 1

10 1 02 1
()

()
()(.)

=
+

+ + +

Solution 1. The transfer function is already in unity constant coefficient form. We can read off the gain K as 20.

2. From the denominator term s2 + 0.2s + 1, the value of b2 – 4ac = 0.04 – 4 = –3.96 < 0. The
roots are complex.

3. No real roots of second-order components.

4. The resulting list is:

20, s1, ()10 1 1s + − , (3s + 1)1, (.)s s2 102 1+ + −

Ordering the transfer function components
We find that it is convenient to have the components in the order of gain terms, sp terms, and then
first- and second-order terms in order of their corner frequency, where we define the corner
frequency for first- and second-order terms as follows:

First-order term: τ s + 1: Corner frequency ωc = 1/τ

Second-order term: s2 + 2ζωns + ωn
2: Corner frequency ωc = ωn

The corner frequency is the point at which the low- and high-frequency approximations to the gain
of first (or second) order terms meet. It is discussed more fully in Section 15.7.1. The reason for
the ordering of components will become apparent when we combine components together.

15.5 Transfer function components 435

Problem For G2(s), list the transfer function components in order of increasing corner frequency.

G s
s s

s s s2

2

2 2
6 10 100

50 15 1
()

()
()

=
+ +

+ +

Solution 1. The transfer function is not in unity constant coefficient form. By altering the second-order
term on the numerator we find:

G s
s s

s s s2

2

2 2
600 001 01 1

50 15 1
()

(. .)
()

=
+ +

+ +

Now we can read off the gain K as 600.

2. There are two second-order terms:

For the numerator term (0.01s2 + 0.1s + 1):

the value of b2 – 4ac = 0.01 – 0.04 < 0. The roots are complex.

For the denominator term (50s2 + 15s + 1):

the value of b2 – 4ac = 2252 – 200 = 25 > 0. The roots are real.

3. The second-order component with real roots can be written as

(50s2 + 15s + 1) = (5s + 1)(10s + 1)

4. The resulting list is

600, (0.01s2 + 0.1s +1)1, ()5 1 1s + − , ()10 1 1s + −

We now have to order the components. We list their corner frequencies:

(0.01s2 + 0.1s + 1): ωc = ωn = 1 rad/s

1
5 1s +

: ω c = 1/τ = 1/5 = 0.2 rad/s

1
10 1s +

: ωc = 1/τ = 1/10 = 0.1 rad/s

In order of increasing corner frequency, with the gain term first, we have

600, ()10 1 1s + − , ()5 1 1s + − , (0.01s2 + 0.1s + 1)1

Now that we have identified and ordered the different terms that might appear in a
system transfer function, we would like to find a general method of evaluating the magni-
tude and phase change that each simple component introduces into the Bode plot.

15.6 Magnitude and phase of transfer function components

We start with a reminder of the rules of logarithms and calculation of phase which apply
when we multiply or divide transfer function components.

436 Frequency response using Bode plot presentation

Logarithm rules

Multiplication of a and b: log ab = log a + log b

Division of a and b: log a/b = log a – log b

Powers of a: log ab = b log a

The reason we need these rules is that the magnitude on a Bode plot is written in terms of
20 log10 |G(jω)|. Since we are effectively multiplying the terms together in the transfer
function, it turns out that we will be adding them as logarithmic values.

Calculation of phase from complex variables
We remember three points for use in the calculation of phase from complex variables.

1. To calculate the phase of a complex variable x = a + bj, we form ∠ x = tan–1 b/a, that is
tan–1 (Imaginary/Real).

2. To calculate the phase of a variable with numerator and denominator, x = (a + bj)/(c + dj),
we form:

∠ x = ∠ numerator term – ∠ denominator term

∠ x = tan–1(b/a) – tan–1(d/c)

3. To calculate the phase of a product, x = (a + bj) × (c + dj), we form:

∠ x = ∠ first term + ∠ second term

∠ x = tan–1 (b/a) + tan–1(d/c)

We now examine each of the four basic system components to find out their magnitude
and phase response.

15.6.1 Magnitude and phase of constant gain K

System gain K (magnitude)
The system gain is given by the real constant K. The gain on the Bode plot is given by
20 log10 K. The value does not change with frequency, and hence this is represented by a
straight horizontal line over all frequencies.

System gain K (phase)
The phase of any real positive constant is 0°. This again does not change with frequency, so
the multiplication of the transfer function by a positive constant will not alter the phase.

15.6.2 Magnitude and phase of s-terms

Magnitude of s-term
Let G(s) = 1/s, where s = σ+ jω . This is an example of G(s) = sp where p = –1. To find the
frequency response, we set s = jω . This gives:

G(jω) =
1
jω

|G(jω)| =
1 1

| |jω ω
=

The magnitude of |G(jω)|dB = 20 log10(1/ω) = 20 log10(1) – 20 log10(ω) = –20 log10(ω). We
can calculate the value of gain for different frequency points over several decades (Table
15.3).

15.6 Magnitude and phase of transfer function components 437

Table 15.3 Magnitude value for G(s) = 1/s.

log10() |G(j)|dB = –20 log10()

0.01 rad/s –2 40 dB

0.1 rad/s –1 20 dB

1 rad/s 0 0 dB

10 rad/s 1 –20 dB

100 rad/s 2 –40 dB

The graph of |G(jω)|dB plotted against log10(ω) is given in Figure 15.4 as the line for 1/s.
It shows that the magnitude decreases with a constant rate given by –20 dB/decade. We
can find the magnitude of the general term sp by following the same route.

Magnitude of sp-term
Let G(jω) = (jω)p. The magnitude of G(jω) is given by |G(jω)| = ω p. If we express this in dB,
we find

|G(jω)|dB = 20 log10ω p = p × 20 log10(ω)

In the previous example, where the s-term was 1/s, the value of p is equal to –1.
By plotting |G(jω)|dB against frequency we find that the magnitude plot of sp is given by

a line passing through the value 0 dB at 1 rad/s with a slope of 20 × p dB/decade.

If p is positive, the s-term is in the numerator and the slope is positive.
If p is negative, the s-term is in the denominator and the slope is negative.

Phase of s-term
Let us consider the phase of G(s) = s. Replacing s = jω in G(s) gives ∠ G(jω) = ∠ jω .

1. s-term on numerator: ∠ G(jω) = ∠ (jω) = 90°, since the phase of a positive imaginary
number is 90°.

2. s-term on denominator = ∠ G(jω) = ∠ (1/jω) = ∠ (1) – ∠ (jω) = 0 – 90° = –90°

438 Frequency response using Bode plot presentation

Magnitude of -terms in denominators

Freq (rad/s)
10–1 100 101 102

–120

–100

–80

–60

–40

–20

0

20

40

60

80Mag
(dB)

s2

Magnitude plot of -terms in numerators

Freq (rad/s)
10–1 100 101 102

–120

–100

–80

–60

–40

–20

0

20

40

60

80Mag
dB

s

s3

1 rad/s, 0 dB

s2

1 rad/s, 0 dB

1
s

1
s3

1

Figure 15.4 Magnitude plot of s-terms in denominator and numerator.

Phase of sp-term
We now consider the general case of sp.

sp-term: ∠ G(jω) = ∠ (jω)p = ∠ (jω) + ∠ (jω) + ∠ (jω) + ... (p times) = p × 90°

If the s-term were in the numerator then p would be positive:

s2 would provide 2 × 90° = 180° phase shift

If the s-term were in the denominator then p would be negative:

1/s3: p = – 3 and the transfer function would provide –3 × 90° = –270° phase change

We find that the phase of the s-term is equal to 90° times p. On a phase plot this is drawn
as a horizontal straight line over all frequencies.

15.7 Introducing a sketching table

We now combine the first two terms we have learnt about: the system gain K and the
s-terms. When we combine terms, we can form a quick sketch by considering their low-,
mid- and high-frequency values. We are particularly interested in the straight line
approximation at low frequency, called the low-frequency asymptote, the shape of the
plot in the mid-range and the roll-off rate at high frequency. We can add the phase compo-
nents together, and, because we use magnitude in dB, that is log10, we can add the magni-
tude components as well. We can complete a sketching table, as shown in the following
example.

Problem Draw the Bode plot for the following transfer function

G(s) = 6/s

Solution Firstly we list the component terms in the transfer function:

6, 1/s

We consider the following table:

Sketching table (magnitude)

Component Low-frequency asymptote Mid-frequency values High-frequency asymptote

K = 6 20 log106 = 15.56 dB 20 log106 0 dB/decade (horizontal line: no

roll-off)

1/s line at –20 dB/decade passing

through 1 rad/s at 0 dB

0 dB at 1 rad/s –20 dB/decade

Total Low-frequency asymptote: line at

–20 dB/decade passing 1 rad/s

at (0 + 20 log106 dB)

Mid-frequency at 1 rad/s,

|G| = 20 log106 = 15.56 dB

High-frequency roll-off: sum of all

roll-off rates: 0 – 20 dB/decade

= –20 dB/decade

This plot is shown in Figure 15.5. The line for 1/s is drawn and the constant system gain merely
raises the whole line up by 15.56 dB.

15.7 Introducing a sketching table 439

Phase calculation

Sketching table (phase)

Component Low-frequency asymptote Mid-frequency values High-frequency asymptote

K = 6 0° 0° 0°

1/s –90° –90° –90°

Total –90° –90° –90°

The phase contributed by the 1/s term is p × 90°. In this case, p = –1, so the phase is –90° over all
frequencies. The constant gain K has 0° phase over all frequencies and therefore has no effect on
the phase plot. The result is a straight line at –90°, as shown in Figure 15.5.

15.7.1 Magnitude and phase of first-order terms

Magnitude of first-order terms
We now turn our attention to the first-order terms of the form:

G1(s) =
1

1()τ s+
and G2(s) = (τ s + 1)

440 Frequency response using Bode plot presentation

Frequency (rad/sec)

Bode diagrams

–40

–20

0

20

40

10–1 100 101 102
–180

–135

–90

–45

0

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

1 rad/s, 0 dB

20 log10 K

6/s

1/s

Constant phase

Figure 15.5 Bode plot of 6/s.

We note the following result for G1(jω) and G2(jω):

Key result: Magnitude and phase of first-order terms

The logged magnitude of G1(jω) =
1

1()τ ωj +
is the negative of G2(jω) = (τ jω + 1)

The phase of ∠ G1(jω) = ∠
1

1()τ ωj +
is the negative of ∠ G2(jω) = ∠ (τ jω + 1)

These key results are easy to prove:

Magnitude:
We note that |G1(jω)| = 1/|G2(jω)| = |G2(jω)|–1. In logs, we find:

|G1(jω)|dB = 20 log10(|G2(jω)|–1) = –20 log10(|G2(jω)|) = –|G2(jω)|dB

Phase:
We note that

∠ G1(jω) = ∠ (1/(1 + jτω)) = ∠ 1 – ∠ (1 + jτω) = 0 –∠ (1 + jτω) = – ∠ G2(jω)

This will simplify matters in our analysis. We will examine only G1(s) = 1/(τ s + 1), and
apply the negation to the results to find the corresponding results for G2(s).

The following table shows the magnitude and magnitude(dB) calculations for G1(s):

Transfer function G1(s) =
1

1τs +

Set s = jω G1(jω) =
1

1jωτ +

Magnitude of G(jω) |G1(jω)| =
1

1
1

12 2| |jτω τ ω+
=

+

Gain in dB: |G(jω)|dB |G1(jω)|dB = 20 log10 (τ 2ω2 + 1)–0.5

To make it easier to analyse the system gain, we examine the gain response over the
different frequency ranges (low, middle and high).

Low-frequency and high-frequency asymptotes
We refer to the straight line at low frequency as the low-frequency asymptote (Figures
15.6 and 15.7) of the system. Likewise the line with constant slope at high frequency is
referred to as the high-frequency asymptote. The high-frequency asymptote will define
the roll-off rate (Chapter 14) of the system. Thus for G1(s) this is –20 dB/decade, and for
G2(s) it is +20 dB/decade. The low-frequency asymptote and the high-frequency asymp-
tote intersect at ω c = 1/τ . We call this frequency the corner frequency of the system
(Figures 15.6 and 15.7).

15.7 Introducing a sketching table 441

Table 15.4 gives a detailed calculation of the magnitude of G1(s) in the three frequency
ranges.

442 Frequency response using Bode plot presentation

Frequency (rad/sec)

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

Bode diagrams

–40

–30

–20

–10

0

10

20

10–1 100 101 102
–100

–90
–80
–70
–60
–50
–40
–30
–20
–10

0

Low-frequency
asymptote

High-frequency
asymptote

w =1/ tc

Figure 15.6 Bode plot of 1/(τ s + 1).

Frequency (rad/sec)

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

Bode diagrams

–20

–10

0

10

20

30

40

10–1 100 101 102
0

10
20
30
40
50
60
70
80
90

100

Low-frequency

asymptote

w = 1/ tc

High-frequency

asymptote

cw = 1/ t

Figure 15.7 Bode plot of (τ s + 1).

First-order system phase plot
We can calculate the system phase shift for G1(s).

Transfer function G1(s) =
1

1τs +

Set s = jω G1(jω) =
1

1jωτ +

∠ G(jω) ∠ G1(jω) = ∠ (1/(1 + jτω))

= ∠ 1 – ∠ (1 + jτω)

= 0 – tan–1(τω)

= –tan–1(τω)

Once again, we examine the results over the different frequency ranges (low, middle and
high) – Table 15.5.

15.7 Introducing a sketching table 443

Gain in dB: |G(jω)|dB |G1(jω)|dB = 20 log10(τ 2ω2 + 1)–0.5

Low-frequency range ω ≈ 0 |G1(jω)|dB → 20 log10(1) = 0 dB

horizontal line at 0 dB

Mid-frequency range ω = 1/τ |G1(jω)|dB → 20 log10(1 + 1)–0.5

= –20 log10(2)0.5 = –10 log10(2)

= –3 dB

point 3 dB below 0 dB line

High-frequency range ω >> 1 |G1(jω)|dB ≈ 20 log10(τ 2ω2)–0.5

= –20 log10 τ ω2 2

= –20 log10τω
= –20 log10τ –20 log10ω

Line with slope of: –20 dB/decade

(found by differentiating above with respect to log10ω)

Line intersects the horizontal 0 dB line at ωc = 1/τ

Table 15.4 First-order system gain calculation.

∠ G(jω) ∠ G1(jω) = –tan–1(τω)

Low-frequency range ω≈ 0 ∠ G1(jω) ≈ –tan–1(0) ≈ 0

The phase at low frequency is approximately zero

Mid-frequency range ω= 1/τ ∠ G1(jω) = –tan–1(1) = –45°

The phase at the corner frequency ωc = 1/τ , is –45°

High-frequency range (ω>> 1) ∠ G1(jω) = – tan–1(∞) = –90°

The phase at high frequency equals –90°

Table 15.5 First-order system phase calculation.

Note that the phase at the corner frequency is exactly half the phase at high frequencies,
as shown in Figure 15.6 and 15.7.

Remark In practice it is often taken that the phase changes over two decades, from one decade below
the corner frequency, ωc/10 to one decade above, 10 × ωc.

Lead and lag terms
The terms 1/(τ s + 1) and (τ s + 1) commonly appear in transfer functions. We have seen
that the term 1/(τ s + 1) introduces –90° of phase lag. This transfer function is therefore
referred to as a first-order lag: ‘first-order’ since it represents a first-order system or
component, from the power of s in the denominator, and ‘lag’ due to the 90° of phase lag
that it introduces. Similarly, since the term (τ s + 1) introduces +90° of phase change, it is
referred to as a first-order lead term. These properties will be used in Chapter 16, when
we design lag and lead compensators to provide a required amount of phase change.

Procedure to sketch Bode plot
Step 1: Identify all the transfer function components and list them in terms of gain,

s-terms, and then first- and second-order terms in order of increasing corner
frequencies.

Step 2: Choose the frequency range of interest, often three (or four) decades wide, (0.1
to 100 rad/s), centred around the region of interest: for first-order systems,
centred around the corner frequency. If there is more than one corner
frequency then the frequency range should enclose all corner frequencies.

Step 3: Complete a sketching table for the range of frequencies chosen.
Step 4: Find the low-frequency asymptote from the sketching table. The value of the

asymptote will depend on whether there are any s-terms in the transfer
function.
(i) If there are no s-terms, then the low-frequency asymptote will be a hori-

zontal line with d.c. gain of 20 log10 K, where K is the transfer function gain.
(ii) If there are s-terms, then the low-frequency asymptote is formed by the

logged sum of the slope of these lines, which pass nominally through 0 dB at
1 rad/s and are then raised by 20 log10 K.

Step 5: If there is more than one corner frequency, put them in order of numerically
increasing frequency values. Find the (first) corner frequency, ω c = 1/τ . Find
the corresponding point on the low-frequency asymptote.

Step 6: Draw the high-frequency asymptote. This is a straight line of slope
–20 dB/decade for lag terms starting from the point (ω c,20 log10 K), and a slope
of +20 dB/decade for lead terms.

Step 7: Find the next corner frequency and the plot will then decrease (or increase) at
an extra –20 dB/decade or +20 dB/decade for lag and lead terms respectively.

Step 8: Plot the phase response using the phase shift values at different frequency
ranges.

444 Frequency response using Bode plot presentation

15.8 Elementary examples

We illustrate the use of sketching tables by examining several examples which are very
common in process control systems, all of which involve a combination of the three basic
terms: gain K, s-terms and first-order terms.

Example 1: Bode plot of gain and first-order lag

Problem Sketch the Bode plot for the following transfer function:

G(s) =
20

4 1s +

Solution First we list the transfer function component terms:

20,
1

4 1s +

We identify the corner frequencies, as these will usually occur in our mid-frequency range. In the
above transfer function, there is only one corner frequency and it is at ωc = ¼ = 0.25 rad/s. We
can then complete the sketching table.

Sketching table (magnitude)

Component Low-frequency asymptote Mid-frequency value: 0.25 rad/s High-frequency roll-off

K = 20 20 log10(20) = 26.02 dB 26.02 dB 0 dB/decade

1
4 1s +

0 dB –3 dB –20 dB/decade

Total 26.02 dB 23.02 dB –20 dB/decade

Sketching table (phase)

Component Low-frequency values
< 0.025 rad/s

Mid-frequency value:
0.25 rad/s

High-frequency values
> 2.5 rad/s

K = 20 0° 0° 0°

1
4 1s +

0° tan–14ω= –45° –90°

Total 0° –45° –90°

We make two remarks about the phase table. Firstly, we note again that the constant gain K has
no effect on the phase at all, and secondly, that we consider ‘low frequency’ to be a decade below
the (lowest) corner frequency and ‘high frequency’ to be a decade above the (highest) corner
frequency.

We can then sketch the Bode plot using the information in the tables.
Figure 15.8 shows the low- and high-frequency asymptotes as well as the magnitude and

phase at the corner frequency. We have used MATLAB to plot the Bode plot in dashed lines to

15.8 Elementary examples 445

illustrate how good the sketching approximation is. (In MATLAB we used the command:
bode(g,{0.01,10}).

Example 2: Finding a simple transfer function from a Bode plot
Just as we have used a transfer function description to sketch a Bode plot, we can use a Bode
plot to help us find out the system transfer function. This is particularly useful when we have some
experimental results from a process that we have taken by injecting sinusoids at different frequen-
cies, and we wish to find a transfer function for the system.

Problem An engineer tries to find the time constant of an RC network by applying unit magnitude sine
waves of different frequencies and zero phase at the input of the RC circuit. The engineer
measures the magnitude in dB and phase of the output voltage, y(t), across the capacitor and
sets up the table shown below:

The output data from the RC network

ω (rad/s) 0.01 0.05 0.1 0.5 1.0 5.0 10.0 60.0 100.0

|Y(jω)|dB 0.00 –0.3 –0.97 –8.6 –14 –28 –34 –49 –54

∠Y(jω) –3 –14 –26 –68 –79 –87 –88 –89 –90

(a) Draw the Bode plot for the system.

(b) Draw the low-frequency and high-frequency asymptotes.

(c) Find the time constant of the system.

446 Frequency response using Bode plot presentation

Frequency (rad/sec)

Bode diagrams

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

–10

0

10

20

30

10–2 10–1 100 101
–100

–90
–80
–70
–60
–50
–40
–30
–20
–10

0

X

X

Low-frequency asymptote

High-frequency asymptote

–20 dB/dec

23.02 dB

= 0.25 rad/swc

Low frequency ~ 0° –45°

High frequency ~ –90°

Figure 15.8 Bode plot of 20/(4s + 1).

Solution (a) |Y(jω)| = |G(jω)| × |U(jω)|

∠ =∠ +∠Y G U() () ()j j jω ω ω

Since | ()|U jω = 1 and ∠ =U()jω 0, |Y(jω)| = |G(jω)| and ∠ =∠Y G() ()j jω ω

Thus, the system has a frequency response G(jω) similar to the voltage signal across the capac-
itor Y(jω). To draw the Bode plot, transfer the data at each frequency onto the semilog graph
paper (Figure 15.9).

MATLAB commands:

w=[0.01 0.05 0.1 0.5 1.0 5.0 10.0 60.0 100.0];
mag=[0 –0.3 –0.97 –8.6 –14 –28 –34 –49 –54];
ph=[–3 –14 –26 –68 –79 –87 –88 –89 –90];
subplot(2,1,1);semilogx(w,mag,+,)
subplot(2,1,2);semilogx(w,ph,+,)

(b) The RC network is a first-order system. The features on the Bode plot which verify this are:

(i) Roll-off rate
Find the slope of the gain response at high frequencies by selecting two frequencies
which are one decade apart, for example, ω= 1 and ω= 10. Subtracting the gain at ω= 1
(–14 dB) from the gain at ω= 10 (–34 dB), gives the slope as –20 dB/decade as the
roll-off rate. This is the roll-off rate for a first-order system.

(ii) Phase change
The phase change is from 0° to –90°, implying a possible first-order lag term.

(iii) The low-frequency asymptote is a constant horizontal line which implies there are no
s-terms in the transfer function, and which therefore gives us the gain value.

The horizontal gain asymptote is at 0 dB = 20 log10 K dB (equivalent to a gain K = 1).

15.8 Elementary examples 447

10–2 10–1 100 101 102
–60

–40

–20

0

20

10–2 10–1 100 101 102
–100

–80

–60

–40

–20

0

M
ag

ni
tu

de
 (d

B
)

P
ha

se
 (d

eg
re

es
)

+
+

+ + +

+
+

++
+ +

+
+

+

Frequency (rad/s)

+

+

Low-frequency asymptote

+

cw = 0.2 rad/s

–20 dB/decade
High-frequency asymptote

High-frequency phaseLow-frequency phase
~0°

constant of 0 dB

–90°

Figure 15.9 Data plotted on semilog paper.

(c) The corner frequency is at 0.2 rad/s from the Bode plot. The time constant is given by:

τ = 1/0.2 =5.0 seconds

The transfer function of the RC circuit is therefore

G(s) =
1

5 1s +

Example 3: Combination of integrator and first-order lag

Problem Sketch the Bode plot for the following transfer function:

G(s) =
10

3s s()+

Solution To list the components, we need the transfer function in ‘unity constant coefficient form’. There-
fore we rewrite the transfer function by dividing the numerator and denominator by 3.

G(s) =
333

033 1
.

(.)s s +

The components are now:

3.33,
1
s

,
1

033 1. s +

The corner frequency of the first-order lag is ωc = 3 rad/s. We can now complete the sketching
table.

Sketching table (magnitude)

Component Low-frequency asymptote Mid-frequency values: 3 rad/s High-frequency roll-off

K = 3.33 20 log10(3.33) = 10.45 dB 10.45 dB 0 dB/decade

1
s

Line decreasing at

–20 dB/decade

Passes 1 rad/s at 0 dB

Line decreasing at

–20 dB/decade

–20 dB/decade

1
0 33 1. s +

0 dB –3 dB –20 dB/decade

Total Low-frequency asymptote line

at –20 dB/decade

Passes 1 rad/s at 10.45 dB

7.45 dB –40 dB/decade

448 Frequency response using Bode plot presentation

Sketching table (phase)

Component Low-frequency values
< 0.3 rad/s

Mid-frequency values
3 rad/s

High-frequency values
> 30 rad/s

K = 3.33 0° 0° 0°

1
s

–90° –90° –90°

1
0 33 1. s +

0° –tan–10.33ω= –45° –90°

Total –90° –135° –180°

We can then sketch the Bode plot using the information in the tables. We can use MATLAB to
check how close our sketching approximation is to the actual frequency response plot. We have
used the MATLAB command bode(g,{0.1,100}) (Figure 15.10).

Example 4: Two first-order lag terms

Problem Consider the following second-order transfer function. Choose an appropriate frequency range
and sketch the Bode plot.

G(s) =
10

066 233 12. .s s+ +

15.12 Magnitude plots of closed-loop and sensitivity transfer functions 449

Frequency (rad/sec)

Bode diagrams

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

–80

–60

–40

–20

0

20

40

10–1 100 101 102
–180

–160

–140

–120

–100

–80

High-frequency asymptote

–40 dB/decade–20 dB/decade

wc = 3 rad/s

High-frequency phase

–180°

Low-frequency phase
–90°

Phase at wc = –135°

Low-frequency asymptote

Figure 15.10 Bode plot of G(s) = 10/[s(s + 3)].

Solution We can check to find out whether the system is under- or overdamped. Recall that for an over-
damped system the second-order transfer function has two real poles, that is, the transfer func-
tion can be split into

G(s) =
K

s s()()τ τ1 21 1+ +

To verify that our transfer function represents an overdamped system, we check the value of b2 –
4ac in the original: 2.332 – 4 × 0.66 = 2.7889 > 0. The transfer function represents a
second-order overdamped system and can be written as

G(s) =
10

2 1 033 1()(.)s s+ +

The corner frequencies of the two first-order components are:

1
2 1s +

: corner frequency: ωc1 = 1/τ = 0.5 rad/s

1
033 1. s +

: corner frequency: ωc2 = 1/τ = 3.0 rad/s

The transfer function components are then given as:

10,
1

2 1s +
,

1
033 1. s +

We can now complete the sketching table.

Sketching table (magnitude)

Component Low-frequency
asymptote

Mid-frequency values:
(i) 0.5 rad/s

Mid-frequency values:
(ii) 3 rad/s

High-frequency roll-off

K = 10 20 log10(10) =

20.0 dB

20.0 dB 20.0 dB 0 dB/decade

1
2 1s +

0 dB –3 dB Line decreases at

–20 dB/decade from inter-

section with low-frequency

asymptote

–20 dB/decade

1
0 33 1. s +

0 dB 0 dB –3 dB –20 dB/decade

Total Low-frequency

asymptote:

horizontal line at

20 dB

20 – 3 = 17 dB Line decreases at

–20 dB/decade from inter-

section with low-frequency

asymptote, then decreases

at –40 dB/decade

–40 dB/decade

450 Frequency response using Bode plot presentation

Sketching table (phase)

Component Low-frequency value
< 0.05 rad/s

Mid-frequency value:
0.5 rad/s

Mid-frequency value:
3 rad/s

High-frequency value:
> 30 rad/s

K = 10 0° 0° 0 ° 0°

1
2 1s +

0° –45° –tan–1(2ω) = –81° –90°

1
0 33 1. s +

0° –tan–1(0.33ω) = –9° –45° –90°

Total 0° –54° –126° –180°

The Bode plot is shown in Figure 15.11. We notice the high-frequency asymptote in the magni-
tude plot is –40 dB/decade consistent with our second-order system. Likewise, the phase
decreases to –180°.

Summary: By using a combination of all constant K, s-terms, and first-order lead and lag
terms, we can sketch all but second-order underdamped features.

15.9 Second-order underdamped system

A second-order underdamped system has a transfer function of the form:

G s
s s

()
(/) (/)

=
+ +

1
1 2 12 2ω ζ ωn n

15.9 Second-order underdamped system 451

Frequency (rad/sec)

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

Bode diagrams

–60

–40

–20

0

20

10–1 100 101 102
–200

–150

–100

–50

0

–40 dB/dec

–20 dB/dec

0.5 rad/s
3 rad/s

–126°
–54°

Figure 15.11 Bode plot 10/[(2s + 1)(0.33s + 1)].

whereωn is the natural frequency and ζ is the damping ratio of the system. We remember that

1. The damping ratio, ζ, will be less than 1.

2. The roots of the denominator (poles of the transfer function) will be complex.

3. The step response of the system will show an overshoot depending on the value of the
damping.

The magnitude and phase plots of a second-order underdamped system are shown in
Figure 15.12. We note the following features.

� The underdamped second-order frequency response has a low-frequency asymptote at
0 dB.

� The gain plot has a peak in the mid-frequency range. The peak does not occur at the natural
frequency, but at the damped natural frequency, ωd. This property can be found by differen-
tiating |G(jω)| with respect to ω. If ζ is small (< 0.4), then ωn and ωd are near in value.

� The value of gain at the natural frequency ωn is 1/2ζ or 20 log10(1/2ζ).

� The peak is dependent on the damping ratio of the system: as the damping decreases,
the peak value of the magnitude plot is increased.

� The high-frequency asymptote meets the low-frequency asymptote on the 0 dB axis at
the natural frequency.

� The natural frequency represents the corner frequency for the underdamped
second-order system.

� The phase changes over approximately two decades; from one decade below the corner
frequency to one decade above the corner frequency.

452 Frequency response using Bode plot presentation

10–1 100 101

–90

–180

0

Frequency (rad/sec)

Phase (degrees)

10–1 100 101
–40

–20

0

20

Frequency (rad/sec)

Gain (dB) Low-
frequency
asymptote High-

frequency
asymptote

Corner
frequency

Figure 15.12 Bode plot of underdamped second-order system.

We now look at the transfer function analysis to justify our remarks.

15.9.1 Analysis: magnitude response of second-order underdamped systems

G()
(/)() (/)() (/) (/

j
j j jn n n

ω
ω ω ζ ω ω ω ω ζ ω ω

1
1 2 1

1
22 2 2 2+ +

=
+ n n nj j) [(/)] (/)+

=
− +1

1
1 22ω ω ζ ω ω

The gain of the complex function G(jω) is the gain of its numerator divided by the gain of
its denominator:

| ()|
|[(/)] (/)| [(/)]

G j
jn n n

ω
ω ω ζ ω ω ω ω ζ

=
− +

=
− +

1
1 2

1

1 42 2 2 2(/)ω ωn
2

Convert the gain into decibels:

Examine the general feature of the gain response over the different frequency ranges:

Gain in dB: |G(jω)|dB

Low-frequency range ω ≈ 0 |G(jω)|dB = 20log10(1) = 0 dB

horizontal line at 0 dB

Mid-frequency range ω ω= n |G(jω)|dB → –20 log10(1 – 1 + 4ζ2)0.5

= –20 log10(2ζ) = 20 log10(1/2ζ)

If ζ < 0.5, log10(1/2ζ) > 0 and there will be a peak in the magnitude

above the 0 dB line

The gain at the natural frequency is inversely proportional to the

damping ratio, ζ. As the damping decreases and the system become

more oscillatory, the gain at natural frequency increases.

High-frequency range (ω>> 1) |G(jω)|dB ≈ –20log10[(ω/ωn)4 + 4ζ2(ω/ωn)2]0.5

since ω4 >> ω2

|G(jω)|dB ≈ –20 log10[(ω/ωn)2]

= –40 log10(ω) – log10ωn

Asymptote has slope of: –40 dB/decade

(found by differentiating above with respect to log10 ω)

Line intersects the horizontal 0 dB line at ω= ωn

15.9 Second-order underdamped system 453

w w
w z

w w

w w
z

w w

Ï ¸È ˘Ê ˆ Ê ˆÔ ÔÍ ˙= - - +Ì ˝Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Ô ÔÎ ˚Ó ˛

Ï ¸È ˘Ê ˆ Ê ˆÔ ÔÍ ˙= - - +Ì ˝Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Ô ÔÎ ˚Ó ˛

0.522 2
2

10 10
n n

0.522 2
2

10
n n

| (j)|dB 20 log (1) 20 log 1 4

20 log 1 4

G

w w
w z

w w

Ï ¸È ˘Ê ˆ Ê ˆÔ ÔÍ ˙= - - +Ì ˝Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Ô ÔÎ ˚Ó ˛

0.522 2
2

dB 10
n n

| (j)| 20log 1 4G

15.9.2 Analysis: phase response of second-order underdamped systems
We can similarly find the phase of the transfer function, G(jω), as a function of frequency
over different frequency ranges. Using the transfer function G(jω):

∠ = ∠
+

=∠
+

G()
(/)() (/)((/)

j
j j) +1 jn n n

2ω
ω ω ζ ω ω ω ω ζ

1
1 2

1
22 2 2 (/)

[(/)])
[(/)

ω ω

ω ω ζ ω ω
ω ω

n

n n
n

j+1

j2 (/
= ∠

− +
= ∠ −∠ − +

1
1

1 1 22
2 ζ ω ω

ζ ω ω
ω ω

ζ

(/)]

tan
(/)
(/)

tan
(

n

n

n

j

= −
−

⎛

⎝
⎜

⎞

⎠
⎟ = −− −0

2
1

21
2

1 ω ω
ω ω

/)
(/)

n

n1 2−
⎛

⎝
⎜

⎞

⎠
⎟

Phase ∠G(jω)
∠G(jω) = –tan–1

2
2

ζ ω ω
ω ω
(/)
(/)

n

n1−
⎛
⎝
⎜

⎞
⎠
⎟

Low-frequency range ω≈ 0 ∠G(jω) → –tan–1(0) = 0°

Asymptote at 0°

Mid-frequency value ω= ωn ∠G(jω) → –tan–1(∞) = –90°

Mid-frequency phase value is –90°

High-frequency range (ω>> 1)
∠G(jω) ≈ – tan–1

2
2

ζ ω ω
ω ω
(/)
(/)

n

n1−
⎛
⎝
⎜

⎞
⎠
⎟

since ω2 >> ω

∠G(jω) ≈ – tan–1(0)

= –180°

Phase is decreasing towards high frequency. Asymptote at

∠G(jω) = –180°

15.10 Effect on gain and phase plots of increasing the damping ratio

Figure 15.13 shows how the gain and the phase plots of the underdamped second-order
system change for different values of damping. The gain plot shows a large peak for low
damping; this corresponds to a higher overshoot on a step response plot.

15.10.1 Sketching procedure for simple second-order underdamped system
Step 1: Select the desired frequency range and mark it on the log scale of the semilog

graph paper.
Step 2: Select the desired range of the gain in dB and mark it on the linear scale of the

log paper.
Step 3: The low-frequency asymptote is given by the 0 dB line (unless combined with

other gains or s-terms).
Step 4: Find the corner frequency as ω c = ωn. Draw a line of slope –40 dB/decade from

the point (ωn, 0 dB). This line is the high-frequency asymptote.
Step 5: Find the gain at the corner frequency, ωn, using |G(jωn)| = 20 log 10[1/(2ζ)] dB.
Step 6: Starting at the low-frequency asymptote, draw a curve passing through the

gain at ωn and finishing at the high-frequency asymptote.

454 Frequency response using Bode plot presentation

Step 7: Plot the phase response using the phase values of approximately 0° a decade
down from the corner frequency, –180° a decade up from ω c, and –90° at ω c. If
it is necessary to have a more accurate approximation, use the expression for
the phase, ∠G(jω), to fill in extra points.

Problem: identification of second-order transfer function from Bode plot
An engineer has measured the frequency response of a position d.c. servo system by applying a sine
wave of amplitude of 2 volts and zero phase to the position reference point of the system. The ampli-
tude and the phase of the position output sine wave has been measured and is given in Table 15.6.

(a) Draw the Bode plot of the system.

(b) Draw the low-frequency and high-frequency asymptotes.

(c) Assuming the system is second-order, find the d.c. gain, natural frequency and the damping
ratio of the system.

Solution (a) The gain of the system is:

System gain =
output amplitude at
input amplitude at

ω
ω

15.10 Effect on gain and phase plots of increasing the damping ratio 455

10–1 100 101

–90

–180

0

Frequency (rad/sec)

Phase (degrees)

10–1 100 101
–20

0

20

40

Frequency (rad/sec)

Gain (dB)

Lower
damping

Higher
damping

Lower
damping

Lower
damping

Higher
damping

Figure 15.13 Changes in Bode plot for different damping factors.

The output data from the d.c. servo system

ω (rad/s) 0.1 0.4 0.8 1 3 4 10

Magnitude (volts) 20 24.2 45.0 50.2 1.01 0.63 0.10

Output phase (degree) –7 –12.2 –49.3 –89.0 –172.3 –173.1 –177.7

Table 15.6 Gain and phase information for identification problem.

We should note that the input is not, in this case, a signal of magnitude 1, but a signal of magnitude
2. The system gain can be calculated using the equation and then converted to dB. The results are
shown in the following table and plotted in Figure 15.14, along with the phase response.

ω (rad/s) 0.1 0.4 0.8 1 3 4 10

System gain, |G(jω)| 10 12.1 22.5 25.1 0.50 0.31 0.05

|G(jω)|dB 20 21.6 27.0 28.0 0.086 –4.01 –19.9

(b) The low-frequency asymptote in Figure 15.14 is the horizontal line of height 20 dB. The
high-frequency asymptote is drawn at a slope of –40 dB/decade and meets the
low-frequency asymptote at 1 rad/s. This is the corner frequency of the second-order system.

(c) System gain: the system gain at low frequency is 20 dB. The gain K = 10.
Natural frequency ωn: the corner frequency is at ωn = 1 rad/s. For a second-order system, the
phase at ωn is –90°.

Damping ratio, ζ: calculate the damping ratio, ζ, using the value of the gain at ωn.
(Hint: |G(jωn)| = K/2ζ.)

Gain dB at sum of all logged gain componentsnω = = 20log () log (/)

log log ()

l

10 10

10 10

20 1 2

28 20 20 2

20

K

K

+

= −

ζ

ζdB

og ()

.

. .

/

10

8 20

2 20 28 8

03981

0199 0

ζ

ζ
ζ

= − = −

=
= ≈

−

dB dB dB

2 = 10

2

Therefore the second-order system is given by

G(s) =
10
0 4 12s s+ +.

456 Frequency response using Bode plot presentation

10–1 100 101
–20

0

20

40

10–1 100 101
–180
–150
–120

–90
–60
–30

0

M
ag

ni
tu

de
 (d

B
)

P
ha

se
 (d

eg
re

es
)

Frequency (rad/s)

Low- and high-
frequency asymptotes

–90° at wn

Figure 15.14 Magnitude and phase points of second-order system plotted.

15.11 Further examples using MATLAB plots

Complex systems often comprise a number of subsystems in cascade. An example of this is
shown in Figure 15.15. The input signal is U(s), the output is Y(s) and Q(s) is an interme-
diate variable. For example, a power system may have a steam turbine (subsystem 1)
driving an electric generator (subsystem 2). A second example is a d.c. servo system which
has an amplifier in cascade with a motor. Each subsystem may be represented by a first-,
second- or higher-order system. We have approached the technique of plotting frequency
responses by considering that all systems are combinations of a basic few subsystems.
Therefore when it comes to plotting cascade systems, we really only need to extend the
number of the smaller subsystems to account for all the factors in the cascaded system.

Consider the two cascade subsystems G1(s) and G2(s). Define Gp(s) as the transfer func-
tion of U(s) to Y(s):

Y(s) = Gp(s)U(s)= G2(s)G1(s)U(s)

Gp(s) = G2(s)G1(s)

Magnitude:

|Gp(jω)| = |G2(jω)| |G1(jω)|

|Gp(jω)|dB = 20 log10(|G2(jω)| |G1(jω)|) = 20 log10 |G2(jω)| + 20 log10 |G1(jω)|

Phase relationship:

∠Gp(jω) = ∠G2(jω)G1(jω) = ∠G2(jω) + ∠G1(jω)

This shows us that the magnitude of the combined transfer function is just the sum of
logarithmic magnitudes of the individual ones. Similarly, the combined phase is the sum
of the individual phases. We now just need to consider all the transfer function compo-
nents in G2(s) and G1(s) separately and combine them using our sketching table for adding
logarithmic magnitude and adding phase.

We will look at three examples of combinations of our transfer function components. We
will plot the responses using MATLAB and will not produce sketching tables for the
following, although it would be easy to use the tables to combine the different components.

Problem: The effect of a adding a pole at the origin
Consider the following transfer functions, G1(s). Determine the effect on the Bode plot of adding
the term G2(s) = 1/s in cascade with G1(s).

G1(s) =
4

16 42s s+ +.

Solution The combined system is given by

Gp(s) =
4
16 42s s s(.)+ +

15.11 Further examples using MATLAB plots 457

G1()s G2()s

Y s()U s() Q s()

Figure 15.15 Cascade system.

We will use our method for examining the two plots. Firstly we note that the second-order term is
not in ‘unity constant coefficient form’. By dividing the numerator and denominator by 4 we find:

Gp(s) =
1

025 0 4 12s s s(. .)+ +

We now check to see if the second-order term can be formed from two first-order components:
check b2 – 4ac: this value is negative, which implies that the second-order term would give us
complex roots and represents an underdamped system. We note that the corner frequency
ωc = ωn is given from the second-order component as 2 rad/s.

We can see from the magnitude responses in Figure 15.16 that the second-order plot has
a constant d.c. gain, while the integrator adds a high gain at low frequency. The integrator
also increases the order of the system and therefore the roll-off rate is increased at high
frequency. In the mid-frequency range, for this example, the integrator causes the gain to
decrease slightly at the natural frequency. The gain crossover becomes lower, moving
from above 2 rad/s to between 1 and 2 rad/s.

For the phase response, the integrator term adds –90° of phase at all frequencies, hence
lowering the second-order plot entirely. This causes the phase to cross –180° and the
phase crossover frequency becomes ω pco = 2 rad/s. We can write down the the gain and
phase margins of the original and cascaded systems.

G1(s): GM none

PM > 60°

Gp(s): GM about 5 dB

PM about 45°

Problem: the effect of adding a real pole
Let G1(s) be the following transfer function:

458 Frequency response using Bode plot presentation

Frequency (rad/sec)

–100

–80

–60

–40
–20

0

20

40

10–1 100 101 102
–270
–240
–210
–180
–150
–120

–90
–60
–30

0

Second order

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

integrator

Second order plus

Movement of wgco

Second order plus

integrator

Second order

wpco

Figure 15.16 Effect of adding an integrator to the system.

G1(s) =
1

025 0 4 12. .s s+ +

Consider the effect on the Bode plot of G1(s) by adding a first-order lag, G2(s):

G2(s) =
10

2 1s +

Solution We note that the second-order term is the same as in the previous example and therefore repre-
sents a complex underdamped system. The combined system is given by

Gp(s) =
10

2 1 025 0 4 12()(. .)s s s+ + +

where we note that we have added a gain of 10 and a lag term 1/(2s + 1).
We can see from Figure 15.17 that the gain has raised the magnitude plot by 20 dB at low frequen-

cies. The mid-frequency values are 17 dB at 0.5 rad/s and 9.9 dB at 2 rad/s. The roll-off has been
increased from –40 dB/decade to –60 dB/decade by the addition of the lag term. The lag term would
have reduced the gain crossover, but the addition of the gain term has masked this effect and we see
an increase in the gain crossover frequency from 2.5 to 3 rad/s due to the higher d.c. gain.

For the phase plot, the gain term makes no change to the phase plot. The first-order lag term has
its corner frequency before the corner frequency of the second order term. Therefore we see that
the phase starts to decrease according to the first-order term before the second-order term has an
effect. The overall phase lag has now become –270° with a phase crossover frequency at 2.2 rad/s.

The gain and phase margins of the original and altered systems are

G1(s): GM none PM > 60°

Gp(s): GM about –9 dB PM about –33°

Since the GM and PM are negative, this tells us that the closed-loop system would be unstable.

15.11 Further examples using MATLAB plots 459

Frequency (rad/sec)

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

Bode diagrams

–40

–30

–20

–10
0

10

20

30

10–2 10–1 100 101
–300
–270
–240
–210
–180
–150
–120

–90
–60
–30

0

Second order

Second order

Second order plus lag and gain

wgco

wpco

Second order plus lag and gain

Figure 15.17 Bode plot of 10/[(2s + 1)(0.25s2 + 0.4s + 1)].

Problem: The effect of adding a real zero
Let G1(s) be the following transfer function:

G1(s) =
1

025 0 4 12. .s s+ +

Consider the effect on the Bode plot of G1(s) by adding a first-order lead term, G2(s):

G2(s) = (2s + 1)

We make a comment here that, in practice, pure lead terms are not implemented since they form
an improper transfer function. However, they do occur in combination with other components.

Solution We note that ωn is given from the second-order component as 2 rad/s and the corner frequency
from the first-order lead is 0.5 rad/s.

Looking at Figure 5.18, we see that although the low-frequency asymptote has remained the
same for both the cases with and without the lead term, the lead term has introduced increased
gain in the mid-frequency range. This has caused the gain crossover frequency to increase from
2.5 to 9 rad/s. The roll-off rate is not as high due to the introduction of the lead term.

The lead term has its corner frequency before the corner frequency of the second-order term.
Therefore we see that the phase starts to increase before the decreasing phase effect of the
underdamped second-order system takes effect. The overall phase lag has now become –90°. In
some design cases we wish less phase lag in the system and we introduce phase lead through
phase lead compensators (Chapter 16).

Since the phase response does not cross –180° for both plots, there is no gain margin before
or after the lead term is added. However, the increase in ωgco causes the PM to decrease.

460 Frequency response using Bode plot presentation

Frequency (rad/sec)

Bode diagrams

–80

–60

–40

–20

0

20

10–2 10–1 100 101 102
–200

–150

–100

–50

0

50

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

Second order

Second order plus lead

Second order

Second order plus lead

Figure 15.18 Bode plot of 10(2s + 1)/(0.25s2 + 0.4s + 1).

15.12 Magnitude plots of closed-loop and sensitivity transfer functions

From Chapter 8, we remember that the closed-loop transfer function GCL(s) and the sensi-
tivity transfer function S(s) are closely linked. We examine this in more detail and then
look at the magnitude plots for the two transfer functions.

15.12.1 The sensitivity function
We have produced designs for our system which satisfy specifications related to GCL(s).
However, we have not considered how the disturbance rejection problem fits into the
frequency domain. We will find out in the following that the disturbance rejection
depends on the sensitivity function, which is the transfer function from the disturbance
to the output. Consider the unity feedback system in Figure 15.19.

We can write the output Y(s) in terms of the reference signal R(s) and the disturbance
D(s) as follows:

Y s
G s

G s
R s

G s
D s

K s G s
K

()
()

()
()

()
()

() ()
(

= +
+

=
+

OL

OL OL1+
1

1

1 s G s
R s

K s G s
D s

G s R s S s D s
) ()

()
() ()

()

() () () ()

+
+

= +

1
1

CL

We can see that the closed-loop response is a linear combination of the responses due to
the reference R(s) and the disturbance D(s). Because of the importance of the two transfer
functions, S(s) and GCL(s), we give them the special names of sensitivity and complemen-
tary sensitivity functions.

Key result

Sensitivity function: S(s) =
1

1+K s G s() ()

Complementary sensitivity function: T(s) =
K s G s
K s G s
() ()

() ()1+
We note that

T(s) + S(s) = 1

Thus T(s) complements S(s); hence the name complementary sensitivity function. This relation-
ship shows an important constraint in any control design problem. For the standard unity feed-
back system that we use in this book, the complementary sensitivity function, T(s), and the
closed-loop transfer function, GCL(s), are the same transfer function. We will continue to use the
closed loop transfer function notation, GCL(s).

15.12 Magnitude plots of closed-loop and sensitivity transfer functions 461

K s() G s()

R s() E s() U s() Y s()+

–

D s()

+

+

Figure 15.19 The unity feedback system.

The relationship between the reference and the output can be written as

Y(jω) = GCL(jω)R(jω)

where we would like the output Y to behave like the reference R. To achieve this,
we should design the controller so that GCL(jω) = 1 over all frequencies. The comp-
lementarity between GCL and S would then ensure that S(jω) = 0, and perfect disturbance
rejection would follow. Unfortunately this perfection is not possible for real processes
and controllers. What can be achieved is that GCL(jω) ~ 1 and S(jω) ~ 0 in the
low-frequency region, and in the high-frequency region we obtain GCL(jω) ~ 0 and S(jω)~ 1.
Such designs will be satisfactory for low-frequency reference and disturbance signals, but
we will have to use the controller to shape the mid-frequency ranges for the stability
margins and use controller roll-off to deal with the high-frequency measurement noise
going round the loop. This becomes clearer by examining the magnitude plots for the two
transfer functions, GCL and S.

Example We use an open-loop transfer function of plant and controller given by

GOL(s) =
6

1 3s s s()()+ +

1. Closed-loop magnitude plot for a unity feedback configuration

YR(s) = GCL(s)R(s)

The following MATLAB code will produce the magnitude plot of GCL(s).

gol = 6/(s*(s+1)*(s+3); % open loop transfer function
gcl=gol/(1+gol); % closed loop transfer function
w = logspace(–1,2,300); % frequency range 0.1 to 100 rad/s
[mag,ph] = bode(gcl,w); % bode calculation
magdb = 20*log10(mag); % convert mag to dB
semilogx(w,magdb(:)) % plot on semilog axes

Figure 15.20 shows the magnitude plot. We can examine the plot in the low-, mid- and
high-frequency ranges:

� Low-frequency range: we note that we have a gain of 1 at low frequencies. Since
YR(s) = GCL(s)R(s), a gain of unity at low frequencies indicates that the closed loop system will
track low-frequency reference signals accurately.

� Mid-frequency range: this section of the plot is usually shaped by the controller to give the
required performance in terms of, for example, acceptable bandwidth (speed of response) and
overshoot. We note that the peak on the closed-loop magnitude plot is usually given the nota-
tion Mp and occurs at the frequency ωp. The value of Mp can be evaluated for second-order
systems to be

Mp =
1

2 1 2ζ ζ()−

ωp = ωn 1 2 2− ζ

and can be used as a design specification for systems which exhibit primarily second-order
characteristics.

462 Frequency response using Bode plot presentation

� High-frequency range: usually a degree of roll-off is required to remove noise or
high-frequency disturbances which may affect the system.

2. Sensitivity magnitude plot

Yd(s) = S(s)d(s)

We recall that the sensitivity plot gives us the information on how the disturbances affect the
output of the system. The following MATLAB code will produce the magnitude plot of S(s).

gol = 6/(s*(s+1)*(s+3); % open loop transfer function
sens=1/(1+gol); % sensitivity TF
w = logspace(–1,2,300); % frequency range 0.1 to 100 rad/s
[mag2,ph2] = bode(sens,w); % calculate frequency response of ‘sens’
magdb2 = 20*log10(mag2); % convert mag to dB
semilogx(w,magdb2(:)) % plot on semilog axes

Figure 15.21 shows the magnitude plot of the sensitivity function. Once again, we can examine
the plot in the low-, mid- and high-frequency ranges:

� Low-frequency range: there is very low gain at low frequency. Hence any low-frequency distur-
bances (usually undesirable) will be attenuated by the system.

� Mid-frequency range: the mid-frequency range shows a peak. The magnitude and position of
this peak on the frequency axis can be determined by tuning the controller. For example, it may
be important not to amplify signals above 1 rad/s. In our plot, we would have to redesign the
controller (which would change the open-loop transfer function) to meet this specification.

15.12 Magnitude plots of closed-loop and sensitivity transfer functions 463

10–1 100 101 102
–80

–70

–60

–50

–40

–30

–20

–10

0

10

20

Closed loop
magnitude, dB

Frequency, rad/s

Closed loop peak
magnitude, Mp

Frequency point, wp

Gain of 1 (= 0 dB)

High-frequency
roll-off

Figure 15.20 Magnitude plot of closed-loop transfer function.

� High-frequency range: we find that the sensitivity function is usually unity at high frequencies
(and this corresponds to the transfer function GCL(s) taking near-zero values at high frequency.

What we have learnt

� How to use MATLAB to plot a Bode plot.

� How to enter different frequency ranges into the MATLAB bode command.

� That there are four basic components which can be combined together to form a
Bode plot:

system gain K

s-terms (sp)

first-order lag/lead terms (τ s + 1)p

second-order underdamped terms
1

1 2 12 2(/) (/)ω ζ ωn ns s+ +

� How to form a sketching table which identifies key values of combinations of
transfer function components.

� How to recognise low- and high-frequency asymptotes and find the corner frequen-
cies for systems.

� To identify the alterations to Bode plots that some simple cascade transfer functions
introduce.

464 Frequency response using Bode plot presentation

10–1 100 101 102
–30

–25

–20

–15

–10

–5

0

5

10

15

Magnitude of
sensitivity function, dB

Frequency, rad/s

Attenuation at low
frequencies

Unity gain value at
high frequencies

Area of amplification:
frequency range 0.9 to 7 rad/s

Figure 15.21 Magnitude plot of sensitivity transfer function.

Multiple choice

Questions: Practical skills

Q15.1 Find the d.c. gains and the corner frequencies for the following systems:

(a) G1(s) =
s

s s
+

+ +
2

03 05(.)(.)

(b) G2(s) =
s

s s s s
+

+ + +
4

01 12(.)()

Practical skills 465

M15.1 A Bode plot represents:
(a) the gain vs. frequency
(b) the phase vs. frequency
(c) the gain vs. phase
(d) the gain vs. frequency and the phase vs.

frequency

M15.2 The phase of the system G(s) = 1/(s + 1)
is:
(a) tan–1ω
(b) –tan(ω)
(c) tan(ω)
(d) –tan–1ω

M15.3 The magnitude and phase of the transfer
function G(s) = 1/(s + 1) at ω= 1 is:
(a) 0.707 and 45°
(b) –3 dB and 0.78 rad
(c) 0.707 and –45°
(d) 3 dB and –90°

M15.4 The high-frequency range indicates:
(a) the noise attenuation
(b) the stability
(c) the midrange amplification
(d) the steady state error

M15.5 The transfer function G(s) = 10/(3s + 1)
has a corner frequency at:
(a) 3 rad/s
(b) 0.33 rad/s
(c) 1 rad/s
(d) 30 rad/s

M15.6 The transfer function G(s) = 1/(0.01s + 1) is:
(a) a lag term
(b) a lead term
(c) a term providing high-frequency

amplification
(d) none of the above

M15.7 The closed-loop gain of a feedback system
can be calculated from the open-loop gain
(|G(jω)|) using the relationship:

(a)
| ()|

| ()|
G
G

j
j
ω
ω1+

(b)
1

1+| ()|G jω

(c)
| ()|

| ()|
G
G

j
j
ω
ω1−

(d) |G(jω)|2

M15.8 Two cascade systems have transfer func-
tions G(jω) and H(jω). The overall frequency
response can be represented by:
(a) G(jω) + H(jω)
(b) 20 log10(G(jω)/H(jω))
(c) 20 log10(G(jω)) + 20 log10(H(jω))
(d) G(jω)/H(jω)

M15.9 Using an integrator (1/s) to control a system
leads to:
(a) more phase lag
(b) less phase lag
(c) more phase lead
(d) less phase lead

M15.10 Phase lead terms
(a) improve stability
(b) decrease phase margin
(c) decrease gain margin
(d) increase overshoot

Q15.2 Find the low-frequency gain, the high-frequency roll-off and the low- and high-frequency phases for
each term in the following transfer function:

G(s) =
20 03 1

4 1 2 82
(.)

()()
s

s s s s
+

+ + +

Q15.3 The gain response of a first-order system is given below:

Find the gain and the time constant of the system.

Q15.4 The gain responses of the systems ga(s), gb(s), gc(s), gd(s) and ge(s) are given below:

Determine the order of each system, and for any second-order system state whether the system is
under-, over- or critically damped.

466 Frequency response using Bode plot presentation

Bode magnitude diagram
20

15

10

5

0

–5
10 10 10

M
ag

ni
tu

de
 (d

B
)

Frequency (rad/sec)

–2 –1 0

Bode magnitude diagram

M
ag

ni
tu

de
 (d

B
)

Frequency (rad/sec)

10–2 10–1 100 101

40

20

0

–20

–40

–60

–80

–100

a

b

c

d

e

Q15.5 A cascaded system G(s) is given by G(s) = G1(s)G2(s), where G1(s) and G2(s) have the gain
responses shown below. Find the gain response of G(s).

Q15.6 If we wanted to investigate the closed loop stability of the following system by means of a Bode
plot, what open loop transfer function should we enter in MATLAB?

Problems

P15.1 Consider the second-order system:

G(s) =
1
2 12()s s+ +ζ

Write an M-file to plot the gain response of G(s) for ζ = 0.2, 0.4, 0.6, 0.8, 1 and 2 on the same figure
window. Use your plots to state a trend between the maximum of the gain response and the damping
ratio.

P15.2 For the following system, find the function for |G(jω)| and ∠ G(jω). Hence work out the gain and
phase crossover frequencies and the gain margin and phase margin.

G(s) =
10

1s +

Check your analysis using suitable MATLAB commands.

Problems 467

10–2 10–1 100 101

Bode magnitude diagram

M
ag

ni
tu

de
 (d

B
)

Frequency (rad/sec)

10

5

0

–5

–10

–15

–20

–35

| (j)|G w

| (j)|G w

2

1

–25

–30

G1()s

G2()s

G s()

R s()
+

+
+

–

Y s()

P15.3 Consider the unity feedback system

G s
K

s s
()

()
=

+10 1

Use rltool to find the value of gain K for the system to have a phase margin of greater than 40°.

P15.4 A PI controller of the form:

C(s) = K 1
01

+⎛
⎝
⎜

⎞
⎠
⎟

.
s

is used to control the system

G(s) =
s

s s
+
+
5

10 1()

Use rltool to find a value for K to give a closed-loop damping ratio of 0.5.

468 Frequency response using Bode plot presentation

Controller design using the Bode plot16

Design specifications

Phase-lag and phase-lead
design issues

Phase lag controller Relationship to integral control

Phase lead controller

Phase lag and phase lead elements Comparison of phase lag and phase
lead design

Design Example 2:
PI control

Phase lag design procedure
and example

Relationship to derivative control Phase lead
design procedure and example

Design Example 1:
Proportional control with lag term

Help? Time to readGaining confidence Skill sectionGoing deeper

We have learnt about the Bode plot representation and how easy it is to cascade simple process
systems and modify the frequency response plot accordingly. We use this when we come to
design with the Bode plot where we are going to cascade a controller with the system to give a
satisfactory overall response. We present two design examples which look at introducing simple
terms, such as gains and lag or lead terms, into the controller. Then we look at two controllers,
called phase lag and phase lead controllers, which are specifically aimed at providing additional
phase to the open-loop phase plot.

Learning objectives

� To understand the effect that cascading simple controller elements has on the Bode
plot of the system.

� To design simple controllers using the Bode plot.

� To study the characteristics of phase lag and phase lead controllers.

� To appreciate the effects that phase lag and phase lead elements have on the system
open-loop frequency response.

� To be able to analyse the effects of phase lag and phase lead controllers on
closed-loop system stability and performance.

� To learn how to design phase lag and phase lead controllers.

16.1 Design specifications

Before we begin the design examples, we provide a summary table of design specifications
that we have met, either in the time domain or in the frequency domain. We note that
there is a formula or approximation for the design specifications. In some cases these are
fairly complex and we did not derive the formulas, but list them to provide a design speci-
fication table for use in examples outwith this textbook. Many of the formulas have been
derived from second-order systems and are therefore only appropriate for use in second
order or systems with dominant second-order poles; therefore the formulas or approxima-
tions should not be used blindly with any control system.

Design specifications

Specification Symbol Formula or approximation

Overshoot OS(%) exp
−

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

πζ

ζ1 2
× 100

Time to overshoot tOS
π

ω ζn 1 2−

Settling time ts(2%)

ts(5%)

4
ζωn

3
ζωn

470 Controller design using the Bode plot

Design specifications

Specification Symbol Formula or approximation

Rise time tr
1 11 14 182+ +. . .ζ ζ

ω ωn n
or

Phase margin PM tan–1 2
1

4 1 2
1004 0 5 2

0 5

ζ
ζ ζ

ζ
() .

.

+ −
⎛
⎝
⎜

⎞
⎠
⎟ or

Gain crossover frequency ωgco ω ζ ζn[()] .4 1 22 2 05+ −

Resonant peak Mp
1

2 1 2ζ ζ−

Resonant frequency ωp ωn 1 2 2− ζ

Damped natural frequency ω d ω n 1 2− ζ

Bandwidth ω bw ωn[()] .1 2 2 4 42 2 4 05− + − +ζ ζ ζ

16.2 Design example 1: proportional control with lag term added

We use the liquid level example of Chapter 5 where a valve controls the flow of liquid into
a tank (Figure 16.1).

The measured level in the tank is given in mA. The modelling in Chapter 5 resulted in a
process description shown in Figure 16.2.

In this control example, the plant engineer has determined that precise level control is
not so important, but there is a lot of noise on the measurement which is causing
concern. The physical aspects of the tank are also important. The tank is open and 5.5 m
high. Filling from empty, the working level in the tank is 5.0 m, and we must avoid at all

16.2 Design example 1: proportional control with lag term added 471

Flow out:
qo()t

Height/level
h t()

Flow in:
qi()t

Control signal:
uc()t

Figure 16.1 Control of liquid level.

GT =
KT

ts + 1

Inflow,
m3/s

Liquid level,
m

qi()t h t()
GmGv

Measured height,
mA

hm()t

Control input,
mA

uc()t

Figure 16.2 Model of liquid level process.

costs the tank overflowing. These practical problems result in the following control
design specification:

1. Steady state error: ess (permitted) as a percentage of set point:

ess =
y y

y
max ref

ref

−
× 100 =

5 5 5
5

. −
× 100 = 10%

On a unit step we need |ess| < 0.1 m; on a 5 m step this will translate into a steady state
error |ess| < 0.5 m.

2. High roll-off rate to provide sharper cut-off into the high frequency range in order to
provide good noise attenuation.

3. Because the tank is open, if the overshoot on a 5 m reference exceeds 0.5 m the tank
will overflow, so we must check that the overshoot is within limits.

16.2.1 Solution procedure

(a) Draw the closed-loop block diagram.

(b) Decide on the structure of the controller.

(c) Use the formula for steady state error to determine the value of controller gain K.

(d) Determine the parameters of any other controller terms to meet other specifications.

(a) Closed-loop block diagram

The closed-loop block diagram is shown in Figure 16.3, where we can see the actuator,
process and transducer blocks.

We know that the signal, Hr(s), at the comparator must have the same units as the feed-
back signal, Hm(s). However, we do not usually fix the level set point in mA; we use the
units of the actual controlled signal, H(s), so that a set point in metres, for example, would
result in an output in the same units. We therefore introduce the input scaling block Gm in
the forward path of the block diagram. In practice an electronic controller unit would
contain both the input scaling, Gm, the comparator and the controller transfer block K(s).

The open-loop transfer function is given by

GOL(s) = K(s)GvGT(s)Gm = K(s)Gsys(s)

472 Controller design using the Bode plot

GT()s
m3/s m

Q i()s H s()

Gm

Gv

mA

Hm()s

mA

Uc()s

()K s
Hsp()s +

–

Gm

Hr()s

m

Controller

mA

E s()

Error signal in mA

Figure 16.3 Liquid level feedback control system.

where Gsys(s) = GvGT(s)Gm. We use the parameters found in Chapter 5 and we change the
time base from seconds to minutes, since the time constant is fairly long (= 1758
seconds).

Gv = 0.0034 m3/s/mA = 0.204 m3/min/mA

KT = 140 m/m3/s = 2.333 m/m3/min

τ = 1758 s = 29.3 min

Gm = 0.378 mA/m

We find that the loop transfer function is given by:

GOL(s) =
0 1799

29 3 1
. ()

.
K s

s+

(b) Controller structure
The specification does not require zero steady state error, therefore there is no immediate
requirement for integral action in the controller. The specification on steady state error
can be met with a simple proportional gain, K. We must check whether the resulting
value of K produces a control signal uc(t) which is impractical.

The criterion for improved roll-off can be met by shaping the Bode plot to produce a
higher roll-off rate. This can be achieved by including a first-order lag term with its
corner frequency above the corner frequency of the loop transfer function. However, this
may also decrease the gain crossover (thereby reducing the speed of response) and we
must therefore take care in the placing of the corner frequency to ensure that the speed of
response is not compromised greatly.

The controller could be given by

K(s) =
K
sτc +1

(c) Steady state error specification
The transfer function from Hsp(s) to E(s) can be calculated using signal equations. First we
calculate Hr(s) to E(s), then use Hr(s) = GmHsp(s):

E(s) = Hr(s) – GmH(s) = Hr(s) – GmGT(s)GvK(s)E(s)

E(s)(1 + GmGT(s)GvK(s)) = Hr(s)

E(s) =
1

1+G G s G K sm T v() ()
Hr(s) =

1
1+G sOL()

GmHsp(s)

Using the system and controller transfer functions gives:

E(s) =
0 378

1
01799

29 3 1 1

29 3 1 1 0 3.
.

(.)()

(.)() .

+
+ +

=
+ +

K
s s

s s

τ

τ

c

c 78
29 3 1 1 01799(.)() .s s K+ + +τc

We note that the specification on ess is given in metres, yet the error signal here is in mA.
We use the scaling value of Gm to convert the 0.1 m specification for a unit step response
to a specification on ess in mA: ess ≤0.0378 mA.

The steady state error is given by:

16.2 Design example 1: proportional control with lag term added 473

e sE s s
s s

ss s
ss

c= =
+ +

→ →
lim () lim

(.)() .
(.0 0

29 3 1 1 0 378
29 3

τ
+ + +

=
+

≤

1 1 01799
1

0 378
1 01799

0 0378

)() .
.
.

.

τcs K s

K

Solving this for K gives a requirement for K ≥50.03 in order to meet the specification. A
value of K = 50.03 will therefore ensure that |ess| < 0.1 to a unit step input. A larger value
of K will reduce this offset, but will also produce increased overshoot. We therefore
choose K = 50.03 as the minimum value of K that satisfies the specification and proceed
to check whether this value will also meet the overshoot specification.

(d) Shaping the Bode plot and verifying closed-loop time responses
The loop transfer function with gain K is given by

KGsys(s) =
9 0

29 3 1
.

(.)s+

The corner frequency of this transfer function is at 0.0341 rad/min.
We would like to introduce a first-order lag term to provide more high-frequency

measurement noise filtering. The insertion of the lag term will increase the roll-off rate,
but we do not wish this to decrease the gain crossover excessively as this will cause the
system to respond more slowly. We therefore consider a lag term with a corner frequency
one decade higher than the system value of 0.03 rad/min. Therefore the pole of the lag term
at s = –0.33 rad/min gives a value for the time constant of 3 min. For comparison we also
consider a lag term with its corner frequency at 0.067 rad/min between the system corner
frequency and the design one. This gives us three open-loop transfer functions to compare.

Gain compensation only Lag term 1: Corner frequency
0.33 rad/min, time constant = 3 min

Lag term 2: Corner frequency
0.067 rad/min, time constant = 15 min

G1(s) =
9 0

29 3 1
.

(.)s +
G2(s) =

9 0
29 3 1 3 1

.
(.)()s s+ +

G3(s) =
9 0

29 3 1 15 1
.

(.)()s s+ +

The Bode plots of these open-loop transfer functions are shown in Figure 16.4, where we
can see that for G1(s) the roll-off rate is –20 dB/decade, as expected for a first-order system,
and the roll-off rates for the second-order lag-compensated systems are –40 dB/decade.

From the Bode plots we also find the gain crossover and corresponding phase margin for
the three systems:

G(s)
Gain compensation only

G2(s)
Lag term 1

G3(s)
Lag term 2

ωgco 0.3 rad/min 0.25 rad/min 0.13 rad/min

PM 100° 60° 40°

Let us look at the closed-loop step responses for the three systems to correlate these
values to the speed of response and the closed-loop time domain behaviour of the system.
The closed-loop transfer function from Hr(s) to H(s) is given by

474 Controller design using the Bode plot

H(s) =
forward
open loop

T v m

OL
sp1 1+

=
+

G s K s G G
G s

H s
() ()

()
()

We can see from the closed-loop step unit responses in Figure 16.5 that the steady state
error requirement has been met. The level rises to a steady value of 0.9 m, giving a 0.1 m
offset. We can see that the system becomes slower for Systems 2 and 3, corresponding to
the decrease in gain crossover giving a lower bandwidth for the system. We also note that
the behaviour becomes more oscillatory, with increasing overshoots as the corner
frequency of the lag term approaches that of the system corner frequency. This can occur
when the phase margin reduces as it does in this example.

16.2 Design example 1: proportional control with lag term added 475

Frequency (rad/min)

Bode diagrams

–100

–50

0

50

10–2 10–1 100 101
–210
–180
–150
–120

–90
–60
–30

0

G1()s G2()s G3()s

Gain crossover
P

ha
se

 (d
eg

re
es

)
M

ag
ni

tu
de

 (d
B

)

Phase margins

G1()s G2()s G3()s

Figure 16.4 Bode plots of the open-loop transfer functions G1(s), G2(s) and G3(s).

Time (min)

N
or

m
al

is
ed

 o
ut

pu
t

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

3)

G2/(1+G 2)

G1/(1+G 1)

G3/(1+G

Figure 16.5 Closed-loop step responses for the three systems.

We realise that G3(s) is an unacceptable design because the overshoot peak of 1.2 (20%
of final value) is equivalent to a 6.0 m level on a 5.0 m reference step. Thus the tank would
overflow for this design.

Figure 16.6 shows the Bode plots of the closed-loop systems. We would not expect to see
unity d.c. gain (this would imply a zero steady state error), but we find that the design has
a d.c. gain of 20 log10 0.9 = –0.91 dB. From the plots we see that we have a d.c. gain just
below 0 dB, as expected. We note that for Systems 2 and 3 we see a peak in the Bode plot;
this peak is greater than 0 dB and relates to the overshoot we saw in the step responses of
Systems 2 and 3. We notice that the roll-off is greater in both Systems 2 and 3, as specified
in the design criterion. For example, at 3 rad/min the attenuation has changed from
–20 dB with System 1 to –40 dB with System 2.

It remains to check the control signal uc(t) to verify that we are not demanding too
much from the actuation equipment (Figure 16.7). For System 1, we see that due to the
step input and the fact that the controller K(s) is simply a gain, we have a sharp rise in
control output followed by a decay to the steady state level of 16 mA. This steady state
level is within the equipment range. However, the rate of increase in controller output
must also be physically realisable. This sharp rise in the proportional control output
signal is a good example of proportional kick (Chapter 18). Systems 2 and 3 show more
slowly responding control signals which give rise to the slower step responses. The
magnitudes and rates of change are much more acceptable for the actuation equipment.
As the final controller we would choose design number 2 due to its speed of response and
improved phase margin. Design 3 was unacceptable due to the large overshoot and the
speed of response for Design 1 was probably too fast for real actuators.

476 Controller design using the Bode plot

Frequency (rad/min)

Bode diagrams

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

–70
–60
–50
–40
–30
–20
–10

0
10

10–2 10–1 100 101
–210

–180

–150

–120

–90

–60

–30

0

G1/1+G1

G2/1+G2

G3/1+G3

Peak > 0 dB

G1/1+G1

G2/1+G2

G3/1+G3

Figure 16.6 Bode plots of closed-loop transfer functions.

16.3 Design example 2: PI control

Design Example 2 uses the model from Chapter 5 for the conveyor belt system in a manu-
facturing system. The Actuator–Process–Transducer block diagram is shown in Figure
16.8, where

Gdc(s) =
2

2 0 5+ . s
G(s) =

1
01 0 5. .s+

Gm = 159.2

To meet the manufacturing requirements it is imperative that the conveyor belt oper-
ates at the correct speed. It must have acceptable transient performance in moving from
one speed setting to the next. In addition, the process engineer who derived the model
found that the design manuals for the equipment were not precise on the model parame-
ters. To allow for errors in the parameters, we require a reasonable phase margin which
would allow the system to differ slightly from the design model but without compro-
mising the stability of the system. These requirements result in the design specification:

1. Zero steady state error to step changes in input speed

2. Overshoot to be less than or equal to 15% of final value

3. PM of 45° to 60°

16.3 Design example 2: PI control 477

Time (min)

C
on

tr
ol

 s
ig

na
l m

ag
ni

tu
de

, m
A

0 50 100 150
0

2

4

6

8

10

12

14

16

18

20
uc() for system 1t

uc() for system 2t

uc() for system 3t

Figure 16.7 Control signals for closed-loop step responses.

G s()

Torque,
Nm

Angular velocity,
rad s–1

q t() w()t
GmGdc()s

Measured velocity,
pulses s–1

wm()t

Control input,
V

uc()t
d.c. motor Shaft and load Optical encoder

Figure 16.8 Actuator–Process–Transducer model for conveyor belt system.

16.3.1 Solution procedure

(a) Draw the closed-loop block diagram.

(b) Decide on the structure of the controller.

(c) Plot the Bode plots of the system and determine the parameters of the controller.

(d) Examine the step responses to find whether the time domain behaviour is acceptable.

(a) Closed-loop block diagram
The closed-loop block diagram (Figure 16.9) is similar in structure to that of Design
Example 1. We have introduced the block Gm in the forward path to allow us to compare
the actual input and output of the system. In practice, alternative scaling blocks could be
introduced to produce the reference and output signals in units such as revolutions/s.

The Actuator–Process–Transducer transfer function is given by

Gsys(s) = GmG(s)Gdc(s) =
3184

2 0 5 01 0 5
.

(.)(. .)+ +s s

Changing the first-order terms to gain–time constant form gives

Gsys(s) =
3184

0 25 1 0 2 1
.

(.)(.)s s+ +

This represents an overdamped system with corner frequencies at ω c1 = 4 rad/s and
ω c2 = 5 rad/s. The open-loop transfer function is given by

GOL(s) = Gsys(s)K(s) =
3184

0 25 1 0 2 1
. ()

(.)(.)
K s

s s+ +

(b) Controller structure
To meet the criterion for zero steady state error we introduce integral action in the
controller. From our knowledge of Bode plots, we know that an integral controller of the
form K(s) = Ki/s will produce infinite d.c. gain but will also reduce the phase by 90° over
all frequencies. Consider a PI controller of the form

U s K
K

E s
K s K

s
E s K

s
s

Ec p
i p i

c
c

s
() () ()= +⎛

⎝
⎜

⎞
⎠
⎟ =

+
=

+⎛
⎝
⎜

⎞
⎠
⎟

τ 1
()s

478 Controller design using the Bode plot

()G s
Nm rad/s

TA()s W()s

Gm

Gdc()s

pulses/s

volts

Uc()s

()K s
Wsp(s) +

–

Gm

Wr()s

rad/s

Controller

pulses/s

E s()

Error signal in
pulses/s

Wm()s

Figure 16.9 Closed-loop block diagram for conveyor system.

where Kc = Ki and τ c = Kp/Ki. The integrator will still provide the infinite d.c. gain
required, but the lead term with corner frequency 1/τ c will introduce +90° of phase at
high frequencies; hence it compensates the lag introduced due to the integral term.
Therefore we consider two controller designs, one with pure integral action and the other
with the PI form:

K1(s) =
Kc
s

and K2(s)=
Kc
s

(τ cs + 1)

(c) Calculation of design parameters from Bode plot analysis
The loop transfer functions to be used for plotting the Bode plot become

G1(s) =
3184

0 25 1 0 2 1
.

(.)(.)
K

s s s
c

+ +
and G2(s) =

3184 1
0 25 1 0 2 1

. ()
(.)(.)

K s
s s s

c cτ +
+ +

We plot the Bode plot for G1(s) with a value of Kc = 1 (Figure 16.10). The system with gain
of Kc = 1 is unstable, since the phase margin is –60°. To achieve a phase margin of +60° by
changing the gain alone, we would need to use the gain to move the magnitude plot down
so that the gain crossover frequency occurred at the point with +60° phase margin. We see
from Figure 16.10 that we need to reduce the gain by about 50 dB = 316. The Bode plot of
G1(s) with Kc = 1/316 = 0.0032 is also shown in the figure. A change in gain does not alter
the phase plot, but we see that the gain crossover is significantly reduced. This will lead
to a slower speed of response.

We can introduce a lead term to increase the gain crossover slightly. This will also
change the phase plot for the system. We let the gain Kc be slightly larger than 0.0032 and
set the zero of the lead term above the poles of Gsys(s).

Kc = 0.01, τ c = 0.1

The Bode plots of G1(s) with Kc = 1/316 and G2(s) are shown in Figure 16.11.

16.3 Design example 2: PI control 479

Frequency (rad/sec)

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

–80

–40

0

40

80

10–1 100 101 102
–270
–240
–210
–180
–150
–120

–90
–60
–30

G1(s): Kc =1

G1():s Kc =1/316

K c = 1, PM ~ –60

Gain reduction required

Required PM = +60

Figure 16.10 Bode plots of G1(s) with Kc = 1 and Kc = 1/316.

We can see that the gain crossover has been increased slightly from 1 to 2.5 rad/s. This
should produce a faster response. However, we note that the phase margin has now
decreased from 60° to 45°, but we are still within the design specifications.

(d) Analysis of time domain behaviour
Let us examine the system step responses to determine the effects of the two controllers
on the process output signal and the controller output signal. The closed-loop transfer
functions are given by

Ω (s) =
G K s G s G s

G s
m dc

OL

() () ()
()1+

Ω sp(s)

In this example, the closed-loop transfer function reduces to

Ω (s) =
G s

G s
1

11
()

()+
Ω sp(s)

The controller output signal, Uc(s), is given by

Uc(s) =
G K s

G s
m

OL

()
()1+

Ω sp(s)

Figure 16.12 shows the closed-loop step responses for system G1(s) and G2(s). We see that
the second controller does indeed produce a faster response, but due to the corresponding
decrease in phase margin there is a large increase (> 20%) in overshoot. Figure 16.13
shows the corresponding controller output signals.

The overshoot of about 22% is outside the design specification. However, control
design is an iterative procedure and we would return to part (c) of the design procedure
and choose a smaller gain Kc and reassess the performance of the controller.

480 Controller design using the Bode plot

Frequency (rad/sec)

Bode diagrams

–80

–40

0

40

80

10–1 100 101 102
–270
–240
–210
–180
–150
–120

–90
–60
–30

PM for G1()s
PM for G2()s

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

gcoIncrease in w

Figure 16.11 Bode plot of G1(s) with Kc = 1/316 and G2(s).

The previous two examples showed the introduction of a phase lag term and a phase
lead term, respectively. The combination of both the phase lag and phase lead terms can
produce a controller element with a 0° phase change at low and high frequency, since the
change in phase caused by one term is cancelled at higher frequencies by the other term.
We can use the mid-frequency properties of these new controllers to shape the
closed-loop system frequency response to meet gain and phase margin specifications.

16.3 Design example 2: PI control 481

Time (sec)

C
on

tr
ol

le
r o

ut
pu

t (
vo

lts
)

Step response

0 1.6 3.2 4.8 6.4 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

uc

uc() for system 2t

() for system 1t

Figure 16.13 Controller output signals for control Systems 1 and 2.

Time (sec)

Step response

C
on

ve
yo

r b
el

t v
el

oc
ity

 (r
ad

/s
)

0 1.6 3.2 4.8 6.4 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

G1/(1 + G1)

G2/(1 + G2)

Figure 16.12 Closed-loop step response for G1(s) and G2(s).

16.4 Phase lag and phase lead elements

We define the phase lag and phase lead controllers as:

Phase lag controller: G s
s
slag() =
+
+

τ
ατ

1
1

α > 1

Phase lead controller: G s
s
slead () =
+
+

τ
βτ

1
1

β < 1

We notice that the controllers have both a lag term and a lead term. The difference in the
controllers is due to the different values of α and β. In the phase lag controller, the corner
frequencies are 1/τ and 1/α τ , and can be termed the low and high corner frequencies,
ωL = 1/α τ and ωH = 1/τ . For the phase lead controller, the low and high carrier frequen-
cies are at ωL = 1/τ and ωH = 1/βτ , respectively. The Bode plots of the controllers are
shown in Figure 16.14.

From the individual phase lag and phase lead elements, we would usually see a –90° and
a +90° change in phase respectively. However, we can use the combination of lag and lead
terms to produce a controller with no phase change at low and high frequencies, but with
a specified amount of phase change in the mid-frequency range.

16.4.1 Discussion: phase lag controller properties
We see in Figure 16.14(a), for the phase lag controller, that the phase decreases, but before
it reaches –90° the lead term acts to increase the phase. The final change in phase at high
frequencies is therefore zero. The maximum change in phase is determined by how
closely the two corner frequencies are placed. If they are far apart, then the lag term can
cause a large reduction in phase before the lead term acts to increase the phase. If they are

482 Controller design using the Bode plot

–20

–15

–10

–5

0

10–2 10–1 100 101
–60

–40

–20

0

0

5

10

15

20

10–1 100 101 102
0

20

40

60

Phase-lag: a = 10 Phase-lead: b = 0.1

Gain,

dB

Phase,

degrees

w L w Hw m w L w Hw m

Frequency (rad/s) Frequency (rad/s)

(a) (b)

Figure 16.14 Bode plots of phase lag and phase lead elements.

close together, then the lag term can only cause a small change in phase before the lead
term brings the phase back to 0°.

Peak change in phase (phase lag controller)
This occurs at the geometric mean of the two corner frequencies on the logarithmic scale
and is given by:

ωm =
1

τ α
where ω

ατ
ω ω

τL m H= < < =
1 1

Magnitude properties
From the magnitude plot, Figure 16.14(a), we find that the gain at low frequencies is
unity. The gain at high frequencies approaches 20 log10 1/α. We can verify this from the
magnitude plot, where the value of αused was 10. The gain starts at 0 dB and decreases to
a constant value of –20 dB = 20 log10(1/10). At ωm, the magnitude has changed by half its
total change in dB: 10 log10(1/α) = –10 dB.

A summary of the phase lag characteristics is given in Table 16.1.

16.4.2 Discussion: phase lead properties
The Bode plot of the phase lead controller given by

G s
s
slead () =
+
+

τ
βτ

1
1

β < 1

is shown in Figure 16.14(b). The phase increases towards +90°, but the lag term affects the
phase change and reduces the final phase change to zero.

Peak change in phase (phase lead controller)
As with the phase lag controller, the peak change in phase is determined by how close
together the two corner frequencies are. The peak change occurs at

ωm =
1

τ β
, where ωL =

1
τ

< ωm < ωH =
1
βτ

Magnitude properties
From the magnitude plot, the gain at low frequencies is unity. At high frequencies the
gain will tend to 20 log10 1/β. We can verify this from the magnitude plot, where the
value of β used was 0.1. The gain starts at 0 dB and increases to a constant value of
+20 dB = 20 log10(1/0.1). At ωm, the magnitude has changed by half to +10 dB. A summary
of the phase lead characteristics is given in Table 16.1.

16.4.3 Phase lag and phase lead compensation design
The phase lag and phase lead elements have some useful characteristics, which can be
employed to modify the gain and phase margins and time domain behaviour of
closed-loop systems. For this purpose, we cascade these elements with the processes to be
controlled and then choose the parameters of the elements, time constant τ , and either α
or β, to meet our control design objectives. The compensated system is schematically
shown in Figure 16.15.

16.4 Phase lag and phase lead elements 483

 When we cascade the lag and/or lead elements, K(s), we change the open-loop system
from G(s) to K(s)G(s). We now look at the differences that a phase lag and phase lead
compensator would produce when cascaded with a system.

System: G(s) =
50

01 1s s(.)+
Feedback: Unity gain feedback

Controller (a): phase lag Controller (b): phase lead

α = 4.22, τ = 1.203 β = 0.455, τ = 0.0586

The philosophy behind the two controllers is quite different. For the phase lag design
(Figure 16.16(a)), we aim to move the gain crossover to a lower frequency where there is
an improved phase margin for the open-loop system. The change in phase occurs at low

484 Controller design using the Bode plot

Summary table Lag term Lead term

System Glag(jω) Glead(jω)

Transfer function j
j
τω
ατω

+
+
1
1

j
j
τω
βτω

+
+
1
1

Parameter range α > 1 β < 1

Corner frequency ωL =
1
ατ

ωH =
1
τ

ωL =
1
τ

ωH =
1
βτ

Low- and

high-frequency gain

0 dB

20 log10(1/α) < 0, α > 1

0 dB

20 log10(1/β) > 0, β < 1

Low- and

high-frequency phase

0°

0°

0°

0°

Peak phase change φm = sin–1
1
1
−
+

⎛
⎝
⎜ ⎞

⎠
⎟α

α φm = sin–1
1
1
−
+

⎛
⎝
⎜ ⎞

⎠
⎟

β
β

Frequency ωm =
1

τ α
ωm =

1

τ β

Magnitude |G|m 10 log10(1/α) < 0, α > 1 10 log10(1/β) > 0, β < 1

Table 16.1 Gain and phase characteristics of phase lag and phase lead elements.

Phase-lag and/or
phase-lead elements

K s()
+

–

R s()

Process

G s()

Y s()

Figure 16.15 Cascade compensator.

frequency and has little effect near the gain crossover where the phase margin is calcu-
lated. For the phase lead controller (Figure 16.16(b)), the aim is to use the additional
phase from the controller to improve the phase margin of the system by adding phase at
the gain crossover frequency, ω gco. In the figure we can see that the phase lead controller
has been placed to add extra phase at ω gco. The resulting increase in gain occurs at and
after ω gco.

The corresponding closed-loop step responses are shown in Figure 16.17. Figure
16.17(a) shows the time responses for the system with and without the phase lag compen-
sator, and Figure 16.17(b) shows the time responses when we use the phase lead compen-
sator. We first note that in both cases the overshoot has decreased. The lag compensated
system has a lower gain crossover than the lead compensated system and thus has a
slower step response. The gain at low frequencies has remained unchanged in both cases.
The gain over the high-frequency region is reduced for the lag-compensated system,
while the gain has increased for the lead-compensated system. Thus, the lead-compen-
sated system is more sensitive to noise and high-frequency disturbance, and conse-
quently will produce a more active actuator (input) signal.

In particular, if a higher phase margin is required, we can choose a lead element with a
maximum phase lead at around the gain crossover frequency to improve the phase
margin. On the other hand, we can choose a lag element to improve the steady state
behaviour of the process or reduce the system bandwidth.

We learned in previous chapters how to specify the system performance in terms of the
frequency and time domain parameters. One of the important control design parameters
is the phase margin, which gives an indication of the relative stability of the closed-loop
system. In the following sections, we will discuss how to design phase lag and phase lead
controllers to meet a specified phase margin.

16.4 Phase lag and phase lead elements 485

Frequency (rad/sec)

Bode diagrams

–40

–20

0

20

40

60

10–1 100 101 102
–180

–160

–140

–120

–100

–80

Frequency (rad/sec)

Bode diagrams

–40

–20

0

20

40

60

10–1 100 101 102
–180

–160

–140

–120

–100

–80

Increase in PM

Compensated

Compensated

Compensated

Compensated

P
ha

se
 (d

eg
re

es
)

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

M
ag

ni
tu

de
 (d

B
)

Increase in PM

Controller (a): phase-lag Controller (b): phase-lead

Figure 16.16 The frequency responses of the uncompensated and compensated systems.

16.5 Phase lag controller

A phase lag controller has the transfer function:

G s
s
slag() =
+
+

τ
ατ

1
1

α >1

The corner frequencies of the controller are at ωL = 1/(α τ) and ωH = 1/τ . Typical Bode
plots for the phase lag controller are shown in Figure 16.18 for two different values of α.
For comparison purposes, we have also inserted the Bode plot of a pure integral term since
this gives a good idea of why the phase lag properties are useful.

16.5.1 Relationship with the integral controller
The phase lag controller is used when the compensated system exhibits a satisfactory
transient response but a poor steady state performance. This implies that the gain at low
frequency should be increased without altering the transient response characteristics.
Since the phase lag controller gain at low frequency is unity, the controller does not
change the loop gain at very low frequencies. However, for low frequencies and large
values of α, the magnitude of |τ s| = |jτω| = (τω) << 1 and so ()τ s+ ≅1 1, and for large values of
α, the magnitude of |ατ s| = |jατω| = (ατω) >> 1 and so ()ατ ατs s+ ≅1 . The phase lag controller
can then be simplified to:

G s
s

K
slag() = =

1 1
ατ

where K1
1

=
ατ

486 Controller design using the Bode plot

Time (sec)

A
m

pl
itu

de

Step response

0 0.5 1 1.5
0

0.5

1

1.5

Time (sec)
A

m
pl

itu
de

Step response

0 0.5 1 1.5
0

0.5

1

1.5

Compensated Compensated

Uncompensated Uncompensated

Controller (a): phase-lag Controller (b): phase-lead

Figure 16.17 The step responses of the compensated and uncompensated systems.

Clearly, since the dynamic characteristic of the phase lag controller is similar to an inte-
gral controller in the low-frequency range, we use this controller for systems where the
steady state error is not satisfactory. If we used integral control, we would suffer a –90°
phase change over all frequencies, but the phase lag controller has the advantage that the
phase lag at high frequencies is zero.

16.5.2 Phase lag design
We consider the general feedback system shown in Figure 16.19. We have introduced the
controller K(s) = KGlag(s). The controller comprises two elements: a phase lag controller,
Glag(s), and a gain, K.

16.5 Phase lag controller 487

Bode diagrams

–60

–40

–20

0

20

10–3 10–2 10–1 100 101
–100

–80

–60

–40

–20

0

a =100

a = 2

IntegratorP
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

a =100

Integrator

a = 2

Frequency (rad/s)

Figure 16.18 Phase lag controllers with different values of α and relationship with integral controller.

Gain and phase-lag
elements

KG lag()s
+

–

R s()
Process and actuators

G s()

Y s()

Transducer

H s()

Figure 16.19 Closed-loop system for phase lag design.

16.5.3 Control design specification
The design specification is usually given in terms of constraints on the steady state error
and phase margin, for example:

1. ess ≤0.01 for a particular class of inputs

2. PM ≥45°

If the design requirement is on the damping ratio, then for systems with dominant
second-order characteristics, we can translate this into an approximate phase margin
requirement using the relationship:

Phase margin (degrees) ≅ 100ζ

16.5.4 Phase lag design procedure
A design procedure for a phase lag controller with a design specification on steady state
error and phase margin is given here.

1. Assume the d.c. gain of Glag(s) is unity, |Glag(0)| = 1, and determine the controller gain
K in order that the closed-loop system

GCL(s) =
KG s

KG s H s
()

() ()1+

satisfies the steady state error requirement. To do this we use the final value theorem
to find an appropriate value for the gain K.

ess = lim () lim
() ()

()
s s

sE s s
KG s H s

R s
→ →

=
+

⎧
⎨
⎩

⎫
⎬
⎭0 0

1
1

2. Use this gain, K, to draw the Bode plot of the open-loop transfer function with the
transfer function, KG(s)H(s), and find the system phase margin PMsys.

3. If the design specification on phase margin is not met, we need to move the gain cross-
over frequency point to a location on the frequency axis, where we can obtain the
required phase margin. We therefore find the frequency point ω c, where:

∠ =− °+ +KG H PM() ()j jc c spec cω ω φ180

where PMspec is the specification for the phase margin and φc represents an additional
phase of 5°. This additional phase is approximate and its aim is to compensate for the
effect of any phase lag introduced by the controller at the frequency point ω c.

4. Choose ω c as the new crossover frequency. We select a value for the high corner
frequency, ωH, of the phase lag controller a decade down from this point:

ωH =
ωc
10

The reasoning behind this is that any significant phase change caused by the phase lag
controller should only occur in the range of a decade up or down from the corner
frequencies. The controller parameter τ is then given by τ = 10/ω c.

5. From the Bode plot of KG(s)H(s), determine the reduction in gain, Kred(dB), necessary
to bring the magnitude plot down to 0 dB at the new gain crossover frequency ω c.

488 Controller design using the Bode plot

6. Determine α using the relation:

20 10 20log() () /α α= → =K K
red dB red

7. Calculate the phase lag controller:

G s
s
slag() =
+
+

τ
ατ

1
1

8. Draw the Bode plot of the compensated system KGlag(s)G(s)H(s) and check the value of
the phase margin. If the specification is not met, repeat from Step 3 but this time select
different value for φ c or decrease the value of ω c.

9. The frequency domain design is now complete but now the time domain performance
must be examined. Step and ramp response tests, disturbance rejection and noise rejec-
tion time responses are usual.

This procedure can be summarised as:

Step Procedure

1. Find K to satisfy ess

2. Draw Bode plot of KG(s)H(s). Find PMsys

3. From Bode plot find the new ωgco point which meets desired PM (+φc)

4. Set τ = 10/ωc

5. Determine gain required to achieve movement of gain crossover, Kred

6. Calculate α = 10 20K red /

7. Calculate phase lag controller G s
s
slag() =
+
+

τ
ατ

1
1

8. Draw Bode plot of KGlag(s)G(s)H(s) and check specification met

9. Examine time domain responses for acceptable performance

Problem The unity feedback system in Figure 16.20 represents a position control system where Y(s) is the
output signal in mm and U(s) is the input signal in volts.

Design specifications

1. Steady state error ess to a ramp input is less than or equal to 0.01

2. PM > 40°

16.5 Phase lag controller 489

KGlag()s
+

–

R s() 1
s (0.25 + 1)s

Y s()U s()

Figure 16.20 Position control system for phase lag design.

Solution We note that the system is a Type 1 system (it has one integrator) and therefore gives zero steady
state error to a step input. In this example, the specification is to track a ramp signal with a small
but specified steady state error tolerance. There is also a requirement on phase margin to provide
reasonable transient performance. We follow the phase lag design procedure with:

G(s) =
1

025 1s s(.)+

1. For a unit ramp input, R(s) = 1/s2; hence:

e sE s s
KG s

R s s
s s s

ss = =
+

⎛
⎝
⎜

⎞
⎠
⎟ =

→ → →
lim () lim

()
() lim

0 0 0

1
1

1
1 1 025 1

1 1
2+ +

⎛
⎝
⎜

⎞
⎠
⎟ =

K s s s K[/ (.)]

Since ess ≤0.01 is required, this gives K ≥100.
We choose K = 100 since this is the minimum gain that satisfies the steady state error speci-

fication. An increase in K will result in higher overshoot.

2. The Bode plot of KG(s) is given in Figure 16.21. The phase margin is approximately 12°, which
does not meet the design specification.

We can use the MATLAB commands

s=tf('s'); gsys=1/(s*(0.25*s+1)); K = 100;
margin(K*gsys)

to produce a Bode plot which has the gain and phase margin information on the plot.

3. We need to find the frequency where the PM = PMsys + φc = 45 + 5 = 50°. From Figure 16.21,
we see that this occurs when ωgco is moved to 3.5 rad/s. We let ωc = 3.5 rad/s.

4. Set the τ value for the compensator at τ c = 10/ωc = 2.86 seconds.

490 Controller design using the Bode plot

Frequency (rad/sec)

Bode diagrams

–40

–20

0

20

40

60

10–1 100 101 102
–180

–160

–140

–120

–100

–80

Phase margin
KGsys

wgco

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

fc

move
to here

wgco

Required
phase margin +

Figure 16.21 Bode plot of KGsys(s).

5. To move the frequency response line down so that it passes 0 dB at ωc = 3.5 rad/s, we need to
reduce the gain by approximately 27 dB, so set Kred = 27.0 dB.

6. Determine α:

α = 1027 10/ = 22.4

7. Calculate phase lag controller:

Glag(s) =
τ
ατ

s
s

s
s

+
+

=
+
+

1
1

286 1
641 1
.

.

8. The Bode plot for the compensated system is given in Figure 16.22. We can see that the
phase margin is increased to above 40°. The gain crossover is reduced, so the system will
respond more slowly.

9. The step response for the closed-loop system is seen in Figure 16.23. The compensated
system responds more slowly with a long settling time, but has less overshoot and is less oscil-
latory. The phase lag controller reduces the bandwidth of the closed-loop system. This results
in slower transient response.

16.6 Phase lead control design

A phase lead controller has the transfer function:

Glead(s) =
τ
βτ

s
s
+
+
1
1

β < 1

with the low and high corner frequencies given by:

16.6 Phase lead control design 491

Frequency (rad/sec)

Bode diagrams

–100

–50

0

50

100

10–3 10–2 10–1 100 101 102
–180

–160

–140

–120

–100

–80

wgco

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

Compensated

Uncompensated

PM increasedUncompensated

Compensated

decreased

Figure 16.22 Bode plot of original system and compensated system.

ωL =
1
τ

and ωH =
1
βτ

Typical Bode plots for a phase lead controller are shown in Figure 16.24. We see that the
low-frequency gain is unity (0 dB) and we can calculate the high-frequency gain from

20 log10(1/β)

492 Controller design using the Bode plot

Time (sec)

O
ut

pu
ts

ig
na

l,
po

si
tio

n

Step response

0 1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Compensated system

Uncompensated system

Figure 16.23 Closed-loop step responses for compensated and uncompensated systems.

Frequency (rad/sec)

Bode diagrams

0

10

20

30

40

10–1 100 101 102 103
0

20

40

60

80

b = 0.5

b = 0.05
b = 0.01

b = 0.5

b = 0.05 b = 0.01

Pure derivative

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

Figure 16.24 The frequency response of the lead controller for decreasing β.

For small values of β << 1, the phase lead controller gain plot approaches the gain plot of a
pure derivative term in the mid-frequency range, as shown in Figure 16.24.

The phase plot of the phase lead controller starts and ends at 0°, but the location of the
maximum phase peak depends on the value of β. We can calculate the value of this peak
phase from the expression for ∠ Glead(jω):

φ = ∠ Glead(jω) = tan–1(jτω+ 1) – tan–1(jβτω+ 1)

The maximum phase lead, φm, can be found using calculus and φm occurs at the
frequency, ωm, where

ωm =
1

τ β

The peak phase value is given by the expression

φm = sin–1 1
1
−
+

⎛
⎝
⎜

⎞
⎠
⎟

β
β

For a given maximum phase lead, φm, we can calculate the controller parameter, β, as

β =
1
1
−
+

sin()
sin()

φ
φ

m

m

We note that the value of β depends solely on φm. We will use this relationship in the
phase lead design procedure.

16.6.1 Relationship with the derivative controller
For small values of β << 1, the phase lead controller transfer function can be approximated
by:

G s
s
slead () ~_=
+
+

τ
βτ

1
1

(τ s + 1) ~_ τ s

for β << 1 and values of ω in the mid- to high-frequency range. Hence

Glead(s) ~_ KDs β << 1

where KD = τ . The phase lead controller will therefore approach a pure derivative
controller as the value of β approaches zero. Since the dynamic characteristic of the phase
lead controller is similar to a derivative controller in the middle and high-frequency
ranges, we use this controller to improve the systems with poor stability characteristics.
The phase lead controller has the advantage that the phase lead at low frequencies is zero,
whereas a pure derivative controller has 90° phase lead over all frequencies. This implies
that we can design a phase lead controller while minimising its effects on the
low-frequency response of the system. Therefore the phase lead controller is used when
the open-loop system is either unstable or has undesirable transient response. The phase
lead controller changes the shape of the frequency response at high frequencies.

The maximum practical phase lead for a one-stage phase lead controller is 60° to 70°. If
we require a higher phase lead, we can use a two-stage phase lead controller by cascading
two one-stage controllers.

16.6 Phase lead control design 493

16.6.2 Phase lead design procedure
We describe the design procedure related to a unity feedback system, as shown in Figure
16.25.

Design specification
As for the phase lag design, the design specification is often given in terms of constraints
on the steady state error and phase margin, for example:

1. ess ≤0.01 to a particular class of inputs

2. PM ≥45°

Design procedure

1. The d.c. value of Glead(s) is unity, |Glead(0)| = 1, and determine the controller gain K in
order that the closed-loop system

GCL(s) = G s
KG s

KG s H sCL()
()

() ()
=

+1

satisfies the steady state error requirement. We recall that we can use the final value
theorem to find an appropriate value for the gain K.

ess = lim () lim
() ()

()
s s

sE s s
KG s H s

R s
→ →

=
+

⎧
⎨
⎩

⎫
⎬
⎭0 0

1
1

2. Use this gain, K, to draw the Bode plot of the open-loop system KG(s)H(s) and find
PMsys. For unstable systems, PMsys will be negative.

3. If the design specification on phase margin is not met, then find the additional phase
lead to be added to the system in order to meet the specification

φm = (PMspec + φc) – PMsys

where an extra phase lead of φc = 5° to 20° is required to compensate for the shift in the
crossover frequency. The level of this extra phase lead depends on the cut-off rate of
the uncompensated system. For a –60 dB/decade cut-off rate, the extra value is about
12°.

4. Determine the factor β using the relationship:

494 Controller design using the Bode plot

Gain and phase-lead
elements

KG lead()s
+

–

R s()
Process and actuators

G s()

Y s()

Transducer

H s()

Figure 16.25 The phase lead control system.

β =
1
1
−
+

sin()
sin()

φ
φ

m

m

5. The phase lead controller introduces a maximum phase of φm dependent on the value
of β just calculated. The phase margin of the system is measured at the existing gain
crossover point, ωgco, of the system and we would like to place the additional phase
close to this gain crossover to satisfy the phase margin specifications. The peak phase
of the compensator occurs at a frequency of ωm, which is unknown at present, but we
know that the phase lead magnitude at this mid-frequency point is given by
[20 log10(1/β)]/2 = 10 log10(1/β). Thus we have to make sure that the system has a gain
crossover frequency at ωm in order to have maximum phase shift added at this
frequency. To make ωm the new gain crossover frequency, we must select the point
where the gain of uncompensated system is |KG(s)|dB = –10 log10(1/β). Then, when we
add in the compensator, the controller gain of 10 log10(1/β) cancels out with the
system gain of –10log10(1/β) to give the new gain crossover point at ωm = ωgco. This
point can be read from the Bode plot of the uncompensated system.

6. Calculate the phase lead controller time constant τ using the relationship:

τ =
1

ω βm

7. Calculate the phase lead controller:

G s
s
slead () =
+
+

τ
βτ

1
1

8. Draw the Bode plot of the compensated system KGlead(s)G(s)H(s), check the resulting
phase margin and repeat the steps if necessary.

9. Time domain responses, steps, ramps, supply and load disturbance responses and noise
rejection simulations should be performed and assessed.

Step Phase lead design procedure

1. Find K to satisfy ess

2. Draw Bode plot of KG(s)H(s). Find PMsys

3. Find additional phase φm required to meet desired PM (+φc): φ m = PMspec + φ c

4.
Calculate β =

1
1
−
+

sin()
sin()

φ
φ

m

m

5. Determine the frequency point ωm at which the gain is –10 log10(1/β)

6. Calculate τ =
1

ω βm

7. Calculate phase lead controller G s
s
slead() =
+
+

τ
βτ

1
1

8. Draw Bode plot of KGlead(s)G(s)H(s) and check specification met

9. Examine the time domain responses for acceptable performance assessment

16.6 Phase lead control design 495

Problem We look at the unity feedback system in Figure 16.26.

Design specifications

1. Steady state error ess to a unit ramp input is less than or equal to 0.5

2. PM ≥45°

Solution We use the transfer functions

Gsys =
2

2 1s s()+
H(s) = 1

1. e sE s s
KG s

R s
s s

ss
sys

= =
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=

→ →
lim () lim

()
()

lim

0 0

1
1

s s
s K

s s s
s

s s
s s→ →+

+

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
+

0 2 0

1

1
2
2 1

1 2 1
2()

lim
()

(+ +
⎛
⎝
⎜

⎞
⎠
⎟

=

1 2
1

1
2

2) K s

K

Since we require ess ≤0.5, we must select K ≥1.

2. The Bode plot of the transfer function KGsys is given in Figure 16.27. We find that the phase
margin is approximately 28°.

3. We calculate the peak phase needed as φm = (PMspec + φc) – PMsys = (45 + 10) – 28 = 27°

The extra phase, φ c = 10°, is added to compensate for the shift in the crossover frequency.

4. Determine the factor β:

β =
1 27
1 27
− °
+ °

sin()
sin()

= 0.376

If we use MATLAB for the calculation, we must remember that the sin function assumes an
input in radians, as do many calculators! Therefore in MATLAB we would use

β =
1 27 180
1 27 180
− ×
+ ×

sin(/)
sin(/)

pi
pi

= 0.376

5. The uncompensated gain that we need to find is given by

–10 log10(1/β) = –10 log10(1/0.376) = –4.25 dB

Looking at the uncompensated system Bode plot we find this gain occurs at ωm = 1.2 rad/s.

496 Controller design using the Bode plot

KGlead()s
+R s() 2

s (2s+ 1)

Y s()

Figure 16.26 Phase lead control system.

6. Calculate the time constant τ using the relationship:

τ =
1 1

12 0376
1359

ω βm
= =

. .
.

7. Calculate the phase lead controller:

Glead(s) =
1359 1
0511 1
.
.

s
s
+
+

8. We check the phase margin of the compensated system from the plot in Figure 16.27. The new
phase margin is about 47°. This meets the required phase margin.

9. The step response of the closed-loop compensated system is given in Figure 16.28. We see
that the peak overshoot has been reduced from 1.4 to 1.2. The speed of response of the
compensated system has increased slightly due to the higher gain crossover incurred when
we included the lead compensator.

Remark We can also see that the compensated system has a larger bandwidth and hence the step
response is faster. This has the disadvantage that noise amplification will increase. Some-
times, to alleviate this increase of gain at high frequency, we find that the lead compensator
has been written as

Glead(s) = β
τ
βτ

s
s
+
+
1
1

This provides a compensator which has a lower gain at low frequencies but has a unity gain at
high frequencies. However, this change in gain would cause any previous calculation on K to
meet a steady state error specification to be in error, and we would need to modify the steady
state error calculation accordingly.

16.6 Phase lead control design 497

Frequency (rad/sec)

Bode diagrams

–40

–20

0

20

40

10–1 100 101
–180

–160

–140

–120

–100

–80

Uncompensated

Compensated

Compensated

UncompensatedP
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

Old PM

New PM

Figure 16.27 Bode plots of phase lead design example.

16.7 Design is iterative: a cautionary tale

We now look at a phase lead design where the procedure is followed but the design specifi-
cation cannot be met.

Problem We consider designing a phase lead compensator for the system in Figure 16.29.

Design specifications

1. Steady state error ess to a unit ramp input is less than 0.05

2. PM > 45°

Solution We follow the phase lead design procedure but present the results more briefly.

1. e sE s s
KG s

R s
s s

ss
sys

= =
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=

→ →
lim () lim

()
()

lim

0 0

1
1

s
s

K s s s s→ + + +
⎛
⎝
⎜

⎞
⎠
⎟

0 2
1

1 1 05 1
1

/ [()(.)]

498 Controller design using the Bode plot

Time (sec)

Step response

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Uncompensated system

Compensated system

A
m

pl
itu

de

Figure 16.28 Step response of phase lead compensated system.

KGlead()s
+

–

R s() 1
s (s + 1)(0.5 +1)s

Y s()

Figure 16.29 System for phase lead design.

=
+ +

+ + +
⎛
⎝
⎜

⎞
⎠
⎟

=

→
lim

()(.)
()(.)s

s
s s s

s s s K s

K

0 2
1 05 1

1 05 1
1

1

Since we require ess ≤0.05, we select K ≥2.

Design exercise 1

2. The Bode plot of KGsys is shown in Figure 16.30. The phase margin is approximately 18°.

3. φm = (PMspec + φc) – PMsys = (45 + 5) – 18 = 32°

4. β =
1 32
1 32

0307
− °
+ °

=
sin()
sin()

.

5. The frequency at which the uncompensated gain is

–10 log10(1/β) = –10 log10(1/0.307) = –5.13 dB

occurs at ωm = 1.5 rad/s.

6. τ
1 1

15 0307ω βm
=

. .
= 1.203

7. Glead(s) =
1203 1
0369 1
.
.

s
s
+
+

8. The Bode plot for KGlead(s)Gsys is shown as ‘Design 1’ in Figure 16.30. The phase margin is
much the same as before at 18°.

16.7 Design is iterative: a cautionary tale 499

Frequency (rad/sec)

Bode diagrams

–40

–20

0

20

40

10–1 100 101

–270
–240
–210
–180
–150
–120

–90
–60
–30

0

UncompensatedP
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

Design 1 Design 2

Design 1 Design 2

Uncompensated

Figure 16.30 Phase lead compensation of 2/[s(s + 1)(0.5s + 1)].

We try again, but this time increase the value of φ c to 25°.

Design exercise 2

2. The phase margin is approximately 18° as in Step 2 above.

3. φm = (PMspec + φc) – PMsys = (45 + 25) – 18 = 52°

4. β =
1 52
1 52

0119
− °
+ °

=
sin()
sin()

.

5. The frequency at which the uncompensated gain is

–10 log10(1/β) = –10 log10(1/0.119) = –9.24 dB

occurs at ωm = 1.9 rad/s.

6. τ =
1 1

19 0119ω βm
=

. .
= 1.53

7. Glead(s) =
153 1

0182 1
.
.

s
s
+
+

8. The Bode plot for KGlead(s)Gsys is shown as ‘Design 2’ in Figure 16.30. The phase margin has
increased to around 30°, but this still does not meet the design specification.

So why does our design procedure fail? If we look closely at the phase of the original
system, we see that it is decreasing fairly rapidly around the gain crossover point.
Although we add extra phase at this point, the phase lead compensator will move the gain
crossover of the compensated system to a higher frequency where the phase has fallen to a
lower value. We try to compensate for this by our ‘additional phase’ of φc, but in cases
where the phase is decreasing rapidly, the movement of the gain crossover frequency to a
higher value prevents the compensated system from achieving the desired specification.
In such examples we would have to consider modifying the controller, for example by
considering a phase lag controller instead.

16.8 Summary of the effects of phase lag and phase lead controllers
on system responses

We provide a summary table (Table 16.2) on the particular features of the phase lead and
phase lag controllers.

16.8.1 Phase lag–lead controllers
We learnt that the phase lag controller can be used to adjust the steady state error by
reducing the loop bandwidth and slowing down the system transient response. On the
other hand, we used the phase lead controller to increase the loop bandwidth and make
the system faster. For high-order systems or systems with large steady state error, a phase
lead controller may result in very large bandwidth, which may not be acceptable in prac-
tice due to noise amplification. For these problems we occasionally use a phase lag–lead
controller, where the lead section can be used to adjust the loop bandwidth and the lag

500 Controller design using the Bode plot

section can be used to provide additional phase margin. The design of the lag–lead
compensator is a combination of the phase lag and phase lead procedures.

A phase lag–lead controller has the following transfer function:

Glag–lead(s) =
τ
ατ

τ
βτ

lag

lag

lead

lead

s

s
s
s

+
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+
+

⎛

⎝
⎜

⎞

⎠
⎟

1

1
1
1

We assume α = 1/β so that the gain is 0 dB at low frequencies. The design procedure for a
lag–lead controller follows the procedure for a lag controller initially; then, once α has
been calculated, the value of β in the phase lead section is constrained by the equation β =
1/α.

We have presented several designs in this chapter which looked at shaping the
open-loop frequency response on the Bode plot. The design specifications were often
those related to open-loop criteria. In the next chapter we look at design based on the use
of closed-loop specifications and how we use a graphical method to relate open- and
closed-loop information. We do this on the Nichols chart.

What we have learnt

� To use our knowledge of Bode plots to design simple controllers.

� To learn how the open-loop frequency response plots can be shaped by cascading
appropriate controllers

� To design phase lag and phase lead controllers of the form.

G s
s
slag() =
+
+

>
τ
ατ

α
1
1

1

16.8 Summary of the effects of phase lag and phase lead controllers on system responses 501

Phase lag compensator Phase lead compensator

Phase and gain at low frequencies 0°, 0 dB 0°, 0 dB

Phase and gain at high frequencies 0°

20 log10(1/α) < 0 dB α > 1

0°

20 log10(1/β) > 0 dB β < 1

Compensator behaviour similar to: PI at low frequency PD controller

Stability margins Usually lower than uncompensated

system

Usually better than uncompensated

system

Closed-loop bandwidth Reduced Increased

Speed of response Reduced Increased

Specific uses Used in systems where steady state

error not satisfactory

Used to improve system stability

Table 16.2 Summary table for phase lag and phase lead controller features.

G s
s
slead() =
+
+

<
τ
βτ

β
1
1

1

� To recognise when either a phase lag or phase lead control design would be
suitable.

Multiple choice

502 Controller design using the Bode plot

M16.1 Adding a lag term to the controller transfer
function will:
(a) increase the roll-off rate
(b) decrease the roll-off rate
(c) increase the system’s speed of response
(d) alter the steady state error to a step input

M16.2 Adding a lead term to the open-loop
transfer function will:
(a) have no effect on the steady state error
(b) reduce the phase by –90° in the region of

the lead term’s breakpoint
(c) reduce the phase by –180° in the region of

the lead term’s breakpoint
(d) increase the phase by +180° in the region

of the lead term’s breakpoint

M16.3 Increasing the controller gain will cause:
(a) the gain crossover frequency to reduce
(b) the gain crossover frequency to increase
(c) the system to respond more slowly
(d) none of the above

M16.4 A controller transfer function is given by
K(s) = (2s + 1)/(0.2s +1). Is K(s) a lag or lead
controller and what is the corresponding value
of α or β?
(a) Lag controller, α = 10
(b) Lag controller, α = 2
(c) Lead controller, β = 0.1
(d) Lead controller, β = 0.2

M16.5 A ship autopilot has several tuning knobs to
change the performance of the controller. The
captain finds that the ship’s response to
heading change is slow.
(a) the captain should increase the controller

lag action
(b) the captain should decrease the controller

lag action
(c) the captain should decrease the controller

lead action
(d) the captain should decrease the controller

gain

M16.6 A lead-compensated controller is used to
control the angular velocity of a d.c. servo
system. The response has an unacceptable level
of overshoot. To reduce the overshoot:
(a) the controller should be replaced by a lag

controller
(b) the gain of the lead controller should be

increased
(c) the gain of the lead controller should be

decreased
(d) the time constant of the lead controller

should be decreased

M16.7 Which statement is correct?
(a) a PI controller is a lag controller and a PD

controller is a lead controller
(b) PI and PD controllers are lag controllers
(c) a PI controller is a lead controller and a PD

controller is a lag controller
(d) PI and PD controllers are lead controllers

M16.8 A lift control system exhibits a large steady
state error. To improve the performance, we
should:
(a) reduce the controller gain
(b) increase the controller gain
(c) add a lead controller
(d) reduce the controller gain at high

frequencies

M16.9 The closed dynamics of a car suspension
system can be represented by a second-order
system. The controller used is a lead controller.
To improve the damping ratio, we should:
(a) decrease the phase margin
(b) decrease the gain margin
(c) decrease the phase and gain margin
(d) increase the phase margin

Questions: practical skills

Q16.1 Consider a unity feedback system where the open-loop transfer function is given by

G(s) =
K

s s()+12

(a) Find the phase margin of the system for the values of gains K = 0.1, 1, 2 and 10.
(b) Comment on the relationship between K and the phase margin.

Q16.2 A unity feedback positioning servo system has the open-loop transfer function given by

G(s) =
K

s s()+1

(a) For the following values of gains, K = 0.1, 0.3, 1 and 2, construct a table containing
(i) PM
(ii) % overshoot for closed-loop step response

(b) What is the relationship between overshoot and phase margin for this system?

Q16.3 The model of a spacecraft attitude controller is given by G(s) = 1/s2. An engineer has designed a
lead controller with the transfer function

H(s) =
00043 03 0004

004 003
. (. .)

(. .)
s

s
+

+

Plot the frequency response of G(s) and G(s)H(s) and calculate the GM and PM of both systems to
see the improvement achieved due to the lead controller.

Q16.4 A lag compensator with the transfer function H(s) = (s + 1)/(6s + 1) is designed to control a unity
feedback system with the plant transfer function given by

G(s) =
200000

10 10 100()()()s s s+ + +

Find:
(a) the steady state error to a unit step input
(b) the overshoot of the closed-loop system

Q16.5 Consider the following two controllers:

K1(s) =
10 05

5
(.)
()
s
s
+
+

K2(s) =
01 1

005
. ()

(.)
s

s
+

+

(a) Find the lead (α, τ) or lag (β, τ) controller parameters.
(b) Is K1(s) or K2(s) a lead or a lag controller?

Problems 503

M16.10 You are asked to design a controller for a
water tank system which has sluggish dynamics.
What controller do you choose?
(a) a constant gain controller
(b) a lag controller
(c) a PI controller
(d) a lead controller

Problems

P16.1 Design a lead compensator for the unity feedback system

G(s) =
200

1s s()+

to give a damping ratio of 0.55. Comment on your results

P16.2 For the unity feedback system below, design a lag controller such that
(i) ess ≤ 5%

and

(ii) PM ≥30°

P16.3 Design a lead compensator for the following d.c. servo system such that the steady state error to a
unity rate ramp is less than 0.1 and the damping ratio is greater than 0.5.

P16.4 The open-loop transfer function of a mechanical system is represented by:

G s
s

s
()

()
=

+
+

4 2
13

(a) Use rltool to study the stability of the closed-loop system.
(b) Define a lead compensator in such a way that the dominant root locus moves further away from the

imaginary axis.

504 Controller design using the Bode plot

KG lag()s
+

–

R s() 1
2 1 05()()(.)s s s+ + +

Y s()U s()

KGlead()s
+

–

R s() 1

8s s()+

Y s()

Analysis and simple design using the
Nichols chart

17

Open and closed
loop information M contours

N contours

Nichols chart
nichols(g) ngrid;

Closed loop bandwidth

How do you read the
Nichols chart?

Altering the loop gain to
achieve design
specifications

Examples

Peak resonance

Help? Time to readGaining confidence Skill sectionGoing deeper

In previous chapters on Bode plot design, we met a class of control design problems which were
based on manipulating the open-loop transfer function characteristics to achieve some desired
closed-loop performance. For example, we adjusted the open-loop phase to improve the
closed-loop system stability margins. We then have to form the closed-loop transfer function and
check whether the open-loop control design meets the design specification. Hence there is a
need to establish a relationship between the open-loop characteristics, GOL(jω), and the
closed-loop characteristics, GCL(jω), in our control design problems. In many cases we have
complicated models or sets of frequency response data and the problems of manipulating
unwieldy transfer functions or frequency response data files are not easy. However, control
design packages like MATLAB make the calculation of response information as simple as typing

gcl = gol/(1+gol);

where gol and gcl are the open and closed-loop transfer functions respectively. However, tradition-
ally the problem of gaining closed-loop information easily was solved by using a Nichols chart. The
Nichols chart is still part of control design packages, since it gives valuable information by graphi-
cally relating open-loop and closed-loop information on one plot. We find that Nichols charts are
less commonly used than the Bode plot techniques we have been dealing with, but particular indus-
tries, such as the aerospace industry, often use Nichols charts to a greater degree. We present here
an introduction to the Nichols chart and give several examples of simple design.

We use the feedback control system of Figure 17.1, which has a controller K(s), an actuator and
process transfer function given by G(s) and a measurement block given by H(s). We would commonly
have the reference R(s) and the output signal Y(s) in the same units and therefore we often introduce
a scaling block, H(s), which is similar to the measurement gains, on the reference input.

The open loop transfer function, GOL(s), is

GOL(s) = K(s)G(s)H(s)

We can write the closed-loop transfer function, from R(s) to Y(s), as:

GCL(s) =
forward
open loop OL1 1+

=
+

K s G s H s
G s

() () ()
()

It can be rather difficult and cumbersome to find an explicit relationship between these two
transfer functions for a general system. Hence we use a graphical technique known as the
Nichols chart and show how it can be used for analysis and simple design. In essence we follow
the procedure shown in Figure 17.2.

506 Analysis and simple design using the Nichols chart

K s() G s()
R s() E s() U s() Y s()+

–

H s()

H s()

Figure 17.1 The general feedback system.

Plot open loop
data using open
loop grid on
Nichols Chart

Find the intersection of the
open loop response with
the closed loop contours

Read off closed
loop information

Figure 17.2 Nichols chart method.

This is very much like using an explorer’s chart or map; the contours will be a guide to the land-
scape or features of the closed-loop system. For example, in Figure 17.3 we can find a grid-refer-
ence for the point marked X. Using the gridlines at the side of the map, X is at 48.6 and 78.8. By
using the contours, which give the height above sea level, we can find that the height at point X is
310 m.

Learning objectives

� To establish a relationship between the open-loop and closed-loop frequency
responses.

� To understand the Nichols chart and learn how to extract open-loop and closed-loop
control design parameter values.

� To be able to use the Nichols chart to make simple adjustments to the gain, phase
margin and gain margin.

� To learn how to generate the Nichols chart using MATLAB.

17.1 Adding closed loop information to a Nichols plot

Firstly, we revise our knowledge of the Nichols plot by using Figure 17.4.
From the Nichols plot we see that the x-axis represents the open-loop phase and the

y-axis shows the open-loop gain. For example, we can find that at the gain crossover (0 dB)
the phase is approximately –145°. There is no frequency axis on the plot; frequency is an
implicit parameter on the graph, every point on the actual response line representing a
different frequency point. In the example shown in the plot, we have marked in some
frequency points and we can see that as frequency increases, ω1 to ω3, the open-loop
phase decreases from –120° to –180° to –210°. The open-loop magnitude initially rises
from 2 dB to a peak of about 7 dB; thereafter it falls to a level of –40 dB on this graph. All
the information we find from the plot is related to the open-loop gain and phase.
However, by placing a set of contours of closed-loop information on top of this plot we
can read both open and closed-loop information from the one frequency response map,
which we call a Nichols chart.

17.1 Adding closed loop information to a Nichols plot 507

357

330

300

270

240

504948
78

79

80
Ben Nichols

X

Figure 17.3 Contours on explorer’s map.

To calculate the contour lines for the closed-loop information, we consider the cases
for the gain and phase separately:

Gain: |GCL(jω)| =
G

G
OL

OL

j)
j)

(
(
ω
ω1+

Phase: ∠ GCL(jω) = ∠
G

G
OL

OL

j)
j)

(
(
ω
ω1+

If we let the open-loop frequency response, GOL(jω), have the real and imaginary parts
given by

GOL(jω) = X(ω) + jY(ω)

then the magnitude and phase of GCL(jω) can be calculated in terms of X(ω) and Y(ω).

17.1.1 Closed-loop gain – M contours
If we consider |GCL(jω)| = constant = M, then the contour lines of constant closed-loop
gain turn out to be circles in the real/imaginary axes which can then become the magni-
tude contours shown on the Nichols plot (Figure 17.5). We do not show the formal anal-
ysis for this as we always use a computer or pre-printed Nichols chart paper.

The M-contours are often referred to as M-circles, although they often lose their ‘shape’
unless imposed on a square grid in the Nyquist plane.

508 Analysis and simple design using the Nichols chart

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

Nichols plot

–270 –240 –210 –180 –150 –120 –90 –60 –30 0
–40

–35

–30

–25

–20

–15

–10

–5

0

5

10

Direction of
increasing w

Gain crossover

w1

w2

w3

Figure 17.4 Nichols plot.

Reading closed-loop bandwidth
From Figure 17.5 we see that the system frequency response line crosses the –3 dB
contour (closed-loop value) at the frequency point ωD when the open-loop gain and phase
would be about –7 dB and –170°, respectively.

Reading closed-loop peak magnitude
The response line never quite reaches the 6 dB closed-loop magnitude and therefore the
closed-loop peak magnitude would be around 5 dB at frequency point ωC. We can verify
this by looking at the closed-loop magnitude Bode plot (Figure 17.6) to check the
closed-loop values. We see that the response line starts at –5 dB, crosses the 0 dB line and
is almost tangential to the 5 dB line. This is also true of the frequency response line in
Figure 17.5, where the lines of constant magnitude are now M-contours. The points ωA,
ωB, ωC and ωD are marked on both plots and correspond to closed-loop magnitudes of
–3 dB, 0 dB, 5 dB and –3 dB respectively; note also that the frequencies at these points
satisfy ωA < ωB < ωC < ωD.

17.1.2 Close-loop phase: N-contours
If we set ∠ GCL(jω) = constant θ and tan(θ) = N, then lines of constant closed-loop phase also
turn out to be contours with different centres and radii in the real/imaginary axes. These
contours can also be superimposed on the Nichols plot and are called N-contours (Figure 17.7).

We have marked on the plot some new points ωE, ω F, ωG and ωH, where the closed-loop
phase is given as –4°, –28°, –128° and –183° respectively. This can be verified from the
closed-loop phase response shown in Figure 17.8. We note that the closed loop phase
values are not shown explicitly; we must use the mouse to click on the appropriate points
to find these values.

When we combine both the M- and N-contours together on the Nichols plot, we form
the Nichols chart (Figure 17.9).

17.1 Adding closed loop information to a Nichols plot 509

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

Nichols charts

–400 –370 –340 –310 –280 –250 –220 –190 –160 –130 –100 –70 –40 –10
–50

–40

–30

–20

–10

0

10

20

30

40

–40 dB

–20 dB

–12 dB

–6 dB

–3 dB

–1 dB

0 dB
0.25 dB

3 dB

6 dB

wAwB

D

wC

0.5 dB

w

1 dB

Figure 17.5 M-contours on Nichols plot.

510 Analysis and simple design using the Nichols chart

10–1 100 101
–50

–45

–40

–35

–30

–25

–20

–15

–10

–5

0

5

10

Magnitude, dB

Frequency, rad/s

B

C

D
A

Figure 17.6 Closed-loop frequency response plot.

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

Nichols charts

–400 –370 –340 –310 –280 –250 –220 –190 –160 –130 –100 –70 –40 –10
–50

–40

–30

–20

–10

0

10

20

30

40

wH

wG

wF

Response line

wE

Figure 17.7 N-contours on the Nichols plot.

17.1.3 Using MATLAB to produce a Nichols chart
To produce a Nichols chart for the MATLAB transfer function, g, with the closed-loop dB
magnitudes superimposed, use the commands

17.1 Adding closed loop information to a Nichols plot 511

10–1 100 101
–270

–240

–210

–180

–150

–120

–90

–60

–30

0

Closed-loop phase, deg

rad/s

wH

wG

wF
wE

Figure 17.8 Closed-loop phase response.

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

Nichols charts

–400 –370 –340 –310 –280 –250 –220 –190 –160 –130 –100 –70 –40 –10
–50

–40

–30

–20

–10

0

10

20

30

40

–40 dB

–20 dB

–12 dB

–6 dB

–3 dB

–1 dB

0 dB0.25 dB
0.5 dB

1 dB

3 dB

6 dB

Figure 17.9 Nichols chart.

figure(1) % introduce a new figure
ngrid % set up the Nichols chart
nichols(g,{0.1,10}) % plot a Nichols chart for the frequency range

% given by values enclosed in { }; in this case
% 0.1 < ω < 10.

Problem For the transfer function G(s) = 10/[s(s + 5)]:

(a) choose an appropriate frequency range for the gain and phase calculation

(b) produce a Nichols chart for this range

(c) find the maximum peak magnitude for the closed-loop system

Solution (a) A suitable frequency range for a transfer function usually includes a range of frequencies
centred on the corner frequencies of the system. This is often a decade above and below the
corner frequency points, and then, since we plot frequency responses in decades, we find
the nearest decade points which include this range. In this case, the corner frequency of the
lag term is at 5 rad/s. We would like to include the range of 0.5 to 50 rad/s and therefore
choose the values of 0.1 to 100 rad/s which will include these points.

(b) We enter the following MATLAB commands to produce the Nichols chart in Figure 17.10.

s=tf('s'); g=10/(s*(s+5));
figure(1); ngrid;
nichols(g,{0.1,100});

(c) The response line is tangential to the 0 dB line and does not cross this. Therefore the
closed-loop response has no peak value above 0 dB.

512 Analysis and simple design using the Nichols chart

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

Nichols charts

–270 –240 –210 –180 –150 –120 –90 –60 –30 0
–40

–30

–20

–10

0

10

20

30

40

–40 dB

–20 dB

–12 dB

–6 dB

–3 dB

–1 dB

0 dB

0.5 dB

3 dB

6 dB

1 dB

0.25 dB

Figure 17.10 Nichols chart of 10/[s(s + 2)].

17.2 The Nichols chart

We summarise what we have learnt so far about the coordinate system used on the
Nichols chart.

Key result: Open and closed loop data on the Nichols chart

The Nichols chart has essentially two coordinate systems:

1. Open-loop coordinates
– The horizontal axis represents the phase of the open-loop system in degrees.
– The vertical axis represents the gain of the open-loop system in dB.

2. Closed-loop coordinates
– The intersection points of the open-loop response line with the M-contours give the values

of the closed-loop gain in dB.
– The intersection points of the open-loop response line with the N-contour gives the values

of the closed-loop phase in degrees.

17.2.1 How to read the Nichols chart and find the closed-loop frequency response
As we have seen, the Nichols chart relates the open-loop frequency response of the
system, GOL(jω) to the unity feedback closed-loop system:

GCL(jω) =
G

G
OL

OL

j)
j)

(
(
ω
ω1+

Thus, we can read off the closed-loop frequency response, GCL(jω), from the Nichols plot
of the open-loop system GOL(jω). This was one of the useful applications of the Nichols
chart before the advent of digital computers and the development of computer-aided
control design packages such as MATLAB Control Toolbox. The procedure is still useful
for control design problems where a model of the process is not available in transfer func-
tion form but the plant frequency response is known as a table of data points, possibly
obtained experimentally. The procedure for calculating the closed-loop frequency
response is as follows:

1. Plot the open-loop frequency response on the Nichols chart using frequency informa-
tion obtained from Bode plots or experimental data.

2. Find the intersection of the open-loop frequency response with the M-contours and
N-contours.

3. Read the closed-loop gain and closed-loop phase from the M-contours and N-contours.

4. Calculate the corresponding frequencies for these gains by either extrapolating or
interpolating the frequencies of the open-loop gain response.

5. Plot the frequency response of the closed-loop system.

We notice from Step 4 that the frequencies cannot be directly read from the Nichols
chart. However, they can be found

(a) by using the frequency information in an experimental table, which contains
open-loop gain and phase information

17.2 The Nichols chart 513

(b) by using MATLAB: the frequencies can be easily read by double-clicking the mouse
on any point on the response line

Problem An engineer performs some experiments on an industrial process. It is known that the control
system has the structure shown in Figure 17.11 and that the controller is a proportional controller.

The engineer performs a frequency response test of the system and finds the data shown in
Table 17.1. From the open-loop experimental information, produce the Bode plot of the
closed-loop magnitude frequency response and find the maximum peak on this closed-loop
response plot.

Solution The plot of the frequency response data on the Nichols chart is shown in Figure 17.12. We can
use the M- and N-contours to form a table of approximate frequency and closed-loop magnitude,
as given in Table 17.2. From this we can produce the Bode plot of the closed-loop magnitude
response plot (Figure 17.13). We see that the peak magnitude appears at approximately 1.7 rad/s
and is equal to 4 dB.

514 Analysis and simple design using the Nichols chart

Test signal
R s() Controller ProcessE s() U s() Y s()+

–

Loop broken here

Figure 17.11 Model for control experiments.

Frequency, rad/s Open-loop gain, dB Phase, degrees

0.1 18 –93

0.3 9 –97

0.5 6 –102

0.7 3 –108

1.0 0 –121

1.5 –2 –143

1.7 –3 –158

2.0 –5 –182

2.2 –7 –193

2.5 –9 –205

2.8 –13 –220

Table 17.1 Experimental data from control system.

17.2 The Nichols chart 515

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

Nichols charts

–270 –240 –210 –180 –150 –120 –90 –60 –30 0
–20

–10

0

10

20

–20 dB

–12 dB

–6 dB

–3 dB

–1 dB1 dB

6 dB

0 dB
X

X

X

X

X
X

X

X
X

X

X

3 dB

Figure 17.12 Nichols chart of experimental data.

Frequency, rad/s Closed-loop magnitude, dB

0.1 0

0.3 –0.1

0.5 –0.1

0.7 –0.3

1.0 0

1.5 2

1.7 4

2.0 2

2.2 –2

2.5 –7

2.8 –12

Table 17.2 Closed-loop information from Nichols chart.

17.3 Design specifications on the Nichols chart

Control design specifications are often given in terms of performance indices such as
bandwidth and peak overshoot, Mp, of the closed-loop response. Since the Nichols chart
represents the relationship between closed-loop and open-loop parameters, it can help us
to modify the transfer function of the open-loop system in order to achieve our specified
closed-loop performance. In other words, on the Nichols chart we have a prescribed
magnitude and frequency destination to which we would like the open-loop transfer
function to be moved. In Bode plot design methods, we have to rely on methods which
relate open and closed-loop information approximately in order to reach the design
target.

Figure 17.14 shows a Nichols chart with the open loop frequency response of G(jω).
When we perform a control design we are looking for a compensated system K(jω)G(jω)
which will pass through specified design point(s). We may wish our frequency response
line to pass through any of the four points D1 to D4, where:

D1: specification on phase margin

D2: specification on closed-loop peak magnitude

D3: specification on closed-loop bandwidth

D4: specification on gain margin

The problem for the control engineer is to choose K(jω).

516 Analysis and simple design using the Nichols chart

10–1 100 101
–30

–20

–10

0

10

Magnitude, dB

Frequency, rad/s

XX X X X
X

X
X

X

X

X

Figure 17.13 Closed-loop magnitude frequency response plot.

17.4 Reading gain and phase margins from the Nichols plot

To gain further insight and practice into the use of the Nichols chart, we will look at how
we can alter the control gain, K, to achieve specifications on the open-loop gain margin,
open-loop phase margin, closed-loop bandwidth or the closed-loop peak value Mp at
frequency ωp. We start by explaining how to read the gain and phase margins from the
Nichols plot.

17.4.1 Gain margin
The gain margin is defined at the phase crossover frequency, ωpco, as the magnitude in dB
from the 0 dB line. We can find this value from the Nichols plot in Figure 17.15 by using
the following procedure:

1. On the open-loop phase axis, find the –180° phase point.

2. Follow the –180° phase line up to the open-loop response line. This point is at
frequency ωpco.

3. The gain margin is the magnitude in dB between 0 dB and the point ωpco.

GMdB = 0dB – |GOL(jωpco)|dB

It can be read off the vertical magnitude (dB) axis.

17.4 Reading gain and phase margins from the Nichols plot 517

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

Nichols charts

–270 –240 –210 –180 –150 –120 –90 –60 –30 0
–30

–20

–10

0

10

20

–20 dB

–12 dB

–6 dB

–3 dB

–1 dB0 dB
0.5 dB1 dB

G(jw)

3 dB

D1

D2

D3

D4

6 dB

Figure 17.14 Control design specifications on the Nichols chart.

Remark The closed-loop system is unstable if the gain margin is negative. If the open-loop gain is
increased by the gain margin, then the overall gain at 180° phase shift will be unity (0 dB). The
closed-loop system will then be bordering on stability for this gain, since there will be some
closed-loop poles on the jωaxis.

We note that both the gain and phase margins must be positive for a closed-loop system to
be stable, whereas, if one of the GM or the PM is negative, the system will be unstable.

Problem For the Nichols chart in Figure 17.15, determine the gain margin and state whether the
closed-loop system is unstable. Note that having a positive gain margin does not guarantee
stability.

Solution The gain margin is marked on the plot and is calculated as –7 dB. Since this is negative, the
closed-loop system will be unstable. We note that if the gain margin is measured above the
(–180°, 0 dB) point on the Nichols chart, the GM will be negative, giving an unstable system.

17.4.2 The phase margin
The phase margin (PM) is defined at the gain crossover frequency as the phase shift of the
open loop transfer function plus 180°. Using the Nichols chart, the phase margin can be
calculated by using the following procedure:

1. On the open-loop magnitude axis, find the 0 dB magnitude line.

2. Follow the 0 dB line across to the open-loop response line. The intersection point
found is at frequency ωgco.

3. The phase margin is the difference in phase between –180° and the phase at this point:

PM = ∠ GOL(jωgco) – (–180°).

It can be read off the horizontal phase axis.

518 Analysis and simple design using the Nichols chart

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

Nichols plot

–300 –270 –240 –210 –180 –150 –120 –90 –60 –30 0
–50

–40

–30

–20

–10

0

10

20

wpco

, 0 dB)(–180°

Gain margin ~ –7 dB

Figure 17.15 The gain margin for an unstable system.

Thus the phase margin is the amount of extra phase lag which the system can tolerate
before it becomes unstable.

Problem For the Nichols chart shown in Figure 17.16, determine the phase margin of the system and state
whether the closed-loop system is unstable.

Solution The phase margin can be read from the Nichols chart as 30°. This is positive and therefore the
closed-loop system is not unstable due to the PM; we would have to check the gain margin before
we could pronounce closed loop stability for the system. If the phase margin lies to the left of the
(–180°, 0 dB) point, the phase margin will be negative and the closed-loop system will be
unstable.

17.5 Altering the loop gain to achieve design specifications

We now study how to adjust the system gain in order to meet specifications on:

1. open-loop gain margin

2. open-loop phase margin

3. closed-loop bandwidth

4. closed-loop peak magnitude, Mp

Although we only use open-loop information to calculate the gain and phase margin
design specifications, we can also use the Nichols chart to analyse the change on the
closed-loop performance, which the alteration in loop gain will cause.

We use the system in Figure 17.17 to illustrate the design process.

17.5 Altering the loop gain to achieve design specifications 519

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

Nichols plot

–300 –270 –240 –210 –180 –150 –120 –90 –60 –30 0
–70

–60

–50

–40

–30

–20

–10

0

10

wgco

Phase margin ~ 30°

, 0 dB)(–180°

Figure 17.16 The gain margin and phase margin for a stable system.

Example: Achieving a gain margin specification

We would like to select the proportional gain, K, to achieve a gain margin specification of 10 dB.
We plot the open-loop Nichols plot and examine the existing GM. This turns out to be approxi-

mately 3 dB, as shown in Figure 17.18. We would have to lower the plot by 7 dB to meet the speci-
fication. Therefore the value of controller gain K becomes

K = 10–7/20 = 0.4467

The Nichols chart of the compensated system is shown in Figure 17.19. The specification on GM
has been met but the consequences of the reduction in gain are a reduction in closed-loop band-
width. The response crosses the –3 dB line at a frequency of 0.389 rad/s compared with the orig-
inal closed-loop bandwidth of 0.56 rad/s. These frequencies can be found from MATLAB by
clicking on the response line. This bandwidth reduction will result in, for example, a slower step
response from the system. However, the reduction in gain has also reduced the value of Mp to
6 dB, which will give a lower peak in the step response, though still a relatively large one.

Specification Change Comment

Gain margin 3 dB to 10 dB Improved stability margins

Phase margin ~10° to ~45° Improved stability margins

ωbw Reduction from 0.56 to 0.389 rad/s Slower step response

Mp Reduction from high value to 6 dB Peak in step response reduced but still large

520 Analysis and simple design using the Nichols chart

Nichols charts

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

–270 –240 –210 –180 –150 –120 –90 –60 –30 0
–40

–30

–20

–10

0

10

20

30

40

Change in gain for GM of 10 dB

Existing GM

Figure 17.18 Change in gain K to satisfy GM specification.

R s() 0.4(+8)s
(+0.2)(s s2+ 0.8s+ 0.01)

E s() U s()K Y s()

ProcessController

–

Figure 17.17 Block diagram for closed-loop design specification problems.

Example: Achieving a phase margin specification
In this example, we would like to alter the gain K to meet a specification of 45° phase margin.

Once again we plot the open-loop information and find that, for K = 1, the PM is about 10°
(Figure 17.20). We need to move the response line down to ensure that it crosses the 0 dB line at
–135° phase; that is, we need to lower the response line by 11.4 dB. This is equivalent to setting
K = 10–11.4/20 = 0.2692. The compensated plot is shown in Figure 17.21. As for the GM design,
the loop gain has been lowered with a corresponding decrease in closed-loop bandwidth from

17.5 Altering the loop gain to achieve design specifications 521

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

Nichols charts

–270 –240 –210 –180 –150 –120 –90 –60 –30 0
–40

–30

–20

–10

0

10

20

–40 dB

–20 dB

–12 dB

–6 dB

–3 dB

–1 dB
1 dB

6 dB

K = 1

3 dB

K = 0.4467

Change in closed loop

bandwidth

Response curve now

tangential to 6 dB

Figure 17.19 Nichols plot showing response meeting GM specification.

Nichols charts

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

–270 –240 –210 –180 –150 –120 –90 –60 –30 0
–40

–30

–20

–10

0

10

20

30

40

Change in gain for PM of 45°

Required PM = 45°

Existing PM ~10°

Figure 17.20 Gain alteration required to achieve PM specification.

0.56 rad/s to 0.29 rad/s, which will provide a slower time response. The peak magnitude has now
reduced to 3 dB, which will give a much reduced peak overshoot to a step response.

Specification Change Comment

Gain margin 3 dB to ~14 dB Improved stability margins

Phase margin ~10° to 45° Improved stability margins

ωbw Reduction from 0.56 to 0.29 rad/s Slower step response

Mp Reduction from high value to 3 dB Peak in step response reduced

Example: Achieving an Mp specification – closed-loop maximum gain peak
The smallest M-contour tangential to the open-loop frequency plot gives the value of the maximum
peak of the closed-loop frequency response. We would like to find the gain K such that the peak
magnitude of the closed-loop system is less than some specified value, say α dB. This would
determine the peak overshoot in a step response in the time domain.

Procedure
Plot the open-loop frequency response on the Nichols chart. Read the maximum peak of |GCL(jω)|
by finding the smallest M-contour tangential to the open-loop response. If the value of this
M-contour is greater than αdB, then move the open-loop response up or down, vertically, until it is
tangential to the M-contour of value αdB. The vertical distance moved is the amount by which the
gain has to be changed.

For the system used in the previous two examples, we would like to alter K to provide a
closed-loop peak magnitude of 1 dB. The response with K = 1 is shown in Figure 17.22. Finding a

522 Analysis and simple design using the Nichols chart

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

Nichols charts

–270 –240 –210 –180 –150 –120 –90 –60 –30 0
–40

–30

–20

–10

0

10

20

30

40

–40 dB

–20 dB

–12 dB

–6 dB

–3 dB

–1 dB

0 dB
0.25 dB

1 dB

6 dB

K = 0.2692

K = 1
Decrease in closed loop
bandwidth

Response is
now tangential
to 3 dB circle

3 dB

Figure 17.21 Loop gain altered to meet phase margin specification.

value for K to meet a specification is not as straightforward as satisfying a GM or PM specifica-
tion. This is because it is not easy by inspection to locate the point on the original curve which
would become tangential to the required M-contour. We proceed by trial and error. Luckily, the
use of MATLAB makes this a fairly simple procedure and we find that by trying a couple of gain
values we can ‘home in’ on the most appropriate gain setting. We could also have sketched the
response curve on a separate piece of paper to a sheet with a Nichols chart and moved one sheet
over the other to place the new response line tangential to the required M-contour.

We find the M-contour with magnitude 1 dB. We need to move the K = 1 response line so it is
tangential to this line. This requires a gain reduction of 14.2 dB, as shown in the figure. Hence the
value of K is K = 10–14.2/20 = 0.19.

This loop gain provides a gain margin of approximately 15 dB and a phase margin of over 60°.
The closed-loop bandwidth is reduced from 0.59 rad/s to 0.216 rad/s. These changes are
summarised in the following table.

Specification Change Comment

Gain margin 3 dB to 15 dB Improved stability margins

Phase margin ~10° to > 60° Improved stability margins

ωbw Reduction from 0.56 to 0.216 rad/s Slower step response

Mp Reduction from high value to 1 dB Peak in step response reduced significantly

Example: Achieving a bandwidth specification
We are often given a specification on closed-loop bandwidth, since this relates to the response
time of the system and provides an indication of the frequencies at which noise and disturbances

17.5 Altering the loop gain to achieve design specifications 523

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

Nichols charts

–270 –240 –210 –180 –150 –120 –90 –60 –30 0
–40

–30

–20

–10

0

10

20

30

40

–40 dB

–20 dB

–12 dB

–6 dB

–3 dB

–1 dB

0 dB
0.25 dB

1 dB

6 dB
Gain reduction of

14.2 dB

K = 1

K = 0.19

3 dB

Figure 17.22 Setting gain K to meet a specification on peak magnitude.

might be rejected. A higher bandwidth will produce a more quickly responding system, but at the
penalty of increased gain at high frequencies, which may amplify undesirable noise or distur-
bances. Hence the Nichols chart is particularly useful in attempting to analyse systems with a
closed-loop bandwidth specification.

The closed-loop bandwidth is often taken to be at the point where the response curve crosses
the –3 dB M-contour. We note that although we can find the closed-loop –3 dB point, there is no
frequency axis on the chart. We must either refer to the data tables which produced the frequency
response information or cross-reference from the closed-loop plot to the open-loop frequency
response plots or a table of gain/phase/frequency data. MATLAB helps in this instance, since by
using the cursor and clicking on the response line, MATLAB returns the frequency value at that
point.

In this example we would like to meet a bandwidth specification of 0.35 rad/s. The original
response line for K = 1 is shown in Figure 17.23. Using MATLAB we can click on the response line
to find the frequency value at different points. To help this process we may need to provide a
higher intensity of frequency points. We can do this by creating a frequency vector

w = logspace(–2,1,300)

which provides 300 points in the frequency range 10–2 to 101. Then we can use the nichols
command, which creates the response line for these frequency points:

nichols(g,w)

When we find the frequency closest to 0.35 rad/s, we note the open-loop magnitude and the
open-loop phase at the –3 dB M-contour vertically below that point. In this case, the gain reduc-
tion required is 8 dB, which gives a gain of K = 10–8/20 = 0.398. The modified frequency
response is also shown as on FIgure 17.23.

Specification Change Comment

Gain margin 3 dB to 13 dB Improved stability margins

Phase margin ~10° to ~40° Improved stability margins

ωbw Reduction from 0.56 to 0.35 rad/s Slower step response

Mp Reduction from high value to ~5.5 dB Peak in step response reduced but still large

Note that by altering the open-loop gain characteristic, several other control design specifica-
tions may not be met or may be violated. Hence more complex modification to the open-loop
system is required, which can be done by introducing controllers such as lead or lag compensa-
tors in the loop.

524 Analysis and simple design using the Nichols chart

What we have learnt

� To relate open and closed-loop transfer functions.

� To use MATLAB to plot a Nichols chart.

� To read closed-loop information from the M- and N-contours on a Nichols chart.

� To adjust the controller gain K to meet the following design specifications:

open-loop gain margin and phase margin
closed-loop peak magnitude, Mp
closed-loop bandwidth

Multiple choice

17.5 Altering the loop gain to achieve design specifications 525

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

Nichols charts

–270 –240 –210 –180 –150 –120 –90 –60 –30 0
–20

–15

–10

–5

0

5

10

15

20

25

30

35

40

–20 dB

–12 dB

–6 dB

–3 dB

–1 dB

0 dB
0.25 dB

0.5 dB

1 dB

6 dB

Gain reduction

required: 8 dB
K = 1

K = 0.398

3 dB

Figure 17.23 Altering gain K to meet bandwidth specification.

M17.1 The vertical axis on the Nichols chart
represents:
(a) open-loop gain
(b) open-loop phase
(c) closed-loop gain
(d) closed-loop phase

M17.2 M-contours show:
(a) open-loop gain
(b) open-loop phase
(c) closed-loop gain
(d) closed-loop phase

M17.3 The phase margin of a system can be found
from the Nichols chart by examining:
(a) the intersection of M-contours with the

phase axis
(b) the intersection of M-contours with the gain

axis
(c) the intersection of the open-loop plot with

the 0 dB magnitude axis
(d) the intersection of the open-loop plot with

the –180° phase axis

 Questions: practical skills

Q17.1 A system has an open-loop transfer function of G(s) = (s – 1)/s2. Find the GM and PM using a
Nichols chart.

Q17.2 A d.c. servo system has the open-loop transfer function G(s) = K/[s(s + 8)]. Find the value of K for
the closed-loop system to have a peak resonance value of 3 dB.

Q17.3 Plot the Nichols chart for the following phase lead and phase lag controllers and find their
maximum phase shifts.

G(s) =
10 1
01 1

s
s
+
+.

H(s) =
01 1
10 1
. s

s
+
+

526 Analysis and simple design using the Nichols chart

M17.4 N-contours show:
(a) open-loop gain
(b) open-loop phase
(c) closed-loop gain
(d) closed-loop phase

M17.5 To find the peak value of a closed-loop
transfer function on the Nichols chart, we look
for:
(a) the M-contour which intersects the

open-loop Nichols plot
(b) the N-contour which intersects the

open-loop Nichols plot
(c) the M-contour which is tangent to the

open-loop Nichols plot
(d) the M-contour which is tangent to the gain

axis

M17.6 The peak value of a closed-loop transfer
function is related to
(a) system overshoot
(b) system bandwidth
(c) system steady state error
(d) system poles

M17.7 The closed-loop bandwidth on the Nichols
chart:
(a) is the frequency at which the –3 dB

M-contour intersects the open-loop Nichols
plot

(b) is the frequency at which the N-contour
intersects the open-loop Nichols plot

(c) is the frequency at which the M-contour
intersects –3 dB on the gain axis

(d) is the frequency at which the 3 dB
M-contour intersects the open-loop Nichols
plot

M17.8 The Nichols chart can relate the open-loop
frequency response easily to:
(a) the closed-loop frequency response
(b) the open-loop peak overshoot
(c) the steady state error to an input step
(d) none of the above

M17.9 Multiplying an open loop transfer function
by a gain of 0.1 will shift all the points on the
response line on the Nichols chart:
(a) vertically down
(b) vertically up
(c) horizontally to the left
(d) horizontally to the right

M17.10 An open-loop system has a PM of 90°.
The Nichols plot crosses the 0 dB magnitude
axis at:
(a) 90°
(b) –90°
(c) 180°
(d) –180°

Q17.4 A unity feedback system has the following transfer functions:

plant: G(s) =
s

s s s
+

+ +
5

15 503 2

PI controller: K(s) =
10 1s

s
+

Find the resonant peak of the closed-loop system using a Nichols chart.

Q17.5 For the system with open-loop transfer function given by

G(s) =
13

500 60 12s s+ +

find the closed-loop bandwidth and the resonant peak from a Nichols chart.

Problems

P17.1 An engineer has found the frequency response of the open loop of a system and tabulated it as
shown below.

Frequency (rad/s) 0.01 0.02 0.03 0.06 0.11 0.19 0.34 0.61 1.1 2

Gain (dB) 21 9.5 16.2 11.2 4 –3 –13 –23 –33 –43

Phase (°) –32 –52 –76 –101 –125 –146 –160 –168 –173 –176

(a) Sketch the Nichols plot on the Nichols chart below.

(b) Find the resonant peak and bandwidth of the closed-loop system.

Problems 527

Open-loop phase (degrees)

O
pe

n-
lo

op
 g

ai
n

(d
B

)

Nichols chart

–270 –225 –180 –135 –90 –45 0
–40

–30

–20

–10

0

10

20

30

40

–40 dB

–20 dB

–12 dB

–6 dB

–3 dB

–1 dB

0 dB
0.25 dB

1 dB

6 dB

3 dB

P17.2 An engineer has performed a closed-loop frequency test on a two-tank process control system and
found the data shown in the table below. Use a Nichols chart to find the open-loop frequency
response and hence the values of Mp, GM and PM of the system.

ω (rad/s) 0.01 0.02 0.03 0.06 0.11 0.19 0.34 0.61 1.11 2

Gain (dB) –0.6 –0.56 –0.40 0.15 1.81 0.66 –11.5 –22.8 –33.3 –43.6

Phase(°) –2.4 –4.4 –8.2 –16 –37 –109 –155 –168 –174 –177

P17.3 The sensitivity transfer function, S(s) = 1/(1 + G(s)) represents the frequency response from the
input disturbance to the output signal.
(a) Find a relation between the open-loop transfer function S(s) and G(s) and GCL(s), where GCL(s) is

the closed-loop transfer function.
(b) Using the information in the tables of the previous question, and the results from your plot in the

previous question, form a table showing the values of S(jω) for the frequencies given in the table.
(c) Use your Nichols chart to plot the sensitivity frequency response on a Bode plot and hence find

out where on the frequency range we may have disturbance amplification.

528 Analysis and simple design using the Nichols chart

The practical aspects of PID control18

Implementation issues

Notation: textbook vs. industrial
time constant form

Integral windup

Reverse acting controllers

PID in SCADA and DCS systems

Anti-windup circuits

Sampling

Controller structure

Series and parallel form

Digital PID

Industrial PID control
technology

term: low-pass filter

Proportional kick

Derivative kick

Level control system

Recurrent relationships for PID
algorithms

Proportional band

Implementing the derivative

Help? Time to readGaining confidence Skill sectionGoing deeper

In the application of industrial control, we usually find three-term or PID controllers being used in
process loops. The complexity of these control loops will invariably depend on the particular
application. For example, in a paper mill, a liquid level control system may use PI control in a single
loop. But in the paper making process itself we will come across the wet-end unit, where paper
slurry is poured onto a moving mesh conveyor system to produce paper sheet. The control of this
unit is more complicated and we find that a solution using several control loops is needed. We
often find that each of these loops uses industrial PID controllers, but on occasion, even more
complicated controllers may be needed. Thus, in general, industrial control involves a large
number of simple control loops and a much smaller number of more complicated control systems.
These special control schemes will be on the more complicated and demanding units in the
process or manufacturing production line. For the simple control loops, we usually find that PID
controllers have been used.

If we look back at the development of PID control, we find that mass-produced electronic PID
controllers have been available since about the 1940s. In the first forty years of sales these
controllers were analogue, but from the 1980s onward we find microprocessor digital technology
beginning to take over. Over the same period, we find the widespread introduction and develop-
ment of Distributed Computer Systems (DCS systems) and Supervisory Control and Data Acqui-
sition Systems (SCADA systems) to operate large manufacturing and process lines. The PID
controller is a standard feature of the control tools of the computer-based industrial systems.
Thus in industry, we meet PID controllers in several different formats and implemented by
different technologies. In this chapter, we describe the PID controller as it is found in industry
today.

Our first task is to consider the basic notation of industrial PID, and we follow this by looking at
current PID control technology. After this we examine three different PID controller issues:

� We investigate the practicalities of implementing integral and derivative terms in PID control-
lers.

� We look at the varieties of industrial PID controller structures that industrial control engineers
have developed.

� We make the step to digital PID control and examine how we use sampled process signals in
PID control algorithms.

Learning objectives

� To understand common industrial PID controller notation.

� To be able to describe process controller units as might be found in industrial systems.

� To understand the practical methods for implementing the integral and derivative terms
in a PID controller.

� To be able to interpret the notation and operation of common forms of industrial PID
controllers.

� To understand simple digital PID control methods.

530 The practical aspects of PID control

18.1 Understanding common notation for industrial PID controllers

We have previously used a straightforward notation to define a three-term or PID controller.
Three simple gains, Kp, Ki and Kd were used in the parallel branches of the PID controller. We
used this parallel form of PID in Chapters 11 and 12. We begin our discussion from the
parallel representations, one for the time-domain and one for the Laplace s-domain.

Time-domain PID controller formula Transfer function PID controller formula

where Kp is the proportional gain, Ki is the integral gain, Kd is the derivative gain, and the
controller operates on the reference error signal, e(t) = r(t) – y(t). We call these textbook
PID formulas, and they correspond to an ideal structure that has three parallel paths
corresponding to the Proportional, Integral and Derivative terms (Figure 18.1).

If we now look up PID control in a Works Manual we usually find that industrial nota-
tion differs from these textbook formulas by defining a time constant form for PID. To
arrive at this new form in the case of the time domain formula, we use the following
steps, starting with the textbook form:

u t K e t K e K
e
t

() () ()= + +∫p i 0

t
dd

d
d

τ τ

We first factor out the proportional gain, Kp:

We then define new time constants τ i and τ d, and this gives a new formula:

where Kp is the proportional gain, τ i = Kp/Ki is the integral time constant and τ d = Kd/Kp is
the derivative time constant.

We can also give a similar analysis for the transfer function expressions:

18.1 Understanding common notation for industrial PID controllers 531

U()s

Kp

+

+

+

Kds

Ki
s

E s()

Figure 18.1 Parallel form of PID controller.

i
p i pd d0

d
() () ()d () ()

d

t e K
u t K e t K e K U s K K s E s

t s
t t È ˘= + + = + +Í ˙Î ˚Ú

i d
p 0p p

d
() () ()d

d

t KK e
u t K e t e

K K t
t t

È ˘
= + +Í ˙

Í ˙Î ˚
Ú

p d0i

1 d
() () ()d

d

t e
u t K e t e

t
t t t

t
È ˘

= + +Í ˙
Î ˚

Ú

We first factor out the proportional gain, Kp:

We then define new time constants τ i and τ d to find a new formula:

This has the same definitions for Kp, τ i and τ d as the new time domain formula above.
The textbook and industrial time constant forms are summarised in Table 18.1.

Skill section Parallel form to time constant form

We need to be able to move between the gain and time constant forms of PID controllers. The
works technical sheets appear to show the four different PID controller transfer functions,

We practise our skills of putting PID controllers into common standard forms by showing that
(1) Gc1(s) = Gc4(s) and (2) Gc2(s) = Gc3(s).

1. We start with Gc1(s) and we first factor out the proportional gain:

Gc1(s) = 72
526

107 72 1
526
72

1 107
72

.
.

. .
.
.

.
.

+ +⎛
⎝
⎜

⎞
⎠
⎟ = + +

⎛

⎝
⎜

⎞

⎠s
s

s
s⎟

We then define new time constants τ i = 7.2/5.26 = 1.369 and τ d = 1.07/7.2 = 0.149 to find a
new formula:

532 The practical aspects of PID control

Domain Time domain Laplace s-domain

Textbook u t K e t K e K
e
t

t
() () ()= + +∫p i dd

d
d

τ τ
0

Industrial

Table 18.1 Textbook and industrial time constant form of PID controller equation.

i
p d() ()

K
U s K K s E s

s
È ˘= + +Í ˙Î ˚

i d
p

p p
() 1 ()

KK
U s K s E s

K s K

È ˘
= + +Í ˙

Í ˙Î ˚

p d
i

1
() 1 ()U s K s E s

s
t

t
È ˘

= + +Í ˙
Î ˚

i
p d() ()

K
U s K K s E s

s
È ˘= + +Í ˙Î ˚

p d0i

1 d
() () ()d

d

t e
u t K e t e

t
t t t

t
È ˘

= + +Í ˙
Î ˚

Ú p d
i

1
() 1 ()U s K s E s

s
t

t
È ˘

= + +Í ˙
Î ˚

c1

c2

c3

c4

5.26
1. () 7.2 1.07

1
2. () 4.85 1 2.57

10.36

0.468
3. () 4.85 12.46

1
4. () 7.2 1.0 0.149

1.369

G s s
s

G s s
s

G s s
s

G s s
s

È ˘= + +Í ˙Î ˚
È ˘= + +Í ˙Î ˚

È ˘= + +Í ˙Î ˚
È ˘= + +Í ˙Î ˚

Gc1(s) = 72 1
1

1369
0149.

.
.+ +

⎛

⎝
⎜

⎞

⎠
⎟

s
s

Clearly this shows that Gc1(s) = Gc4(s).

2. We see that Gc3(s) is in the form with three independent gains, so starting from Gc2(s), we
must multiply through by the proportional gain to find the textbook form:

This is the same as Gc3(s).

In other industrial manuals, we are quite likely to find other traditional terms that some
manufacturers continue to use. If we know what these terms are then at least we shall
have a chance of understanding what the Works’ resident expert on PID tuning is talking
about when it comes to terms like proportional band and reset time.

18.1.1 Proportional band, denoted PB
Proportional band is a term that is sometimes used in the specification of PID in the process
industries. We know that when proportional control is used on its own, it has the form
u(t) = Kpe(t), or if we use changes in the control signal and the error signal then Δu = KpΔe,
where Kp is the proportional gain. We also know that the controller input and output signals
often have a limited range which may be set according to the process actuation or measure-
ment devices. The signal e(t) and the control signal u(t) may then have different units and
different ranges of variation. We first introduce definitions for the signal ranges as

uR = umax – umin and eR = emax – emin

Proportional band is a PID controller term that is defined in terms of these signal limits.
It is the percentage of the full range of e(t) that gives rise to a 100% variation in u(t). This
is represented in Figure 18.2, where we see the difference between a 20% and a 60%
proportional band. It is easy to see from the plots why the proportional bands are some-
times referred to as narrow or wide.

18.1 Understanding common notation for industrial PID controllers 533

0 20 40 60 80 100

0

20
40
60
80

100
20%

% ()u t

% ()e t

100% change
in ()u t

20% change in ()e t
causes 100%
change in ()u t

0 20 40 60 80 100

0

20
40
60
80

100
60%

% ()u t

% ()e t

100% change
in ()u t

60% change in ()e t
causes 100%
change in ()u t

Figure 18.2 20% and 60% proportional bands.

c2
1 4.85

() 4.85 1 2.57 4.85 4.85 2.57
10.36 10.36

0.468
4.85 12.46

G s s s
s s

s
s

È ˘ È ˘= + + = + + ¥Í ˙ Í ˙Î ˚ Î ˚
Ê ˆ= + +Á ˜Ë ¯

To calculate the proportional band, we first use the signal ranges to introduce defini-
tions for the normalised control and error signals as follows:

ΔuN =
Δu
uR

and ΔeN =
Δe
eR

where ΔuN is the normalised control signal and ΔeN is the normalised error signal. It is
important to realise that the above normalised signals are dimensionless, and that ΔuN
and ΔeN represent fractional changes on the full signal change possible. The basic
controller relationship Δu = KpΔe can now be substituted in the expression for the
normalised signals:

Δ
Δ Δ Δ

Δu
u

u

K e

u

K e e

u

K e

u
eN

R

p

R

p N R

R

p R

R
N= = = =

We now determine the change in controller input, ΔeN which is necessary to give a unit
change in the controller output, ΔuN. In other words, we simply set ΔuN = 1 and solve for
the ΔeN fraction. If we multiply this ΔeN value by 100%, we get the proportional band of
the controller. Using the formula above, we find:

Δ Δu
K e

u
eN

p R

R
N= =1 so that Δe

u
K eN

R

p R
=

The proportional band is thus:

Key result: Proportional band

PB
K

u
e

e
u

u
e

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎛
⎝
⎜

⎞
⎠
⎟× = ⎛

⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

1
100

p

R

R

R

R
%

Δ
Δ

×100%

We find that the controller signals and error signals are often scaled to lie between 0 and
100%, in which case the ranges uR and eR are equal. If these ranges are equal, then the
ratio is unity, and we get the simplified relationship quoted in many control textbooks,

PB
K

=
100%

p

We can also use this formula in reverse, for if the control and error ranges are equal, and
the proportional band, PB, is known, then the proportional gain, Kp, can be found as

K
PBp =

100%

For the case where the control and error ranges are equal we can look at a range of propor-
tional gains and find the correlation that small proportional gain values correspond to
large proportional band percentage values and vice versa. We have used the formula
PB = 100%/Kp to construct a table to show this (Table 18.2).

534 The practical aspects of PID control

Proportional gain 0.25 0.5 1 10 50

Proportional band 400% 200% 100% 10% 2%

Table 18.2 Proportional gains and proportional band values.

Problem In a hydraulic process it was found that the controller input variable, e(t), was a mechanical
displacement of range eR = 1 cm, and the effective controller output, u(t), was a pressure of range
uR = 2 bar. At a given setting of the controller, 0.1 cm of change in e(t) caused 0.5 bar change in
control output, u(t). What is the proportional band setting of this controller?

Solution The controller input and output ranges are not equal, so we must use the full formula:

PB
K

u
e

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎛
⎝
⎜

⎞
⎠
⎟×

1
100

p

R

R
% or PB

e
u

u
e

= ⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟×

Δ
Δ

R

R
100%

Since we do not have data on Kp, we must use the second formula as follows:

PB
e
u

u
e

= ⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟× =

Δ
Δ

R

R

cm
bar

bar
c

100
01
05

2
1

%
.
. m

× =100 40% %

There are other traditional terms that you may find being used: reset time and pre-act
time are two of these. Reset time is another name for the time constant of the integral
term. Some manufacturers refer to the integral time constant τ i in time per repeat. Other
manufacturers use the inverse of this and scale the integral term using reset rate. The
units of reset rate are, not surprisingly, repeats per time. Pre-act time is an industrial
control name given to the derivative time constant, τ d. All of these traditional terms
have their origin in analogue technology and an industrial need for descriptive labels for
the effects of the different terms in PID controllers. We expect these terms to have less
importance as the PID tuning process becomes completely automatic.

18.2 Industrial PID control technology

In industrial implementations, PID control is packaged in an easy-to-use format. The
days of having to construct a PID controller from analogue or other components is long
past. We usually meet PID control in one of two forms: either as a process controller hard-
ware unit or as a PID tuning interface window in an industrial SCADA system.

18.2.1 Process Controller Unit
Most process control companies produce a range of hardware process control units. These
units offer a limited but effective range of PID control capabilities. Advanced features
will usually include autotuning routines and the ability to operate several control loops.
For the enthusiast we will find that manual tuning using the process controller interface
is still also available. However, there are good reasons why we must fully understand the
background to the tuning procedures and which form of PID controller is being used. For
example, we may be called upon to solve PID tuning problems on troublesome loops or be
required to manually tune up particular loops in the plant. We would advise a careful
study of the company-provided User’s Handbook to avoid controller tuning mistakes. A
typical interface found on the modern process controller is shown in Figure 18.3.

In the WJK SelfTune Pioneer process controller we can find features typical of an indus-
trial product. At the top of the device we see a trend display showing the set
point, denoted SP, and the process variable, denoted PV. We would use the set point
press-button marked ‘SP’ to set up the desired value of the set point level. The buttons
marked ‘Δ’ and ‘∇’ would be used to increase or decrease numerical inputs like values for

18.2 Industrial PID control technology 535

the set point or coefficients for the PID control law used. Manual tuning can be activated
by the ‘M’ button, and an autotune or automatic tuning procedure initiated using the ‘A’
button. We can enter PID parameters via the ‘P’,‘I’ and‘D’ buttons for loops L1 and L2.
Clearly, it is essential to know the form of the PID law to make sure that the correct
tuning values are being entered. At present the display shows the value of the ‘P’ term,
P = 7.42. Finally, there are some process alarm settings which can be made using the
‘ALARM1’ and ‘ALARM2’ entry ports.

The correspondence between the terms used in general control engineering and those
often found in the process industries is shown in Table 18.3.

18.2.2 SCADA system PID tuning interface window
Most complex industrial processes are under computer control. We call a complete instal-
lation (hardware and software) a Distributed Computer System (DCS) or a Supervisory
Control and Data Acquisition (SCADA) system. In a heavy industry like the steel

536 The practical aspects of PID control

M
P : 7.42

L1 L2 P I D

SP ALARM 1

ALARM 2

WJK
Self Tune
Pioneer

A

SP

PV

Figure 18.3 The WJK SelfTune Pioneer PID process control unit.

General control engineering Process control industries

Term Notation Term Notation

Output y(t), Y(s) Process variable PV, PV(s)

Reference r(t), R(s) Set point SP, SP(s)

Error e(t), E(s) Set point error E, E(s)

Table 18.3 Summary of technical terms.

industry we would possibly find the Automation Engineer referring to the overall control
system as a DCS, while on an offshore oil platform in the North Sea or Gulf of Mexico we
would probably hear a Platform Process Engineer call virtually the same system the plat-
form’s SCADA system. The technological differences between the two computer control
systems are not so great, but as is often the case, different industries have evolved
different terminology and jargon.

In the DCS or SCADA system, access to the setup and tuning of the PID control loops
will be via a control engineer’s interface with window-like functionality. We usually find
that access to this window will be accompanied by password protection and security
checks. This is to prevent unauthorised alterations to key process operational parame-
ters. Since some of the processes under control may be capable of causing catastrophic
damage, it is important to guarantee staff safety from the results of vandalism, sabotage
or simple operational errors. We show a typical example of an engineer’s interface in
Figure 18.4. In the interface, we can see features very similar in notation and presentation
to those on the front panel of the process controller unit (Figure 18.3); however, the
SCADA system usually has greater functionality than a simple process unit, which might
be controlling only one or two loops. The SCADA system may be able to page through
different windows which display information on different control loops.

In the SCADA interface window we find common terms such as ‘SP’ and ‘PV’, which
denote set point and process variable respectively. We see there is an extra variable ‘DEV’
showing the deviation of the process variable from the set point value. There are alarm
limits, graphical setup parameters and manual and automatic tuning mode controls. If we
look carefully, we can see the PARAMETERS section. This is where the PID parameters
are stored and modified. Cursor editing alters the controller parameters. Looking at the
figure, we can see G = 1.00; TI = 30.00; TD = 0.00; TF = 0.00; TS = 10.0. These are the PID
controller parameters, where G represents proportional gain, TI represents a parameter

18.2 Industrial PID control technology 537

SP 45%

PV 47.6%

DEV –2.6%

ALARM LIMITS

H2=47.50

H1=46.00

L1=44.00

L2=47.50

PARAMETERS

G = 1.00 TD = 0.00
TI = 30.00 TF = 0.00

TS = 10

CONTROL MODE

Man

Auto

Display Limits

SETPOINTS H = 100
L =0.00

OUTPUT H = 15.00
L =13.00

TIME WINDOW = 4 units

UNIT:XF-47 Roughing Mill LOCATION:Building HRM-02 DATE:14-11-00

100%

0%

TIME UNITS

Seconds

LP 1 LP 2 LP 3 LP 4 A1 A2 A3 A4

10.45 10.50 10.55 11.00 11.05

Figure 18.4 SCADA Interface.

related to the integral term, TD represents a parameter related to the derivative term, TF
represents a parameter related to the derivative filter and TS is a parameter related to
sample interval. To understand fully how the PID terms have been defined and imple-
mented we need to refer to the User’s Manual as provided by the DCS/SCADA system
manufacturer. For example, in this particular software implementation, the parameter
TS (signal sample period) indicates that the PID controller has been given discrete or
sampled-data form.

18.3 The issues in implementing an industrial PID controller

The first important lesson we have learnt from these examples of the industrial technology for
PID control is that we need to understand fully how the PID controller has been implemented
before attempting a tuning exercise. Often, this information can only be obtained from the
manufacturer’s User’s Manual or by discussion with the installer’s personnel. However, indus-
trial PID control faces several common problems in the implementation of the terms of the
controller and it is the solutions to these problems that we shall look at next.

1. Real systems are not linear, but at best are linear in a small signal range.
This means that nonlinear systems effects are common in most processes. One
nonlinear effect which is known to deteriorate PID control is the presence of satura-
tion in controller and actuator devices (Figure 18.5). This leads to the phenomenon of
integral wind-up. In this chapter, we will see how this has led to the development of
anti-wind-up circuits to mitigate the wind-up effect.

2. Real systems are not disturbance free.
In previous chapters, we have learnt how PID can reduce the effects of low-frequency
supply and load disturbances. However, we have also met high-frequency measure-
ment noise in the descriptions of PID control. In this chapter, we will see how this
noise is amplified by the pure derivative of the textbook PID law, and how it is neces-
sary to introduce a filter on the derivative term to reduce noise amplification.

3. Real actuators may not respond well to rapidly changing input signals.
For example, if we use a derivative term in the forward path this creates unwanted
spikes on the actuator input if the reference signal changes in a stepwise manner. This
is called derivative kick. We remove derivative kick by moving the derivative term to a
different position in the control loop. Thus the architecture or structure of the PID
controller is changed. This is one example of the structural flexibility that we find in
PID control. Over the years, this flexibility in PID has been exploited by industrial
engineers to create an extensive family of controllers and we need to learn how to
recognise and interpret the different structures.

538 The practical aspects of PID control

uc t ,() input to acutator

u t ,() output from actuator

ucmin
ucmax

umax

umin

Figure 18.5 Actuator saturation.

To summarise, we list in Table 18.4 the various PID problems and the solutions proposed
which will be detailed in the next sections. These are all part of the art of implementing
industrial PID control.

18.4 Integral wind-up and anti-wind-up circuits

Integral wind-up is an effect caused by real actuators having an input–output character-
istic involving saturation or limiting of the actuation output. We know, for example, that
a valve operates between the positions of being fully closed and fully open and in between
these two states has an output that we often treat as being approximately linearly related
to the input. Similarly, we know that a d.c. motor driving a rotating shaft may have its
rotational speed limited to prevent runaway or over-speed situations which might cause
equipment damage. In both of these practical examples, the actuator control signal will
produce a limited or saturated actuator output. This type of nonlinear characteristic is
shown in Figure 18.6, where we see how the input has been capped by the saturation
characteristic.

18.4.1 Understanding the integral wind-up effect
To understand the integral wind up effect, we look at the cascade of a proportional and
integral controller, with a saturating actuator as in Figure 18.7.

18.4 Integral wind-up and anti-wind-up circuits 539

Problem Solution

Nonlinear effects in real processes, particularly

saturation in controller and actuators. This leads to

integral wind-up which causes excessive

overshoot.

Anti-wind-up circuits to mitigate the wind-up effect.

Measurement noise in the output. These

high-frequency signals are amplified by the pure

derivative term of the textbook PID.

Use a bandwidth limited derivative term to prevent

measurement noise amplification.

Use of proportional and derivative terms in the

forward path. This causes rapid changes or spikes

in the control signal when the reference signal

changes stepwise. These effects called propor-
tional and derivative kick.

Move the proportional and derivative terms to

different positions in the controller. This structural
flexibility has lead to new forms of PID controllers.

Other structural formats include reverse acting PID

controllers.

Table 18.4 The issues in implementing an industrial PID controller.

uc t ,() input to
actuator

u t()

u t ,() output
from actuator

uc t()

Figure 18.6 The input–output effect of the saturation characteristic.

The input step
We assume that a switched step signal is applied at the input to the proportional and inte-
gral controller, as seen in Figure 18.8(a). We can see that we have an input step, set to +1 at
t = 0 and switching to –1 at t = 10. The output from the proportional and integral
controller is shown in Figure 18.8(b). Here we can see that the integrator term in the
controller integrates up the step so that a peak occurs at t = 10 s, when the integrator
starts the long descent after the step has changed sign. We call this effect the wind-up of
the integrator followed by the unwinding of the integrator output.

The integral control output u(t) is now used by the saturating actuator to produce the
actuator output ua(t). This is shown in Figure 18.8(c). We can see how the saturating actu-
ator clips or limits the full extent of the control signal. The two implications of this
control signal are:

1. If the system is in closed-loop control and the control signal enters a saturation region,
then the system reverts to open-loop control. Firstly, we should note that this is poten-
tially dangerous for open-loop unstable systems. Secondly, the application of this
constant signal input is similar to a step signal entering the system, and we usually
find that this causes an excessive overshoot in the process output. For this example,
this constant signal input occurs in the period from t = 2 s to t = 18 s.

2. In the constant signal period, the controller is really demanding action that the actu-
ator cannot deliver. The integrator is winding up in the period t = 2 s to t = 10 s. At
t = 10 s, the error e(t) changes from positive to negative and the PI controller output is
at u(t) = 10. The integrator now begins to unwind until t = 18 s. At this time, we see
that the control signal enters the linear region of the saturation actuator and the
controller becomes effective once more. These stages are shown in Figure 18.8(d).

These two reasons lead us to realise that the winding up and unwinding of the integrator
delays the effective action of the control signal. What we need to do is switch off the inte-
gral term as soon as the control signal enters the saturation regime and prevent the
wind-up effect. Thus, an anti-wind-up circuit is simply a scheme for switching on and off
the integral term when saturation of the actuator output occurs.

540 The practical aspects of PID control

t

Time

Repeating
sequence

0.05

Proportional

uc

PI control
output

s
1

Integrator

ref

Input step

Clock

Actuator
saturation

ua

Actuator
output

Figure 18.7 Simulink simulation for wind-up effect of the saturation characteristic on PI control.

18.4.2 A simple anti-wind-up circuit
To correct for integral wind-up, an anti-wind-up circuit is commonly used. As we have
already determined, the purpose of this circuit is to detect when actuator saturation is
reached and then switch off the integral action. When the control signal returns to the
linear region of the saturation characteristic, then the integral action should be resumed
once more. Many engineers have used their ingenuity on this problem and found different
ways to design an anti-wind-up circuit. Some of these designs are commercially propri-
etary to particular controllers. In most PID controllers on the market, an anti-wind-up
circuit will be present, but the details of the circuit will not usually be released to the
end-user. Indeed, it is often sufficient for us to know that one has been used.

A simple anti-wind-up circuit for PI control is shown in Figure 18.9. We have intro-
duced a multiplier in this circuit:

esw(t) = Sw × Kpe(t)

If Sw is 0, then the input to the integrator is zero and we have effectively stopped the inte-
gral action. The aim of this circuit is to switch off the integrator action whenever upi(t)

18.4 Integral wind-up and anti-wind-up circuits 541

Output of PI controller

Step changes sign

Wind-up region Un-wind region

Control signal in saturation region

Input signal
1.5

1

0.5

0

–0.5

–1

–1.5
0 5 10 15 20

(a)

(c)

(b)

(d)

12

12

10

10

8

8

6

6

4

4

2

2

0

0

–2
0 5 10 15 20

Time, secondsTime, seconds

Time, seconds Time, seconds

Actuator output Controller and actuator output

2.5

2

1.5

1

0.5

0
0 05 510 1015 1520 20

Figure 18.8 The effect of actuator saturation on the PI controller output. (a) The step input signal; (b) the
PI controller output; (c) clipped actuator output; (d) comparison of controller and actuator outputs.

drives the actuator into the saturation region and to let Sw = 1 for normal operation when
the actuator is not saturated. From Figure 18.9, we have:

1. If upi(t) remains in the linear unsaturated region, –umax < upi(t) < umax, then
epi(t) = umax – abs(upi(t)) > 0 and the switch signal is Sw = 1.

2. If upi(t) enters the saturation region: either upi(t) ≥ umax or upi(t) ≤ –umax then
epi(t) = umax – abs(upi(t)) < 0 so that the switch signal is Sw = 0. This disengages the inte-
grator action and the integrator output is held at a constant value. The actuator output
takes the saturation level at this time. This situation is maintained until Kpe(t) brings
upi(t) back inside the ± umax linear region. When this happens then case 1 above occurs
and the integral action is resumed.

Problem A temperature control loop in an ethylene plant has first-order system dynamics given by

G(s) =
855

055 1
.

. s +

where the time constant is 0.55 min. The process is found to have a measured time delay of 0.15
minutes. The steam supply valve for this loop has a saturation characteristic with unit slope, and a
maximum control output range of –1.7 < uoutput < 1.7. Plant operators have reported that a refer-
ence change of 10 °C for the loop temperature output produces an excessive temperature tran-
sient. This transient was continually activating temperature monitor alarms at the SCADA system
console. The works manual shows that a PI controller is in use on the loop and that no
anti-wind-up circuit had been incorporated with the design. The PI controller is given as
Gpi(s) = 0.09 + (0.95/s).

1. Use Simulink to investigate the current performance of the loop.

2. Use the simple anti-wind-up circuit of Figure 18.9 to see if any improvement is possible.
Develop the appropriate Simulink simulation and quantify the performance changes in terms of
the settling time, percentage overshoot and rise time.

Solution 1. The data of the problem loop can be collected together as

542 The practical aspects of PID control

Kp

1
t is

umax

–umax

ABS

1

0

–
umax

Multiplier

Sw

upi()t

epi()t

Integral
term

e t()
ua()t

+

+

+

esw()t

Figure 18.9 A simple anti-wind-up circuit for PI control.

Process transfer function: Gplant(s) = 8.55/(0.55s + 1)

Process transport delay: Td = 0.15 minutes

PI controller transfer function: Gpi(s) = 0.09 + (0.95/s)

Actuator saturation characteristic, unit slope: umax = 1.7

Temperature reference = 10 °C

A Simulink simulation of the control loop is shown as Figure 18.10.

The temperature reference change response is shown in Figure 18.11.

We can see from the response of Figure 18.11 and the performance figures that there is an
excessive overshoot in temperature of nearly 40% and that the response takes just over five
minutes to settle. This clearly correlates with the observations of the plant operating staff,
since it will be the overshoot in temperature which is setting off the monitoring alarms.

18.4 Integral wind-up and anti-wind-up circuits 543

Transport
delay

t

Time

ytemp

Temperature
Sum

Step

0.09

Proportional gain

s
10.95

Integral gain

8.55

0.55s+1

First-order
dynamics

Clock

Actuator
saturation

Figure 18.10 A Simulink simulation for the temperature control loop.

0 2 4 6 8 10
0

2

4

6

8

10

12

14

Time, minutes

Temperature, °C

Percentage overshoot

Settle time (5%)

Rise time (10–90%)

38.6%

5.3 min

0.5 min

Figure 18.11 Reference response, 10 °C step change.

2. A Simulink realisation of the simple anti-wind-up circuit of Figure 18.9 interfaced to the system
description of the temperature loop is shown in Figure 18.12.

The temperature reference change response is shown in Figure 18.13. We see that the intro-
duction of the anti-wind-up circuit has reduced the overshoot to 17% and reduced the settle
time to just under three minutes. The reset time remains the same, and so the speed of
response is unchanged. Overall, we have a much-improved control loop performance.

544 The practical aspects of PID control

1.7

umax

Transport
delay

temp

Temperature

t

Time

Sum2

Step

> =

Relational
operator

0.09

Proportional gain

Product

0.95

Integral
gain

s
1

Integrator

8.55

0.55s+1

First-
order

dynamics

0

Constant

Clock

Actuator
saturation

|u|Abs

Figure 18.12 A Simulink realisation of the simple anti-wind-up circuit and the PI controlled temperature loop.

0 2 4 6 8 10
0

2

4

6

8

10

12

Time, minutes

Temperature, °C

Percentage overshoot

Settle time (5%)

Rise time (10–90%)

16.8%

2.95 min

0.5 min

Figure 18.13 Reference response, 10 °C step change; anti-wind-up circuit installed.

18.5 Implementing the derivative term

In the PID controllers that we have looked at so far, we have seen that the controller acts
on a reference signal error given by, e(t) = r(t) – ym(t), where r(t) is the reference input and
ym(t) is the measured output variable.

If we look at real control applications, we find that the feedback signal yf(t) is the
sum of the measured output ym(t) and a measurement noise component yn(t), shown as
a dashed line in Figure 18.14. The error signal, e(t), can then be written as follows,
e(t) = r(t) – yf(t) = r(t) – (ym(t) + yn(t)) = ef(t) – yn(t). What we have found from this expression
is that the error signal contains a corrupting noise signal. This noise component has
important implications for the use of the derivative term in PID controllers.

We consider a time-constant form of the PID controller:

U(s) = Kp[1 + (1/τ is) + τ ds] E(s)

The differential term (without the gain Kp) is given by

Ud(s) = τ dsE(s) = Gd(s)E(s)

If we consider the Bode magnitude plot of Gd(s) in Figure 18.15, where we have let τ d = 1.0,
we find that the plot shows that the derivative term produces amplification of the

18.5 Implementing the derivative term 545

PID Actuator Process

y t()r t() e t()

yn()t

+

+

+

–

Measurement
yf ()t ym()t

Figure 18.14 Block diagram of PID control applied to system with measurement noise.

10–1 100 101 102
–20

–10

0

10

20

30

40

Frequency, rad/s

Magnitude, dB

Attenuates low-
frequency signals

Amplifies high-
frequency signals

Figure 18.15 Magnitude plot of derivative term.

high-frequency signals. These high-frequency signals often come from the measurement
noise within the system. We have also learnt in previous chapters that the differential
term has no effect on steady (constant) signals. We can also see this from the Bode plot. In
the low-frequency range we find that the differential term has very small gain values. It is
this near-zero gain which attenuates low-frequency signals.

The consequence of the possibility of measurement noise being present within the
system is that we do not, in practical applications, apply the derivative directly to the
measured output of the process. Instead, we introduce a low-pass filter in the D-term. A
low-pass filter has the effect of attenuating high-frequency signals.

We incorporate a low-pass filter of the form Gf(s) = 1/(τ fs + 1) into the derivative term
Ud(s) as follows:

Ud(s) = Gf(s)(τ ds)E(s) =
τ
τ

d

f

s
s+1

E(s) = Gmd(s)E(s)

where Gmd(s) represents the modified derivative transfer function. We note that the
high-frequency gain of Gmd(s) is given by

K Ghigh md
d

f
j)|==

→∞
lim | (
ω

ω
τ
τ

If we parametrise the filter time constant in terms τ f in terms of τ d by the formula
τ f = τ d/N, we obtain a high-frequency gain given by Khigh = τ d/τ f = N. The final modified
derivative term is then given as

Gmd(s) =
τ

τ
d

d

s
N s(/) +1

In commercial PID controller devices, the value of N is selected to be in the range 5 ≤N ≤20
depending on manufacturer. However, the important fact is that we have created a new
modified D-term with limited high-frequency amplification of noisy signals.

We can see the effect of the low-pass filter when we look at the Bode magnitude plot
of Gmd(s) in Figure 18.16. This plot shows the magnitude of Gmd(s) with N set to 5.
From our analysis, we know that the high-frequency gain is given by N or, in dB,
20 log10(N) = 20 log10(5) = 13.9794 ~_ 14 dB. We can see from the magnitude plot that the
high-frequency gain is indeed 14 dB.

We conclude this section by setting the formula for the modified derivative control
term in the full PID controller form to obtain:

U(s) = Kp 1
1

1
+ +

+
⎛

⎝
⎜

⎞

⎠
⎟

τ
τ

τi

d

ds
s

N s
E s

(/)
()

where Kp is the proportional gain, τ i is the integral time constant, τ d is the derivative
time constant and N is a derivative filter parameter satisfying 5 ≤ N ≤ 20. We should note
that different manufacturers often use different forms for the modified D-term and even
different notation for the PID controller itself. As an example, the SCADA interface
shown in Figure 18.3 earlier in the chapter used the notation, G, TI, TD, TF for the terms
Kp, Τ i, τ d and τ f, and the PID formula used by this manufacturer was

546 The practical aspects of PID control

È ˘= = + +Í ˙+Î ˚pid
1

() [()] () 1 ()
1

TDs
U s G s E s G E s

TIs TFs

18.6 Industrial PID controller structures

We have looked at how the individual PID controller terms are implemented for use in
industrial applications. We have looked at the specific ways in which the integral and
derivative terms are changed to overcome wind-up and noise amplification effects
respectively. Again, motivated by the practical problems of industrial control, we now
examine the flexibility of the structure of the PID controller itself. This eventually leads
to the larger family of PID controllers that are widely available for industrial
applications.

18.6.1 Proportional kick
We find that the structural innovations introduced to the PID controller are based on
direct experience of using these controllers in industrial applications. In this section, we
follow an empirical investigation using the Simulink software to show why these struc-
tural changes were made; we start with proportional kick. We use a simple Simulink
simulation for the textbook PI control of a first-order process model. This is shown in
Figure 18.17, where a unit step change occurs in the reference signal at t = 1.

If we look at the process output plot as shown in Figure 18.18, we find, as might be
expected, a first-order-like step rise to the steady output value of unity. We know that the
integral term in the PI controller will ensure no steady state offset, and that is what we
find in the output plot. But now if we look at the control signal plot in Figure 18.18, we
see a surprising spike in the signal. This is proportional kick. The term kick refers to the
effect the control signal will have at the input to the actuator. For example, this might be

18.6 Industrial PID controller structures 547

10–1 100 101 102
–30

–20

–10

0

10

20

30

40

Frequency, rad/s

Magnitude, dB

Derivative term

Mag ª 14 dB

Modified derivative
term

Figure 18.16 Bode plot for the pure differential term, Gd(s) = s, and the modified differential
term, Gmd(s) = s/(0.2s + 1).

a kick in the current controlling a valve actuator and, as can be imagined, the effect of the
sudden increase in current could be quite damaging.

To remove the proportional kick, the remedy is to move the proportional term into the
feedback path so that it does not directly operate on reference changes (Figure 18.19).

This move restructures the form of the PI controller. The formula for this modified
controller is now

U s K Y s
K

E s() () ()= − +p
i

s

548 The practical aspects of PID control

t

Time

Step

8

Proportional
gain

0.5
4s+1

Process

y

Output
s
1

Integrator

2

Integral
gain

u

Control signal

Clock

1

Figure 18.17 Standard textbook PI control of a first-order process model.

0 2 4 6 8 10
0

0.5

1

Time, seconds

P
ro

ce
ss

ou
tp

ut

Textbook PI control

0 2 4 6 8 10
0

2

4

6

8

C
on

tr
ol

si
gn

al

Time, seconds

Figure 18.18 Output and control signals in the standard PI control of a first-order process model.

Using the terminology of process control, the system output is often called the process

variable and denoted ‘PV’, the reference signal is called the set point, denoted ‘SP’, and
the error, e(t) = r(t) – y(t), is termed set point error and denoted ‘E’. The restructured PI
controller is then referred to as ‘P on process variable and I on set point error’. To see that
this new structure does in fact remove the proportional kick, we use the Simulink simu-
lation of Figure 18.20.

The step response signals are shown in Figure 18.21. Comparing Figures 18.18 and
18.21, we immediately see that the spike due to proportional kick no longer appears in
the control signal of the ‘P on process variable and I on set point error’ controller. But if
we look at the output plot from the new controller, we see that the speed of response is
much slower.

We can experiment with new tuning for the I-term since we want the steady state value
to be reached quicker. If we increase the I-gain to 6, the output and control signals of
Figure 18.22 are obtained. Here we can see that the output response has a similar perfor-
mance to the original textbook PI controller, yet the control signal is much smoother and
although an overshoot has appeared the signal is devoid of any kick effect.

18.6 Industrial PID controller structures 549

()G sK i
s

+

–

Kp

–

+

Proportional
gain

Integral term
Y s()R s() E s() U(s)

Process

Figure 18.19 Restructuring the PI controller.

t

Time

Step

8
Proportional
gain

0.5
4s+1

Process

y

Output
s
1

Integrator

2

Integral
gain

u

Control signal

Clock

1

Figure 18.20 The P on process variable, I on set point error controller used on a
first-order process model.

18.6.2 Derivative kick
We use derivative control to enhance the closed-loop stability of a loop and to shape the
response by tuning the damping in systems with approximately second-order dynamics.
We have already seen how it is necessary to modify the formula of the D-term to avoid
problems with measurement noise amplification. Now we look at practical implications

550 The practical aspects of PID control

0 2 4 6 8 10
0

0.5

1

Time, seconds

P on process variable, I on error; I gain = 2

P
ro

ce
ss

 o
ut

pu
t

C
on

tr
ol

 s
ig

na
l

0 2 4 6 8 10
0

0.5

1

1.5

2

Time, seconds

Figure 18.21 Output and control signals in the restructured PI control of a first-order process
model. Controller removes proportional kick.

0 2 4 6 8 10
0

0.5

1

1.5

Time, seconds

P
ro

ce
ss

ou
tp

ut

P on process output, I on error; I gain = 6

0 2 4 6 8 10
0

1

2

3

4

C
on

tr
ol

si
gn

al

Time, seconds

Figure 18.22 Output and control signals from the re-tuned controller which removes propor-
tional kick.

of the position of the D-term in the usual textbook structure of the PID controller. In
Figure 18.23 we have a Simulink model of PID control of a simple first-order process
where the controller is in the usual forward path position. We have used the modified
D-term which incorporates noise filtering. If we write a general transfer function for the
PID controller of Figure 18.23, we would have:

U(s) = Gpid(s)E(s) = K
K
s

K s
s

E sp
i d

f
+ +

+
⎛

⎝
⎜

⎞

⎠
⎟

τ 1
()

where Kp = 2.6, Ki = 0.763, Kd = 0.224 and τ f = 0.112.

We run the simulation to look at the process variable output signal and the control
signal. The signal plots are shown in Figure 18.24, where a step change in reference has
occurred at t = 1.

The process output response looks satisfactory, the I-term ensures there is no steady
state error and the rise time is about 4 time units. A look at the control signal in Figure
18.24 shows a remarkably different interpretation of the apparently benign output
response. We see a sharp spike on the control signal at the time of the step reference
change. This is a derivative kick effect. In practice this control signal could be driving an
actuator device like a motor or a valve, and the kick would create serious problems for
any electronic circuitry used in the device. Derivative kick is very similar in origin to
proportional kick, explained in the previous section. The remedy for derivative kick also
follows that used for proportional kick, so that we move the derivative term into the feed-
back path and restructure the PID controller (Figure 18.25).

Using the process control terminology, we call this new controller a PI-D controller,
with ‘P and I on set point error and D on process variable’. The formula for the PI-D
controller is given as

U s K
K
s

E s
K s
s

Y s() () ()= +⎛
⎝
⎜

⎞
⎠
⎟ −

+p
i d

fτ 1

18.6 Industrial PID controller structures 551

t

Time

Step

2.6

Proportional
gain

5s+1
1

Process

y

Output

s
1

Integrator

0.763

Integral
gain

0.224s
0.112s+1

Derivative
on error signal

u

Control signal

Clock

1

Figure 18.23 A Simulink model of standard PID-on-error applied to a first-order process.

 The modified Simulink simulation is shown in Figure 18.26, and the associated output
and control signal traces are shown in Figure 18.27.

Comparing the control signals of Figures 18.24 and 18.27, we immediately see that the
spike due to derivative kick is much reduced in the new PI-D controller response. In the
standard PID control signal the spike reached a peak of 5 units and was very narrow and
sharp, while in the PI-D control signal the peak is 2.7 units and appears as a gentle expo-
nential decay. The difference in the two process output signals is hardly noticeable. The
restructuring of the standard PID controller into the PI-D controller to avoid derivative
kick is a second example of how industrial engineers have modified the PID control
method to solve practical implementation problems. This structural flexibility is
discussed in more detail in the next section.

552 The practical aspects of PID control

0 2 4 6 8 10
0

0.5

1

1.5

Time

P
ro

ce
ss

ou
tp

ut

Textbook PID control

0 2 4 6 8 10
0

2

4

6

Time

C
on

tr
ol

si
gn

al

Figure 18.24 Output and control signals in the standard PID control of a first-order process model.

()G sKp+
K i
s

+

–

Kds
tfs + 1

–

+

Derivative term

Proportional plus
integral term

Y s()R s() E s() U s()
Process

Figure 18.25 PID structure: PI on error, D on process variable.

18.7 Different forms of industrial PID controllers

We saw in earlier sections how the PID controller was modified to overcome practical
implementation problems like integral wind-up and measurement noise amplification.
We also saw how industrial engineers have exploited the structural flexibility in the PID
framework to solve the problems associated with proportional and derivative kick. In
this section we are going to explore the structural flexibility in a more systematic way

18.7 Different forms of industrial PID controllers 553

t

Time

Step

2.6

Proportional
gain

5s+1
1

Process

y

Output

s
1

Integrator

0.763

Integral
gain

0.224s

0.112s+1
Derivative
on process variable

u

Control signal

Clock

Figure 18.26 Simulink model with PI on error and D on process variable.

0 2 4 6 8 10
0

0.5

1

1.5

Time

P
ro

ce
ss

ou
tp

ut

P and I on set point error, D on process variable

0 2 4 6 8 10
0

1

2

3

Time

C
on

tr
ol

si
gn

al

Figure 18.27 Output and control signals in the PI-D control of a first-order process model.
Controller removes derivative kick.

and finally define the parallel (non-interacting) PID structure and the series (interacting)
PID structure to complete the description of the possibilities in the PID framework.

We learnt in the sections on proportional and derivative kick how the PID controller
was restructured to avoid these effects. As an example, to avoid both proportional and
derivative kick a PID controller would be restructured as ‘I on set point error with P and D
on process variable’. The name for this PID controller would be hyphenated and given as
the I-PD controller. The letters before the hyphen refer to the terms acting on the set
point error, and the letters after the hyphen refer to the terms acting on the process vari-
able. To take a second example, to avoid derivative kick alone, the PID controller could
be structured as ‘P and I on set point error and D on process variable’. This PID controller
would be given the name PI-D controller. In this example, the PI before the hyphen indi-
cates that the PI terms act on the set point error, and the D after the hyphen shows that
the D-term acts on the process variable. Clearly, in this way we can conveniently label a
family of PID controllers with different structures and different engineering properties.
Typically we might find the controllers P, I, PI, PD, PID, PI-D, I-P and I-PD listed in an
industrial control manual. The final feature of the PID control structure is whether the
controller is in parallel (non-interacting) or series (interacting) form.

18.7.1 A parallel PID controller
The structure of the textbook form of PID controller that we have been using throughout
this book has three distinct parallel paths, each path carrying only one term of the
controller. It is sometimes given other names, like the decoupled form or the non-inter-
acting form. These names reflect the independence of the parallel paths and their sepa-
rate effects. Within this parallel structure only the definition of the coefficients and the
implementation devices used for the terms I and D will differ between different commer-
cial products. Table 18.5 lists the typical industrial formulas that might be met in prac-
tical applications. We use both the control engineering labels and the process control
terms.

18.7.2 A series PID controller
Early technological versions of some PID controllers used pneumatic hardware for which
a series transfer function representation was appropriate. In later analogue PID devices
some manufacturers retained the series structure. Despite the likelihood that today’s PID
controller will be implemented digitally and in parallel form, these series PID formulas
are often still listed in industrial PID controller manuals. The basic series or interacting
PID control law is given in terms of a product of transfer functions as

We can draw this transfer function relation as the block diagram of Figure 18.28.

554 The practical aspects of PID control

series s d
i

1
() () () 1 (1) ()U s G s E s K T s E s

T s

È ˘Ê ˆ
= = + +Í ˙Á ˜Ë ¯Í ˙Î ˚

Ks
U s()

Tds

E s()

1
Tis

++
+

+

Figure 18.28 Series or interacting PID controller block diagram.

There are two technical features of the series form of PID controller that we should
examine. Firstly, we should look at a time domain formula for the controller, and secondly
we should know how to establish the connection with the parallel PID controller.

A time domain formula for the series PID controller
We begin from the transfer function equation of the series controller as

If we multiply the expression out, we obtain

We can convert the expanded relation immediately to a time domain form as

From this form we can also see that there is a link with the parallel PID controller formula.

The connection between the series and parallel PID controller formulas
Starting from the expanded form for the series PID controller:

18.7 Different forms of industrial PID controllers 555

Structure General notation Process control industries

P U s K E s() [] ()= p U G E= []

I

PI

PD

PID

PI-D

I-P

I-PD

Table 18.5 The parallel PID controller structure: summary of transfer function formulas.

d
p

f
() ()

1
K s

U s K E s
st

È ˘
= +Í ˙+Î ˚

di
p

f
() ()

1
K sK

U s K E s
s st

È ˘
= + +Í ˙+Î ˚

1
1

1
TDs

U G E PV
Tls TFs

È ˘Ê ˆ Ê ˆ= + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯+Î ˚

1
(1)U G E PV

TIs

È ˘Ê ˆ= -Í ˙Á ˜Ë ¯Î ˚

È ˘= Í ˙Î ˚
i() ()

K
U s E s

s
1

U G E
TIs

È ˘= Í ˙Î ˚

i
p() ()

K
U s K E s

s
È ˘= +Í ˙Î ˚

1
1U G E

TIs
È ˘= +Í ˙Î ˚

1
1

TDs
U G E

TFs
È ˘= +Í ˙+Î ˚

1
1

1
TDs

U G E
TIs TFs

È ˘= + +Í ˙+Î ˚

di
p

f
() () ()

1
K sK

U s K E s Y s
s st

È ˘È ˘= + - Í ˙Í ˙ +Î ˚ Î ˚

i
p() () [] ()

K
U s E s K Y s

s
È ˘= -Í ˙Î ˚

di
p

f
() () ()

1
K sK

U s E s K Y s
s st

È ˘È ˘= - +Í ˙Í ˙ +Î ˚ Î ˚

1
1

1
TDs

U G E PV
TIs TFs

È ˘Ê ˆ Ê ˆ= - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯+Î ˚

È ˘Ê ˆ
= + +Í ˙Á ˜Ë ¯Í ˙Î ˚

s d
i

1
() 1 (1) ()U s K T s E s

T s

d
s d

i i

1
() 1 ()

T
U s K T s E s

T T s

È ˘Ê ˆ
= + + +Í ˙Á ˜Ë ¯Í ˙Î ˚

d
s d0i i

1 d
() 1 () ()d

d

tT e
u t K e t e T

T T t
t t

È ˘Ê ˆ
= + + +Í ˙Á ˜Ë ¯Í ˙Î ˚

Ú

we must factor out the term (1 + Td/Ti) as follows:

This will simplify to give

The usual formula for the parallel PID controller is

U s K
s

s E s() ()= + +
⎛
⎝
⎜

⎞
⎠
⎟p

i
d1

1
τ

τ

Comparing the two forms gives the following identities

Kp = Ks
T T

T
i d

i

+⎛
⎝
⎜

⎞
⎠
⎟

τ i = (Ti + Td)

τ d =
T T

T T
i d

i d+
⎛

⎝
⎜

⎞

⎠
⎟

We have discovered that the series interacting PID controller can be unravelled and
written in the form of a parallel or non-interacting controller formula. However, past
engineering usage means that despite the theoretical simplicity of the parallel form, the
seemingly more complicated series form is still used and cited. Some claim that the
series form is easier to tune manually, so we have included it here for completeness and
possible future reference.

18.8 Reverse acting controllers

Inverse systems and reverse acting controllers are terms that often cause some confusion,
so we give a brief reminder of inverse systems and then go on to discuss reverse acting
controllers in more detail. Some processes have difficult dynamics, and inverse response
systems belong to this class of problems. The most often cited examples of inverse
response processes are either the level control of a drum boiler system found in processes
requiring a supply of steam like a power station, or an exothermic reactor system from
the chemical industry. In such processes, if we make a positive step change at the process
input we find that the output step response first goes negative and then recovers to finish
up positive. Such a response is shown in Figure 18.29.

We have earlier learnt in Chapter 10 how the inverse system response has a physical
origin where two competing effects, a fast dynamic effect and a slow dynamic effect,
conspire to produce the negative start to the response before the step recovers to settle at
a positive steady state value.

556 The practical aspects of PID control

d
s d

i i

1
() 1 ()

T
U s K T s E s

T T s

È ˘Ê ˆ
= + + +Í ˙Á ˜Ë ¯Í ˙Î ˚

1 1
d d d

s d
i i i i

1
() 1 1 1 1 ()

T T T
U s K T s E s

T T T s T

- -È ˘Ê ˆ Ê ˆ Ê ˆÍ ˙= + + + ¥ + + ¥Á ˜ Á ˜ Á ˜Í ˙Ë ¯ Ë ¯ Ë ¯Î ˚

i id d
s

i i id d

1
() 1 ()

()
T T T T

U s K s E s
T T T s T T

È ˘Ê ˆÊ ˆ+
= + +Í ˙Á ˜Á ˜ + +Ë ¯ Ë ¯Í ˙Î ˚

Reverse acting controllers should not be confused with inverse response processes.
Reverse acting controllers come about because the process has a negative gain. In this
case, a positive-going step change produces a negative-going step response. We show such
a step response in Figure 18.30.

If negative feedback is used with a process with negative gain, then positive feedback
results and closed-loop stability cannot often be found. To rectify this problem, an addi-
tional gain of [–1] is placed at the output of the controller to maintain a negative feedback

18.8 Reverse acting controllers 557

0 1 2 3 4 5 6
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

O
ut

pu
t/

in
pu

t

Inverse
output
response

Input
step

Figure 18.29 Inverse system response.

0 1 2 3 4 5 6

–0.5

0

0.5

1

Time

Negative step response of
system

Positive step input

O
ut

pu
t/

in
pu

t

Figure 18.30 Step response of system with negative gain.

loop, as shown in Figure 18.31. This combination of a controller and the [–1] block is
called a reverse acting controller.

Problem A control system is required for level control in a valve-controlled tank filling system. The partic-
ular system adopted is shown in Figure 18.32.

The tank is used as a buffer store for the process and has a design operating level of 4 m. From
time to time the tank is scoured out and has to be refilled from empty. The supply inflow, fin(t), is
subject to small variations about a nominal constant value, fIN. The valve on the outlet pipe is
assumed to have a linear saturation characteristic, with the valve setting variable, α , lying
between 0 and 1. The rated outflow is given by fR and is the maximum outflow at the outlet pipe
that can be achieved with the valve fully open. The level in the tank is denoted by h(t). The system
data are summarised in Table 18.6.

558 The practical aspects of PID control

Gc()s G s()
+

–

R s()
Y s()

–1

Reverse acting controller

Ga()s

Actuator Process

Figure 18.31 Reverse acting controller for process with negative gain.

Control
algorithm

fin()t
href

Valve
position: a

h

fout()t

+
–

Level
sensor

Controller

Figure 18.32 Level control system.

Variable Value Units

Cross-sectional area of tank, A 6 m2

Nominal constant inflow, fIN 2 m3/min

Rated outflow, fR 5 m3/min

Valve fully closed α 0 dimensionless

Valve fully open α 1 dimensionless

Table 18.6 Data for the level control system.

An engineer proposes to design a start-up system and a PI controller for this system.

1. Develop a system model for the tank level control system.

2. Use the data and the model to determine a startup procedure for the system such that the tank
level reaches the desired operating level of 4 m.

3. Show that a reverse acting controller is required.

4. Use the data to design a PI controller to achieve closed-loop pole placement at s = –0.7± j0.7.

5. Develop a Simulink simulation for assessing the reference tracking and disturbance rejection
performance.

Solution 1. Develop a system model for the tank level control system
We develop a general system model and then use the data in our calculations. The model we shall
derive will be based on physical principles. We begin from a rate of change equation:

Rate of change of liquid volume in the tank = inflow – outflow

The volume of liquid in the tank, V(t), is given by:

V(t) = cross-sectional area × height of liquid = A × h(t)

Liquid inflow is given by fin(t). Liquid outflow depends on how far the valve is open at time t and the
rated outflow, so that fout = α(t) × fR.

Substituting into the rate of change equation, we have:

d
d

d
d in out in R

{ ()} { ()}
() () ()

V t
t

A h t
t

f t f f t t f=
×

= − = − ×α

The cross-sectional area of the tank is constant and therefore we can rearrange this equation as

To complete the model description we need to add the initial condition for the height of the liquid
in the tank at time, t = 0. This we write as h(0) = h0. The full model description in the time domain is
then

In the Laplace domain, we have directly from the transform of the time equation

where H(s) is the Laplace transform of h(t) and αv(s) is the Laplace transform of α(t). This equation
rearranges to give the Laplace transfer function model as

where Kv = fR/A and KF = 1/A.

18.8 Reverse acting controllers 559

a
-È ˘

= +Í ˙
Í ˙Î ˚

R
in

d () 1
() ()

d

fh t
t f t

t A A

R
in 0

d () 1
() (), with initial condition (0) .

d

fh t
t f t h h

t A A
a

-È ˘
= + =Í ˙

Í ˙Î ˚

R
0 v in

1
() () ()

f
sH s h s F s

A A
a

-È ˘ È ˘- = +Í ˙ Í ˙Î ˚ Î ˚

v F
v in 0

1
() () ()

K K
H s s F s h

s s s
a

-È ˘ È ˘ È ˘= + +Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

2. Use the data and the model to determine a startup procedure
The tank start up assumes that the tank is empty. This means that h(0) = h0 = 0. The operating
level of the liquid is to be 4 m. The data table shows that the constant nominal inflow is fixed at
fIN = 2 m3/min. We can describe startup as filling the tank to a height of 4 m from empty. Since
A = 6 m2, a level of 4 m corresponds to a volume of 24 m3. For the shortest start up time, we
simply close the outlet valve by setting α = 0 and allow the inflow to run for 24/2 = 12 minutes.
After 12 minutes we must then either:

(i) alter the valve position manually in open-loop control to give the required position such that
the level remains at 4 m.

(ii) switch in the controller which acts on the feedback level position signal. This controller will
vary the valve position to maintain the level at 4 m.

To stay in steady conditions at the t = 12 min point without switching on the controller, we must
switch the valve setting to a particular value α ss, which corresponds to a steady state condition
where the level, h(t), does not change. We can find the steady state value for α ss from the time
domain model by setting dh/dt = 0 and substituting in the nominal steady value of the supply
input, fI, as follows:

d
d ss

R
ss IN

h
t

f
A A

f= =
−⎛
⎝
⎜

⎞
⎠
⎟ +0

1
α

We see that this rearranges as αss = fIN/fR = 2/5 = 0.4. Therefore we can list a startup procedure
as:

Startup procedure
Turn off the inflow stream
Ensure the tank is empty
Close out flow valve, setting α = 0
Turn on the inflow stream and timer simultaneously
Run for 12 minutes
At 12 minutes:

EITHER: Set valve to α = α ss = 0.4, giving open-loop control
OR: Switch on PI controller, giving closed-loop control

3. Show that a reverse acting controller is required.
The controller will regulate the level of liquid in the tank. The steady conditions have already been
determined so that the steady liquid level is hss = href = 4 m. The valve setting to achieve this is
α ss = 0.4. We have also determined that this steady level is reached at t0 = 12 min and that the
starting level is h(t0) = h(12) = href = 4. The model equations are:

where

K
f

Av
R

=
⎛

⎝
⎜

⎞

⎠
⎟ and K

AF = ⎛
⎝
⎜

⎞
⎠
⎟

1

Now to demonstrate that a reverse acting controller is required. As we can see from the transfer
function model, the link from control valve input to change in liquid level contains a minus sign,
and the feedback system is going to require a reverse acting controller. Let us assume that we do

560 The practical aspects of PID control

v F
v in 0

1
() () ()

K K
H s s F s h

s s s
a

-È ˘ È ˘ È ˘= + +Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

not realise this and use the usual unity feedback system with a controller shown as in Figure
18.33. The controller output α(s) combines both the steady state valve position for the operating
point of 4 m plus a proportional term which is applied to variations around 4 m:

α(s) = αss + KpE(s)

The control signal contains an offset and a proportional term and is a simple way of having propor-
tional control with the offset αss acting in place of an integral term. We have used this form here so
that we can do some simple analysis of the feedback loop with just proportional control. For the
moment we ignore the presence of the valve saturation characteristic in the loop and conduct a
purely linear analysis.

The closed-loop expression between H(s) and the input signals can be derived from:

H(s) =
−Kv

s
α(s) +

KF
s

Fin(s)

α(s) = α ss + kp (Href(s) – H(s))

Substituting, we have:

H(s) =
−Kv

s
[α ss + kp(Href(s) – H(s))] +

KF
s

Fin(s)

H(s) =
−Kv

s
α ss –

−K kv p

s
(Href(s) – H(s)) +

KF
s

Fin(s)

giving finally

H(s) =
−
−
K s

s K k
v

v p
αss –

K s
s K k

v

v p−
Href(s) +

K
s K k

F

v p−
Fin(s)

The closed-loop poles are therefore given by s – Kvkp = 0 or s = Kvkp. Since both Kv and kp are
both positive this leads to an unstable closed-loop pole. Clearly, if kp were negative, then the
closed-loop would be stable. This we can achieve by using a reverse acting controller and putting
an additional gain of [–1] at the output of the controller. In physical terms we are stating that when
we have an increasing level over the desired operating level, we need to open the valve to provide

18.8 Reverse acting controllers 561

kp
–K

s
v

+

–

Href ()s ++

K
s

F

a ()s H s()

Fin()s

ass

+
+

Figure 18.33 Unity gain feedback control for level system.

v p v pv F
ss ref in() 1 () ()

K k K kK K
H s H s F s

s s s s
a

-È ˘ -
- = - +Í ˙

Î ˚

corrective action. In many other examples, for example a heating control system, an increasing
temperature signal would require us to close a valve to reduce the heating effect.

4. Use the data to design a reverse acting PI controller to achieve closed-loop pole placement at
s = –0.7 ± j0.7.

For the desired PI design we alter Figure 18.33 by adding an integral term in the controller (Figure
18.34). This replaces the need for having the steady state offset αss. We use the following data:

K
f
Av
R= ⎛

⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟ =

5
6

083. and K
AF = ⎛
⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟ =

1 1
6

017.

The closed-loop expression is obtained from Figure 18.34 as follows:

H(s) =
−083.

s
α(s) +

017.
s

Fin(s)

α(s) = (–1) k
k

p
i

s
+

⎛

⎝
⎜

⎞

⎠
⎟ (Href(s) – H(s))

Substituting, we have:

H(s) =
−083.

s
(–1) k

k
p

i

s
+

⎛

⎝
⎜

⎞

⎠
⎟ (Href(s) – H(s)) +

017.
s

Fin(s)

H(s) =
083

2

. ()k s k

s
p i+

(Href(s) – H(s)) +
017.

s
Fin(s)

giving finally

H(s) =
083

083 0832

. ()

. .

k s k

s k s k
p i

p i

+

+ +
Href(s) +

017
083 0832

.
. .

s
s k s k+ +p i

Fin(s)

The closed-loop poles are given by ρCL(s) = s2 + 0.83kps + 0.83ki = 0. The closed-loop pole
design equation is derived using s = –0.7± j0.7 as pdesign(s) = s2 + 1.4s + 0.98. Thus we have

ρCL p i() . .s s k s k= + +2 083 083 = pdesign(s) = s2 + 1.4s + 0.98

562 The practical aspects of PID control

kp +
k i
s

–K
s

v
+

–

Href ()s ++

K
s

F

a ()s H s()

Fin()s

—1
E s()

Figure 18.34 Reverse acting PI control system design framework.

p i p i
ref in2 2

0.83() 0.83() 0.17
() 1 () ()

k s k k s k
H s H s F s

ss s

+ +È ˘
= + = +Í ˙

Î ˚

and the design equations 0.83kp = 1.4 and 0.83ki = 0.98 yield kp = 1.69 and ki = 1.18. The
reverse acting PI control law which meets the pole placement specification is

α(s) = (–1) 169
118

.
.

+⎛
⎝
⎜

⎞
⎠
⎟

s
(Href(s) – H(s))

5. Develop a Simulink simulation for assessing the reference tracking and disturbance rejection
performance

The Simulink simulation to be developed will be used for assessing the PI controller strategy and
will incorporate the saturation characteristic. The simulation is shown in Figure 18.35.

There are some particular points that we should note:

(a) We note that we have combined the integral terms in the level model equation:

H(s) =
−083.

s
α(s) +

017.
s

Fin(s) +
h
s
0

becomes

H(s) =
− +

+
083 017 0. () . ()α s F s h

s
in

s

The first equation uses two integrators and relates the level to the integral of the difference in
volume of the inflow and the outflow. In the second equation the level, h(t), is given by the
integral of the difference between the input and output flows. If the input flow equals the
output flow, then there is no change in level.

(b) Since we are starting at the operating level of 4 m, we must initialise the simulation. To do this
we set initial values for the integrators. We are effectively initialising the state variables within
the system, and we find out more about this in Chapters 20–23.

18.8 Reverse acting controllers 563

t

Time

1.69

Proportional

s
1

Process
integrator

h

Level

0.16667

KF

s
1

I-Control

Href

1.18

Gain

Clock

–1

Reverse

–0.8333

–Kv

F in

Initial height

Figure 18.35 Simulink model for reverse acting controller.

We provide the following initial conditions:

(i) Href(s) is modelled by a step input with value of 4.

(ii) The initial condition of the integrator in the integral control is set to –0.4. (Hence, if the
error is zero (as in steady state), the output of the controller will have a contribution of
zero from the proportional term and will be given by the current integrator value = –0.4.)

(iii) The initial condition of the integrator within the process is zero, since this relates to the
integration of the (input–output) signal, which in steady state will be zero.

(iv) The value for Fin is given as a step at time 0 with value 2 m3/min, which is the nominal
inflow for a level of 4 m.

(v) The initial condition for the height is given by ho/s, which can be represented by a step
input signal of height 4 m.

These initial conditions will give rise to a system in steady state; the output level, h(t), will be
4 m and the error signal will be zero, ensuring that the system remains at the operating point.

(c) We also set up the Simulink simulation to do positive and negative step reference tracking
and disturbance performance tests. We do these plus–minus tests whenever we are investi-
gating nonlinear effects in a process description. The saturation characteristic is a nonlinear
system component, so the plus–minus tests must be performed.

The plots for a ±10% level reference change (change of ± 0.4 m) and a +10% input flow
disturbance (change of +0.2 m3/min) are shown in Figures 18.36(a) and (b) respectively.
The plots exhibit the properties we should now expect from PI control. We see that the new
reference level of 4.4 m is attained by the control law with no steady state offset, and in the
second plot the constant flow disturbance is completely rejected in steady state.

564 The practical aspects of PID control

0 2 4 6 8 10 12 14 16 18 20
3.8

4

4.2

4.4

4.6

4.8

0 2 4 6 8 10 12 14 16 18 20
3.99

4

4.01

4.02

Time, minutes

Time, minutes

Level, m

Level, m

(a) Level in tank: response to
reference change of 0.4 m±

(b) Level in tank: response to
flow disturbance of
+0.2 m 3/min

Figure 18.36 Reverse acting PI controller performance plots.

When testing the full controller design for implementation, the valve saturation
should be included in the simulation, but the various sets of tests should include some
purely linear simulations omitting the saturation, while others should include the satu-
ration. In this way a thorough investigation of the effect of the valve nonlinearity can be
made. Due to space considerations, we did not present all the necessary tests here, but we
should realise that for many real industrial control designs extensive simulations will be
performed.

In this section we found that a reverse acting controller is a very simple extension of a
controller to accommodate a negative system gain. We need this because some physical
systems used in industry have this property. We also saw how not to confuse this with
inverse systems. In the case study, where we designed a simple reverse acting PI
controller, we also met some of the typical features of industrial control design.

18.9 Digital PID control

Our world is one of continuous variable types. Quantities like flow, temperature and
voltage are not discrete signals or variables but continuous ones. However, we find that
industrial controllers and SCADA systems will use digital computers and manipulate
sampled data values. The control formula implemented will be a digital algorithm for the
controller. So, although we find it easier to understand and analyse PID control using the
continuous time and Laplace s-domain, real-world implementations will use digital
recurrent relationships of sampled data values and the analysis tools of the z-domain. For
an in-depth treatment of these topics we would need another book. Instead, we concen-
trate on one very important practical aspect. Earlier in the chapter we looked at the two
forms of industrial implementation of PID control: the process controller unit and the
SCADA system PID tuning interface. When faced with these types of device it is very
important to know the exact form of the PID controller used. We saw how it was possible
to have a decoupled textbook form with coefficients Kp, Ki, Kd or one of the many indus-
trial forms using the PID parameters Kp, τ i, τ d. In this section we come to appreciate that
it is necessary to further check whether the PID controller is using a continuous time
form or a sampled data form. As we will find out, the digital computer form uses a recur-
rent relationship of sampled data values with new coefficients for the P, I and D effects.
We cannot stress too strongly the need to find out what form is being used by the soft-
ware, for if the control engineer inserts the wrong tuning values in the wrong PID
controller formula the results could be very catastrophic. We hope that a brief introduc-
tion to the context of digital PID control will prevent this from happening!

18.9.1 Sampling and digital control
Digital control is really sampled data manipulation using a new formula for the PID
controller. We often use the technical terms algorithm and recurrent relationship to
describe this formula, but we should also appreciate the general framework for this
digital implementation. We find that the process or system is interfaced from the contin-
uous time domain to the digital computing domain by a suitable analogue to digital (A/D)
interface device. Similarly, once the computing domain has produced a new controller
output value using the controller recurrent relationship, this has to be fed to the contin-
uous-time domain process and actuators by a suitable digital-to-analogue (D/A) interface
device. The outcome of this is a digital control framework as shown in Figure 18.37.

18.9 Digital PID control 565

The PID control algorithm is usually a fairly simple recurrent relationship that uses
sampled measurements from the A/D device and outputs a discrete sequence of control
command signals. At the A/D interface side there will be some signal processing and
filtering of the analogue signal before it is sampled and used by the digital control algo-
rithm, while at the D/A interface the discrete sequence of control values has to be turned
into an analogue signal to drive the process actuators. If we were to look at the PID algo-
rithm at the coding level, we should find that the lines of code for PID control loop are
surprisingly innocent. But we should remember that the dynamic performance of ship
autopilots, boilers, power stations, aircraft and steel mills will depend on our skill in
producing a correct and accurate PID control design.

To ensure that we understand the structure of sampling and reconstruction involved
in the digital control framework, we use Figure 18.38. Here we can see that digital control
involves passing from the continuous time domain to the sampled data domain and
then back to the continuous time domain of the industrial system. We note that digital
filters can cause aliasing to occur; effectively, the sampling in the digital process can
alter the frequency of some signals so that high-frequency signals could appear as
low-frequency signals within the controller bandwidth. An analogue anti-alias filter
must be placed before the digital sampling to prevent aliasing occurring. We do not cover
this further here, but provide this as a warning to students implementing digital control
systems.

566 The practical aspects of PID control

Signal
processing
anti-alias
filtering

A/D
device

sampling

Digital
control

algorithm

D/A device
samples to
continuous

signal

Continuous time
signals

Sampled data
signals

ym()t y t() y uk k()t ()t u t()

Continuous time
signals

Figure 18.38 The sampling process.

D/A
interface

Digital PID
controller
algorithm

Clock

Computing domain

A/D
interface

Industrial
process
Actuators
System

Measurements

Figure 18.37 Digital control framework.

Skill section Sampling notation

To perform analysis with sampled data signals, we need to introduce some notation. A digital or
sampled data signal is a continuous time signal that has been sampled, usually at a fixed interval
or fixed time period, T. This period of time, T, is known as the sample interval. This basic operation
of sampling creates different types of sample data notation.

Sampling: Set tk = kT, for k = 0, 1, 2, Then the sampled signal is defined by y(tk) = y(kT).

Example: For T = 5 seconds:

t0, t1, t2, ... = t(0T), t(1T), t(2T), ... = 0, 5, 10, ... seconds

y(t0), y(t1), y(t2), ... = y(0), y(5), y(10), ...

Shorthand notation for sampled data
We find that this y(tk), y(kT) notation is cumbersome, so we use a shortened notation. We assume
that the sample period is fixed at T, then at tk = kT we write yk = y(tk), k = 0, 1, 2,

Example: y(t0), y(t1), y(t2), ... = y0, y1, y2, ... = y(0), y(5), y(10), ...
We can see that we have used a simple subscript notation to indicate the time indexing of the
sampling of the continuous time domain signal. We can use this in more advanced ways, for
example:

if tk+1 = (k + 1)T we can write yk+1 = y(tk+1)

if tk+10 = (k + 10)T we can write yk+10 = y(tk+10)

if tk–10 = (k – 10)T we can write yk–10 = y(tk–10)

Examples If T = 0.25 s and t = 0, then t = 0T, giving k = 0. We write y(t0) = y0

If T = 0.25 s and t = 10, then t = 40T, giving k = 40. We write y(t40) = y40

If T = 0.05 s and t = –10, then t = –200T, giving k = –200. We write y(t–200) = y–200

18.9.2 A PID digital control algorithm
We are going to write new recurrent relationships for PID control based on using the time
domain PID controller form with sampled data signals. The principle is simply to replace
the terms of the PID controller algorithm by numerical approximations. As you may
already know from studies with numerical methods, it is possible to have different
numerical approximations for numerical integration and differentiation, such as the
mid-point integration rule, the trapezoidal integration rule, or even Simpson’s integra-
tion rule. In PID control, different numerical formula will lead to different digital PID
algorithms. To avoid developing many different formulas and simply to illustrate the
main principles, we are going to use backward forms for numerical differentiation and
integration. The backward form for differentiation is

d
d
e
t

e e
Tk

k k=
− −1

The form for integration can be seen from Figure 18.39, where we approximate the inte-
gral of the error between time tk–1 and time tk by the shaded area:

18.9 Digital PID control 567

e
t

t

k

k

()τ τd

−

∫
1

= e(tk) × T

We base the development on the industrial parametrisation of the PID control law that
includes a modified derivative term. In Laplace transforms, we use

U(s) = Kp 1
1

1
+ +

+
⎛

⎝
⎜

⎞

⎠
⎟

τ
τ
τi

d

fs
s

s
E(s) = K

K

s

K s

sp
p

i

p d

f
+ +

+
⎛

⎝
⎜

⎞

⎠
⎟

τ
τ

τ 1
E(s)

We start by separating out the three terms of the PID controller and writing

U s K E s
K

s
E s

K s

s
E s

U

() () () ()= +
⎛
⎝
⎜

⎞
⎠
⎟ =

+
⎛

⎝
⎜

⎞

⎠
⎟

=

p
p

i

p d

fτ
τ

τ 1

p i d() () ()s U s U s+ +

From this total expression for the PID controller, we will work with the time domain
form:

u t u t u t u t() () () ()= + +p i d

When we sample this total PID control signal, we get

u(tk) = up(tk) + ui(tk) + ud(tk)

or in shortened form:

uk = upk + uik + udk

What we have to find in the derivation of a sampled PID form are recurrent formulas for
each of the three terms upk, uik, udk. We do this by examining the three terms in turn.

Proportional term
The Laplace transform for the proportional term is given from the above as

Up(s) = KpE(s)

The time domain form is then

up(t) = Kpe(t)

568 The practical aspects of PID control

Time

Error

T
2T

3T
4T

5T
6T

ekek–1

Figure 18.39 Integration approximation.

Sampling at t = tk gives

up(tk) = Kpe(tk)

or using the shortened notation:

upk = Kpek

Integral term
The Laplace transform for the integral term is given as

U s
K

s
E si

p

i
() ()=

⎛
⎝
⎜

⎞
⎠
⎟

τ

The time domain form is then

u t
K

e
t

t

i
p

i
d() ()=

⎛
⎝
⎜

⎞
⎠
⎟ ∫τ

τ τ
0

and we note that we can also write

u t
K

ek
t

tk

i
p

i
d() ()− =

⎛
⎝
⎜

⎞
⎠
⎟

−

∫1
0

1

τ
τ τ

Sampling at t = tk gives

u t
K

e
K

ek
t

t

t

tk k

i
p

i

p

i
d d() () ()=

⎛
⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟∫

−

τ
τ τ

τ
τ τ

0 0

1

1

∫ ∫+
⎛
⎝
⎜

⎞
⎠
⎟

−

K
e

t

t

k

k
p

i
d

τ
τ τ()

We identify the first term in this expression as the term ui(tk–1) mentioned above. The
second term is approximated using our integral approximation

K
e

K
e t T

t

t

k
k

k
p

i

p

i
d

τ
τ τ

τ
⎛
⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟ ×

−

∫ () (())

1

giving

u t u t
K

Te tk k ki i
p

i
() () ()= +

⎛
⎝
⎜

⎞
⎠
⎟−1 τ

If we use the shortened notation, we obtain

u u
K T

ek k ki i
p

i
= +

⎛
⎝
⎜

⎞
⎠
⎟−1 τ

Derivative term
The Laplace transform for the derivative term is given as

U s
K s

s
E sd

p d

f
() ()=

+
⎛

⎝
⎜

⎞

⎠
⎟

τ
τ 1

This may be written as

() () () ()τ τf d p ds U s K s E s+ =1

18.9 Digital PID control 569

The time domain form is then

τ τf
d

d p d
d
d

d
d

u
t

u t K
e
t

+ =() ()

Sampling at t = tk gives

τ τf
d

d p d
d
d

d
d

u
t

u t K
e
tt t

k
t tk k= =

+ =() ()

We use the usual numerical approximation for the differentiation:

d
d
e
t

e e
Tk

k k=
− −1

to obtain

τ τf
d d

d p d
u t u t

T
u t K

e t e tk k
k

k k() ()
() ()

() (−⎛
⎝
⎜

⎞
⎠
⎟+ =

−− −1 1)
T

⎛
⎝
⎜

⎞
⎠
⎟

and we rearrange this to give

u t
T

u t
K

T
e t ek k kd

f

f
d

p d

f
() () (()=

+
⎛

⎝
⎜

⎞

⎠
⎟ +

+
⎛

⎝
⎜

⎞

⎠
⎟ −−

τ
τ

τ
τ1 ())tk−1

Using the shortened notation, we finally have

u
T

u
K

T
e ek k k kd

f

f
d

p d

f
=

+
⎛

⎝
⎜

⎞

⎠
⎟ +

+
⎛

⎝
⎜

⎞

⎠
⎟ −− −

τ
τ

τ
τ1 1()

Thus we have derived three recurrent relationships for the individual proportional, inte-
gral and derivative terms in a digital PID control algorithm. We use these results in the
composite sampled form, uk = upk + uik + udk, depending on the particular structure of the
PID control law being used. We summarise the recurrent relationships in Table 18.7.

570 The practical aspects of PID control

U s U s U s U s

u t u t u t u t

() () () ()

() () () ()

= + +

= + +
p i d

p i d

u u u uk k k k= + +p i d

Proportional term

U s K E sp p() ()= u K ek kp p=

Integral term

U s
K

s
E si

p

i
() ()=

⎛
⎝
⎜

⎞
⎠
⎟τ

u u
K T

ek k ki i
p

i
= +

⎛
⎝
⎜

⎞
⎠
⎟− 1 τ

Derivative term

U s
K s

s
E sd

p d

f
() ()=

+
⎛
⎝
⎜

⎞
⎠
⎟

τ
τ 1

u
T

u
K

T
e ek k k kd

f

f
d

p d

f
=

+
⎛
⎝
⎜

⎞
⎠
⎟ +

+
⎛
⎝
⎜

⎞
⎠
⎟ −− −

τ
τ

τ
τ1 1()

Table 18.7 Recurrent relationships for a digital PID control algorithm.

d
p

i f

1
() 1 ()

1
U s K E s

s s
t

t t

È ˘Ê ˆ
= + +Í ˙Á ˜+Ë ¯Í ˙Î ˚

PID controller

Problem The PID control design for a liquid level system arrives at a solution that requires a reverse acting
controller containing only the P and I terms. The controller, which is designed in the s-domain and
uses a decoupled form, is given by

If the sampling process uses a sample period of T = 0.1 min, use Table 18.7 to devise an algorithm
for the PI controller calculation.

Solution The controller design is given by

and uses only the P and I terms; thus the full PID control expression reduces to

U s K
s

E s K
K

s
E s() () ()= − +

⎛
⎝
⎜

⎞
⎠
⎟ = − +

⎛
⎝
⎜

⎞
⎠
⎟p

i
p

p

i
1

1
τ τ

We can propose a digital algorithm of the form

u u uk k k= − +[]()1 p i

where we retain the reverse acting controller structure. We identify the parameter equations

Kp = 1 69. and
Kp

iτ
= 1 18. ; we will also need T = 0.1

From the table, we can construct the digital PI control recurrent relationships. We set

upk = Kpek and uik = uik–1 +
K T

ek
p

iτ
⎛
⎝
⎜

⎞
⎠
⎟

Using the data of the problem we have

upk = 1.69ek, uik = uik–1 + 0.118ek

and a suitable controller algorithm may be given as:

Initial step
Set ui–1 = 0; k = 0

Loop
Get ek
Compute upk = 1.69ek; uik = uik–1 + 0.118ek
Compute PI control signal, uk = [–1](upk + uik)
Store uik to give uik–1 next iteration
Update counter, k = k + 1

Repeat loop step

The PID recurrent relationships devised in this section use the actual values of error signals,
ek, ek–1 and control signals, uik, uik–1 and the output of the PID algorithm is the actual
controller signal needed, namely uk. This type of digital PID controller algorithm is known
as a positional PID control algorithm. By way of contrast, in the next section we shall
consider velocity or incremental digital PID algorithms that are sometimes used instead.

18.9 Digital PID control 571

1.18
() (1) 1.69 ()U s E s

s
È ˘Ê ˆ= - +Í ˙Á ˜Ë ¯Î ˚

1.18
() (1) 1.69 ()U s E s

s
È ˘Ê ˆ= - +Í ˙Á ˜Ë ¯Î ˚

18.9.3 Velocity or incremental digital PID control algorithms
In some industrial applications, particularly stepper motor control, PID control is used in
an incremental form. For this we use

Δu u u

u u u u u u

u u

k k k

k k k k k k

k

= −
= + + − + +

= −

−

− − −

1

1 1 1p i d p i d

p

()

(p i i d d

p i d

k k k k k

k k k

u u u u

u u u
− − −+ − + −

= + +
1 1 1) () ()

Δ Δ Δ

To complete the analysis, we use Table 18.7 to obtain three incremental PID terms as
follows.

Proportional increment

Δ Δu u u K e e K ek k k k k kp p p p p= − = − =− −1 1()

Integral increment

Hence, writing this in terms of integral and error increments,

Δ Δu u u
K T

e e u
K T

k k k k k ki i i
p

i
i

p= − +
⎛
⎝
⎜

⎞
⎠
⎟ − = +− − − −() ()1 2 1 1τ τi

⎛
⎝
⎜

⎞
⎠
⎟Δek

Derivative increment

or

Δ Δu
T

u
K

T
e e ek k k k kd

f

f
d

p d

f
=

+
⎛

⎝
⎜

⎞

⎠
⎟ +

+
⎛

⎝
⎜

⎞

⎠
⎟ − +− −

τ
τ

τ
τ1 12(−2)

This equation is a very common implementation of the derivative term in a PID
controller and can also be written as

Δ Δ Δ Δu
T

u
K

T
e ek k k kd

f

f
d

p d

f
=

+
⎛

⎝
⎜

⎞

⎠
⎟ +

+
−− −

τ
τ

τ
τ1 1()

As with the positional algorithms, we can construct a table of PID control velocity
increment terms, as shown in Table 18.8. These can be combined to form different struc-
tures for incremental digital PID algorithms. Furthermore this set of recurrent formulas
can be used in two ways: (a) the control increment can be applied directly as in stepper
motor control, or (b) the increments can be used in place of a positional algorithm with

572 The practical aspects of PID control

t t- - - -
È ˘ È ˘Ê ˆ Ê ˆ

D = - = + - +Í ˙ Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙ Í ˙Î ˚ Î ˚

p p
i i i 1 i 1 i 2 1

i i
k k k k k k k

K T K T
u u u u e u e

d d d 1

p pd df f
d 1 d 1 1 2

f f f f

p df
d 1 d 2 1 1 2

f f

f
d 1 d

f

() ()

() [() ()]

(

k k k

k k k k k k

k k k k k k

k

u u u

K K
u e e u e e

T T T T

K
u u e e e e

T T

u u
T

t tt t
t t t t

tt
t t

t
t

-

- - - -

- - - - -

-

D = -

È ˘ È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ
= + - - + -Í ˙ Í ˙Á ˜ Á ˜ Á ˜ Á ˜+ + + +Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙ Í ˙Î ˚ Î ˚

Ê ˆ Ê ˆ
= - + - - -Á ˜ Á ˜+ +Ë ¯ Ë ¯

Ê ˆ
= -Á ˜+Ë ¯

p d
2 1 2

f
) (2)k k k k

K
e e e

T

t
t- - -

Ê ˆ
+ - +Á ˜+Ë ¯

the control update equation, uk = uk–1 + Δuk. As with many other aspects of industrial
PID control, there exists a veritable storehouse of knowledge residing in industrial
manuals, which has been accumulated over many years of industrial applications of these
methods. We should always be prepared to learn from this experience and find out as
much as possible about any particular problem or application area we might be faced
with.

As a last word of warning for this practical chapter, sampling of systems should be done
carefully: numerical approximations do not hold if the sample time T is large in compar-
ison with the time constants within the process; a general guide is that the sampling
frequency should be greater than 15 times the closed-loop natural frequency of the
system, else the performance of the digitally controlled system will not achieve the
required specifications.

What we have learnt

� To recognise how PID control is found in industrial control applications either as a
process control unit or in a SCADA system control-tuning interface.

� To convert between textbook and industrial forms for PID control involving Kp, Ki, Kd
and Kp, τ i, τ d notation.

� To understand the problems and the solution for proportional and derivative kick in
PID control.

� To understand the problems caused by integral wind-up and measurement noise in
industrial PID control.

� To construct anti-windup circuits and introduce a modified differential term to miti-
gate measurement noise effects.

� To recognise and be able to interpret different industrial PID controller structures
including parallel, and series PID controllers.

18.9 Digital PID control 573

u u uk k k= − +1 Δ , with Δ Δ Δ Δu u u uk k k k= + +p i d

Proportional increment Δ Δu K ek kp p=

Integral increment
Δ Δ Δu u

K T
ek k ki i

p

i
= +

⎛
⎝
⎜

⎞
⎠
⎟− 1 τ

Derivative increment
Δ Δu

T
u

K

T
e e ek k k k kd

f

f
d

p d

f
=

+
⎛
⎝
⎜

⎞
⎠
⎟ +

+
⎛
⎝
⎜

⎞
⎠
⎟ − +− −

τ
τ

τ
τ1 12(−

− −=
+

⎛
⎝
⎜

⎞
⎠
⎟ +

+
⎛
⎝
⎜

⎞
⎠
⎟ −

2

1 1

)

()
τ

τ
τ

τ
f

f
d

p d

fT
u

K

T
e ek k kΔ Δ Δ

Table 18.8 Increment relationships for digital velocity PID control algorithms.

t
t t

È ˘Ê ˆ
= + +Í ˙Á ˜+Ë ¯Í ˙Î ˚

d
p

i f

1
() 1 ()

1
U s K E s

s s
PID controller

� To identify the need for a reverse acting controller and how not to confuse this with
inverse response processes.

� To understand the context of digital PID control and how to construct simple digital
PID algorithms.

Multiple choice

574 The practical aspects of PID control

M18.1 The parallel presentation of PID controllers
is described by:

(a) u(t) = Kpe(t) + Ki e
t

()τ τd
0
∫ + Kd

d
d
e
t

(b) u(t) = Kie(t) + Kp e
t

()τ τd
0
∫ + Kd

d
d
e
t

(c) u(t) = Kde(t) + Kie(t) + Kd
d
d
e
t

(d) u(t) = Kpe(t) + Ki e()τ τd
0

∞∫ + Kd
d
d
e
t

M18.2 A PID controller has a proportional band of
50%; the proportional gain is:
(a) Kp = 50
(b) Kp = PB/50
(c) Kp = 50PB
(d) Kp = 100/PB

M18.3 A process is controlled by a PID controller.
The sensor has high measurement noise. To
reduce the effect of noise, we:
(a) use anti-wind-up circuits to mitigate the

wind-up effect
(b) use a bandwidth-limited derivative term to

prevent measurement noise amplification
(c) use proportional and derivative terms in the

forward path
(d) move the proportional and derivative terms

to different positions in the controller

M18.4 Anti-integral wind-up removes the effect of:
(a) input saturation
(b) saturation due to large process disturbances
(c) derivative kick
(d) (a) and (b)

M18.5 To implement the derivative term, we usually
use a low-pass filter. The time constant of a
low-pass filter should be:
(a) much smaller than the derivative time

constant
(b) much smaller than the integral time constant
(c) much smaller than the system time constant
(d) much larger than the derivative time

constant

M18.6 We may observe derivative kick in systems
where:
(a) the integral term operates on the error
(b) the derivative term operates on the output
(c) the integral term operates on the output
(d) the derivative term operates on the error

M18.7 A PID controller is represented by the
transfer function:

The three terms are connected in:
(a) parallel
(b) random
(c) series
(d) parallel and series

M18.8 A reverse acting controller response is
needed when the system has:
(a) controller poles on the RHP
(b) system poles on the RHP
(c) system zeros on the RHP
(d) a negative system gain

M18.9 Which statement is correct?
(a) steady state error can be reduced by

increasing integral gain
(b) overshoot can be reduced by increasing

derivative gain
(c) steady state error can be increased by

increasing integral gain
(d) (a and (b)

M18.10 A temperature control system uses only
the integral term of a PID controller such that
the controller is K(s)= 1/s. To implement the
integral controller on a computer with an update
rate of 1 second, we use the equivalent discrete
form:
(a) ut = ut–1 + et
(b) ut = ut–1 – et
(c) ut = et
(d) ut = –et

s d
i

1
() 1 (1)K s K T s

Ts

È ˘Ê ˆ
= + +Í ˙Á ˜Ë ¯Í ˙Î ˚

Questions: practical skills

Q18.1 What are the full expressions for the textbook decoupled and the industrial gain–time constant
forms for the PID controller?
(a) Define the precise relationship between the coefficients of the decoupled textbook form and the

interactive industrial form for a PID controller.
(b) Use the formulas to determine if the following PID controllers are identical:

Q18.2 A steel rolling stand has a hydraulic loop which is considered to be a high gain feedback loop. A
technician is trying to decide whether this is the case. The data from the technical manual is given as
the following table. What is the proportional controller gain being used in this hydraulic loop?

Controller input variable, e(t) Range value: eR = 12 V

Controller output variable, u(t) Range value: uR = 5000 N

Controller proportional band, PB% 2

Q18.3 PID controllers are widespread in industrial power generation plant applications and their associ-
ated engineering issues are very well developed, and accepted. Sometimes special structures are
given for particular loops. One industrial SCADA manual gave a PID formula as:

with 0.1 ≤ a ≤0.25 and E = SP – PV
(a) What do the variables PV, E, and SP mean?
(b) Draw a block diagram for this controller.
(c) What is the purpose of the term

T s
aT s

d

d +
⎛
⎝
⎜

⎞
⎠
⎟

1

in the controller?

Q18.4 Interacting PID controller forms can be difficult to visualise and understand. One obvious solution
is to resolve the specific controller formula into one of the standard forms.
(a) Write the given interacting PID controller in standard decoupled textbook form.

(b) Write the given interacting PID controller in industrial time constant–gain form.

Problems

P18.1 Industrial process controller hardware units are continually evolving. For example, changes are
continually being made to the operator interface technology, to the hardware technology for control

Problems 575

P Q
1 1.94

() 4.56 1 1.60 and () 4.56 6.92
2.35

G s s G s s
s s

È ˘ È ˘= + + = + +Í ˙ Í ˙Î ˚ Î ˚

d
c

i d

1
output =

1
T s

K PV E PV
Ts aT s

È ˘Ê ˆ
- + -Í ˙Á ˜+Ë ¯Í ˙Î ˚

1
() 4.8 1 (1 0.56) ()

10.56
U s s E s

s
È ˘Ê ˆ= + +Í ˙Á ˜Ë ¯Î ˚

1
() 11.23 1 (1 1.54) ()

8.39
U s s E s

s
È ˘Ê ˆ= + +Í ˙Á ˜Ë ¯Î ˚

method implementation, to the range of features that really aid the end-user, and to those features that
are considered to enhance marketability. Use Internet searches and industrial magazines to compile
an up-to-date survey of current products, the technology that the devices use, and market trends. The
above headings should give an indication of the issues to consider in the survey.

P18.2 The marketability of industrial process controller hardware units is not completely dependent on
the type of control methods used by the device. However, the control success will depend on the
control method used and the range of control features offered. Use Internet searches and industrial
magazines to compile an up-to-date survey of the control methods used by current controller hard-
ware units in the market-place.

P18.3 Proportional, Integral and derivative controller units are widespread in process and industrial
control. The current technology is based on microprocessor devices with digital interfaces being
common. Many extra features like manual tuning, autotune and multiple loops are offered. This project
looks at the industrial take-up of these advanced features by practising engineers. What do engineers
think of PID control? What do engineers find difficult about PID control? A careful questionnaire
should be constructed, and visits to a local company arranged to obtain first-hand experience of the
equipment involved. An assessment of the successes and problems of current PID controller tech-
nology should be constructed.

P18.4 SCADA system technology is much more difficult to categorise and study. Yet SCADA system
technology keeps much of industry coordinated, operational and efficient. Find a local company,
industry or process plant and arrange to visit the plant control engineer to learn about the structure,
function and operation of a SCADA system. Try to talk to system operators to learn something of the
nature of the machine–person interfaces used. Look for general features, like scale and level of
complexity. Use the Internet to discover the names of the main SCADA system installers and collect
company literature. Arrange the information by useful and intelligent headings. An assessment of the
successes and problems of current SCADA system technology should be made and written as a
report or dissertation.

576 The practical aspects of PID control

PID controller tuning methods19
PID tuning for process control: discussion

Process reaction curve Process and experimental set-up

PID parameter calculation

Chemical works dataSummary

Implementation and controller assessment

Sustained oscillation tuning Process and experimental setup

PID parameter calculation

Steel works dataSummary

Implementation and controller assessment

Damped oscillation:
quarter amplitude decay

PID parameter calculation

Fan pressure loopSummary

Implementation and controller assessment

PID parameter calculation

Fan pressure loop revisitedSummary

Implementation and controller assessment

Process and experimental setup

Process and experimental setupRelay experiment

Help? Time to readGaining confidence Skill sectionGoing deeper

In the process industries, systems may be classified according to the type and level of hardware
and software technology used. Typically, we find that a large-scale installation can be broken
down into a number of smaller process units. For example, in a hot strip mill in the steel industry
we have furnaces, followed by conveyors with heat shields with several types of rolling stands
along the process path and finishing with a coiling unit. Similarly, in a brewery, we start from units
concerned with preparing the mash and wort from which beer is made, through to the fermenta-
tion vats, followed by the bottling plant. We rank these smaller system units and the level of asso-
ciated control that they require into three levels: simple, intermediate and complex process units.

Controllers for these three classes of process units will depend on the level of complexity of the
system and its operation. In a manufacturing plant we might use a conveyor belt system to transport
goods from one part of the factory to another, and for this, simple ON–OFF controllers will do. At
the other extreme, complex systems with highly connected physical and chemical processes and
demanding performance objectives will need carefully designed controllers. Such controllers will
often depend on the loop structure as much as the individual controller transfer function design for
achieving successful control. Good examples are a multi-stand steel rolling mill or the high-speed
bottling unit at the end of the brewing process. Clearly a simple ON–OFF controller is not going to
work here since there has to be coordination between ‘conveyor belt’ speed and the temperature of
the steel product; in fact, we are going to need quite a clever control system.

The much more numerous intermediate class of systems will have fairly simple dynamics and
single loop control structures. Sometimes the control loops may be cascaded, but they are rarely
more complicated than this. For these processes three-term control or PID control is usually
adequate. But, we have a different type of problem with this class of systems which we illustrate
with a local example. Here in Scotland we have one of the largest Vitamin C manufacturing plants
in Europe, and the plant is getting bigger. When we talked to the local engineers about this devel-
opment, we were told that there will be around 1500 new intermediate technology loops to be
commissioned, tuned up and then maintained. In another example we read a report that a typical
Canadian paper mill has about 2000 control loops, and that around 98% of the loops will be for
intermediate technological systems. This means some 1960 PID control loops to commission,
tune and maintain!

Tuning over 1500 PID loops in a Vitamin C plant or over 1960 PID loops in single paper mill will
be costly in terms of personnel time and possible lost production time and output during the test
stages. We also have the problem that it is necessary to go back and check the tuning of the loops
from time to time. Good plant management would have a rigorous timetable of controller tuning
and instrumentation inspection to keep the plant availability at high levels. We can easily see that
the cost of this will rise if highly qualified technical personnel have to be used to complete this
task. This situation of tuning a large number of simple control loops is quite common in the
process and primary industrial sectors. We usually find that the response of technical engineering
management to this is to establish common plant standards based on one or two reliable simple
PID tuning procedures. There is usually a company manual available which sets outs the routines
to be followed.

Manufacturers of controllers have taken this one step further, since in most process controllers
on the market today the whole PID tuning procedure has been partially automated. Commercial
controller units have an autotune button which allows PID controller tuning to be accomplished at
the touch of a button by technician staff. Some of the procedures automated in today’s commer-
cial PID process controllers were first proposed in the 1940s by J. G. Ziegler and N. B. Nichols.
Of course, the actual implemented routines have changed to allow the use of digital technology,
but the basic principle of an online plant experiment followed by a PID calculation remains
unchanged. In this chapter the basic principles for the following routines are described:

578 PID controller tuning methods

� Process reaction curve

� Sustained oscillation PID tuning

� Damped oscillation PID tuning (quarter amplitude decay)

� The relay method

Since these procedures have been automated in commercial equipment we might wonder why it
is useful to learn about them! Unfortunately, these PID tuning procedures have limitations and it is
as important to know when not to use a method as it is to know how to use a method. An inappro-
priate application of one of these techniques easily leads to very poor loop control.

Learning objectives

� To understand the basic structure of rule-based PID controller methods.

� To be able to use the process reaction curve method for PID tuning.

� To understand the family of PID tuning routines based on the principle of a sustained
oscillation.

� To appreciate the practical and theoretical limitations inherent in this group of widely
applied PID tuning methods.

19.1 Understanding PID tuning procedures

We have seen previously how PID controllers devised to solve particular engineering
problems, or constructed from hardware components, have led to a number of different
formulas for industrial PID laws. In this chapter we use the following PID controller
formula:

where Kp is the proportional gain
τ i is the integral time constant

and τ d is the derivative time constant.

The rule-based PID tuning methods described in this chapter each follow an explicit
sequence of steps which make up the tuning procedure or algorithm. However, each of
these steps corresponds to hidden or inherent calculations which we do not realise have
been performed. Thus, we could follow the steps of the procedure without understanding
the principles of the method at all. But it is only by understanding the principles that we
can decide whether the method is an appropriate solution to the PID tuning problem
being tackled. So we need to understand the explicit calculations that we have to perform
in these routines and in parallel we need to understand the implicit reasons as to why
these calculations are being made. We find that the easiest way to do this is to follow the
general steps as they are laid out in Table 19.1. Each of the procedures to be described in
the following sections has individual steps which fit the general procedural steps of the

19.1 Understanding PID tuning procedures 579

t t t
t

È ˘
= + +Í ˙

Î ˚
Úp d0i

1 d
() () ()d

d

t e
u t K e t e

t

figure. However, we generally find that there is no indication of the theoretical steps
which have been used to devise the PID tuning procedure. Instead, we often find qualita-
tive instructions are given, for example, we might be told that the rule for calculating the
PID control parameters produces little overshoot. What this actually means is that if the
system under test really did have the features of the model assumed for the theoretical
control law derivation, then the PID law calculated we would indeed give little overshoot
in the system response. Thus, the agreement between intended and actual control perfor-
mance will depend on the degree of agreement between actual system features and the
model assumed to describe these features.

580 PID controller tuning methods

Explicit steps in the PID tuning procedure Implicit steps in the PID Tuning procedure

↓ ↓
1. Make a system experiment with parameter

measurements
1. A system model identification experiment is

being performed

The system can be in open loop or closed loop

depending on the method. A standard test signal like

a step is usually used or the system is put into an

extreme condition like the verge of instability.

The system identification will be performed as a para-

metric or a non-parametric identification. For

example, a step response may be used to fit a simple

parametric model:

G s
K

s

sT

() =
+

−e
τ 1

= (first-order plus delay)

↓ ↓
2. PID control law parameters K p i d, ,τ τ are calcu-

lated by formulas
2. A PID control design has been completed to

achieve a specific closed-loop performance

Notes: Notes:

(a) The PID controller is usually in the form:

(b) Depending on the structure P, PI, PD, PID a set

of rules will be used for computing Kp, τ i, τ d.

(c) The rules will use parameters calculated from

experiments for example, process delay time, or

system gain at the phase crossover point.

(a) Each rule base has been devised assuming a

particular model form, for example, first-order

plus delay.

(b) The formula used to compute Kp, τ i, τ d achieves

different closed-loop performance depending on

the particular model form.

(c) The engineer selects the required PID controller

structure. For example, including the I-term will

ensure no steady state offsets.

↓ ↓
3. Implement the control law 3. The implementation is performed by the hard-

ware unit and is automatic once new parame-
ters are available

Table 19.1 Explicit and implicit steps in PID rule-based tuning.

t t t
t

È ˘
= + +Í ˙

Î ˚
Úp d0i

1 d
() () ()d

d

t e
u t K e t e

t

t t t
t

È ˘
= + +Í ˙

Î ˚
Úp d0i

1 d
() () ()d

d

t e
u t K e t e

t

So although the PID tuning procedures to be described are simple to follow and apply to
real plant and processes it is useful to remember where possible limitations might
degrade the expected control law performance.

When we are specifying the desired control loop performance for our standard system
(Figure 19.1), we should be taking a global view and considering performance against the
usual list: closed-loop stability, disturbance and noise rejection and finally, robustness.
We should then convert the performance list into a set of acceptable numerical values for
the time and frequency domain specification variables. An example of the performance
requirements is given in Table 19.2.

The PID control tuning procedures of this chapter usually only satisfy two or three of
these design requirements together in a perfectly matched design. Yet in many industrial
control designs we may be seeking to achieve six or more of these closed-loop system
requirements in the same design. So we must not be too surprised if these techniques do
not deliver the expected performance. For this reason we must be very sure about the
actual level of performance we are seeking from a particular loop and use these require-
ments to assess the performance achieved from using a particular PID controller tuning
procedure.

Before we describe the individual procedures of the chapter it is useful to introduce and
revise some common concepts that are frequently referred to. We can discuss these using
the two topics listed under the implicit principles of Table 19.1, namely, system identifi-
cation and PID control design.

19.1 Understanding PID tuning procedures 581

Performance requirement Comments

Closed-loop stability An essential closed-loop control system requirement

Reference tracking

Supply disturbance rejection

Load disturbance rejection

These are generally time-domain performance specifications and require-

ments. Usually specified through design parameters like rise time (tr),
percentage overshoot (OS(%)), steady state error (ess), settle time (ts)

Measurement noise rejection This is a frequency domain performance specification for controller roll-off

Robustness of the control system

performance to model uncertainty

These are frequency domain performance specifications and define the gain

margin, phase margin and the maximum sensitivity

Table 19.2 Performance requirements.

+

–

Controller

R s()
+ +

E s()

Process

Y s()

DL ()s

Uc ()s

DS()s

++

Figure 19.1 Closed-loop system diagram.

19.1.1 System identification aspects
The most commonly made assumption for the system identification step is that the
system can be represented by a first-order lag-plus-deadtime model. The model transfer
function is given by

G(s) =
K

s

sTe
+1

d−

τ

for which K is the d.c. gain, τ is the time constant and Td is the delay time of the process.
The response to a step of height h is shown in Figure 19.2.

There are several reasons why this model is commonly used in the PID tuning proce-
dures to be described. One reason is that the model has only a few unknown parameters to
be found; in fact, just three parameters, K, τ and Td. Another reason is the practical one;
we often find that a cascade of process units in a production facility or a process line
produces a system step response resembling a time-delay followed by a first-order rise to a
steady state output level. We use this real-world observation to make the engineering
assumption that the process dynamics can be represented quite well by the first-order
plus time delay transfer function model.

19.1.2 PID control design
The online experimental phase of the PID tuning procedures generates data for use in the
evaluation of a formula taken from a rule table. We find that there are two issues to
consider in the PID controller part of these procedures:

A: the hidden controller PID design specification that has been used to generate the set
of formulas.

B: the choice of the terms that are to be used in the PID controller.

582 PID controller tuning methods

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

O
ut

pu
t

Td ~ time delay

yss= K×h

Figure 19.2 Step response of ‘first-order lag plus deadtime’ system.

A: PID controller performance specification issues
Process control engineers and production managers are concerned with maintaining good
quality process output values. To achieve this we usually find that the quality emphasis
is on time-domain trend plots of physical variables like temperature, pressure, material
thickness and liquid flow. This has affected the specifications of controller performance
such that these specifications are mainly given in the time-domain based on the step
response using qualitative labels like no overshoot (Figure 19.3(a)), a little overshoot
(Figure 19.3(b)) or a quarter amplitude decay (Figure 19.3(c)). As control engineering tech-
nology progressed, more refined performance specifications were developed and we have
learnt about many of these, for example, gain margin and phase margin, found in Chapter
14. However, we still find that the time domain specification of, for example, ‘quarter
amplitude decay’ is often used today in industry. As we can see in Figure 19.3(c), a quarter
amplitude decay means that the response decay is such that the second peak of the
response is one quarter of the first peak. The PID controller parameters will be selected to
achieve this response. Whether this type of closed-loop performance is desirable depends
on the application, but it is useful to know that this corresponds to a damping ratio of
0.225 with 50% overshoot on step reference changes and a phase margin of 30°. Over the
years we have seen that PID controller design rule bases have been formulated for various
types of closed-loop performance behaviour. However, we have usually found it very
difficult to find out exactly what controller design specification has been implemented
by a particular controller manufacturer. Such information is usually commercially sensi-
tive and often the only way to find out is to arrange for a plant test period and assess the
performance from actual process data.

B: Selecting terms in the PID controller
In the rule-based PID tuning procedures, the selection of the combination of PID terms is
possibly the only place where we can exercise some of the knowledge that we have learnt
about PID control. We gave a full discussion of the effects of the individual P, I, and D
terms in the controller in Chapter 11. Now we use this knowledge to select the terms

19.1 Understanding PID tuning procedures 583

0 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
ys

te
m

re
sp

on
se

Time (seconds)

(a) (b) (c)

Figure 19.3 Qualitative performance: no overshoot, little overshoot, quarter amplitude decay.

appropriate for a practical control application. We have already learnt that the PID
controller structures on offer are P, PI and PID, and we have to decide which one will
achieve the performance we are looking for. We capture this in the question and answer
flowchart of Figure 19.4.

19.2 Process reaction curve PID tuning method

The first method that we look at is one originally devised by Ziegler and Nichols. This is
a manual procedure which is based on measuring the step response of the system. Thus,
the underlying principle is that we can represent the system by a first-order lag-plus-
deadtime model. It is also an open-loop method and therefore we can only use it with an
open-loop stable process. The full procedure is given next.

Step 1: The process setup
The process is assumed to be in open loop and with steady conditions applying. The
control input variable is denoted uo, and this is holding the output variable at the level yo.
At this time and during the course of the experiment no process disturbances must be
seen to occur, otherwise the test must be re-run.

Step 2: Applying an input step change
The input variable u is changed from uo to a new constant level, u1. This is an input step
change of Δu = u1 – uo. The output y(t) is monitored carefully and the step response
recorded on a chart recorder, or as a digital file for later processing. We show the system
setup and response in Figure 19.5.

To be able to apply this method, the step response must be capable of being reasonably
well approximated by a first-order lag-plus-deadtime type of step response.

Step 3: Processing the data
The aim of this step is to use the recorded data to determine the parameters for use in the
PID tuning rule-base. Consider the recorded output of the process variable (Figure 19.6).

584 PID controller tuning methods

Is zero steady state error to a step changes in
reference essential?

Is the measured signal too
noisy for derivative control?

Is a more damped response with
a shorter settle time needed?

Choose PI control Choose PID control Choose P control

YES

YES

NO

NO

YES

NO

Figure 19.4 PID control – term selection chart.

 In real plant tests the recorded measurement trace could be a little noisy, so care has to
be taken that the level of noise does not invalidate the test results. Sometimes it is
possible to see several data spikes on the measured trace. We call them data outliers.
They are usually produced by the measurement process and are ignored in the data
processing. On the recorded trace in Figure 19.6 we first draw Line 1, which is a tangent to
the steepest part of the transient change. We then draw Line 2. This is drawn level with
the final value attained by the output. Finally, the dotted Line 3 is drawn to enable the
following measurements and calculations to be made:

1. Measurement L; this is the effective time delay in the system response.

2. Recorded output change, Δy = y1 – y0; this is the change in the level of the process
output.

3. Measurement of ΔT and computation of R:

19.2 Process reaction curve PID tuning method 585

PROCESS
UNIT

Output chart recorderOpen loop control
input

Step change on input

u1

Du u u= –1 0

u0

= 0 Timet

Model output

4
3.5

4.5

3
2.5
2
1.5
1
0.5
0

0 2 4 6 8 10

u0
u1

Output, y

Time

Figure 19.5 Process reaction curve method: plant experimental setup.

DTL t
0

Output, y t()

y1

y0

L = Delay time

Line 2

Line 1

Line 3

Dy y y= –1 0

Figure 19.6 Recorded output trace.

R
y
T

y y
T

= ⎛
⎝
⎜

⎞
⎠
⎟ =

−Δ
Δ Δ

()1 0

This is the reaction rate for the system response.

4. Computation RN = (R/Δu) where Δu = u1 – u0; this is the reaction rate R normalised
with respect to the effective input changes, Δu.

Step 4: Calculating the PID parameters
The PID controller has the common industrial form:

The PID parameters Kp, τ i and τ d are required. The data from the experiment are the esti-
mated process time delay, L, and the estimated normalised process reaction rate, RN. The
PID controller settings recommended by Ziegler and Nichols are presented as a table of
rules or computation formula in Table 19.3.

The hidden controller performance specification for this rule base is a closed-loop
response which exhibits a quarter amplitude decay. To use the table, we first have to
decide on the structure of the PID controller to be used and then compute the values of
the parameters, Kp, τ i, and τ d in the PID structure. For example, if we decided that the
controller must have integral action but that the process variable measurement was too
noisy for D-Action, then we would select PI control. We would read the formula on the
line Case (ii) in the table, which gives the computations Kp = 0.9/(RNL) and τ i = 3L.

Step 5: Implement and assess the controller
The controller parameter values calculated in Step 4 are now ready for implementation.
For this we would probably use the data input facilities of the process controller unit
(usually a keypad) or the control engineer’s interface window if a SCADA system is being
used. We must remember that the parameters calculated using the rules do not guarantee
closed-loop stability for all systems. Systems which do not look similar to the first-order
lag-plus-deadtime model will probably not be stabilised by the method. To complete the
tuning exercise we would recommend to the plant management that a thorough assess-
ment of closed-loop performance should be made. This could use an agreed set of explicit

586 PID controller tuning methods

Controller structure Proportional gain, Kp Integral time constant,

i

Derivative time constant,

d

Case (i) P 1
R LN

– –

Case (ii) PI 0 9.
R LN

3L –

Case (iii) PID 12.
R LN

2L 0.5L

Table 19.3 Ziegler–Nichols PID settings – reaction curve method.

t t t
t

È ˘
= + +Í ˙

Î ˚
Úp d0i

1 d
() () ()d

d

t e
u t K e t e

t

test experiments, or we would suggest subjective assessment by process operator obser-
vations and records of closed-loop process performance.

Problem A technician produces the Process Reaction Curve data shown in the works pro forma table
which has been designed to smooth the plant’s PID tuning work.

WJK Chemical Works – Controls Department, Grangemouth

Date of Test 23 March, 2000 Process Unit Code U47–898

Input Level – Start 100 Output Level – Start 300 °C

Input Level – End 110 (10% step) Output Level – End 330 °C

Comments

Furnace temperature sensor noisy, no data outliers, no load disturbances.

Data file sent to Controls on 24 March, 2000

Authorised by J. Arturson Date 22/03/00

PID control design

(a) Use the reaction curve method to process the data file and produce the tuning parameters
for a PI controller.

Controller assessment

(b) Fit an appropriate first-order plus time delay model transfer function, given by

G(s) =
K

s

sTe d−

+τ 1

19.2 Process reaction curve PID tuning method 587

0 5 10 15
295

300

305

310

315

320

325

330

335

Time (minutes)

M
ea

su
re

d
ou

tp
ut

 te
m

pe
ra

tu
re

 (°
C

)

for which K is the d.c. gain, τ is the time constant and Td is the delay time of the process.

(c) Use a Simulink simulation to obtain some idea of the likely success of the PI tuning.

Solution (a) We follow the steps of the reaction curve method.

Step 1: the process setup
The control input variable is denoted u0, and this is holding the output variable at the level y0. In
this example we find that u0 = 100 and y0 = 300. We note from the comments on the pro forma
sheet that there were no process disturbances during the course of the experiment, so we can
assume that the data is valid for the reaction curve method.

Step 2: applying an input step change
The new constant level, u1 = 110; hence the input change is Δu = u1 – u0 = 110 – 100 = 10.

The output data looks like a first-order plus delay type of step response, so we expect the
design method to work well.

Step 3: processing the data
We see that the data is noisy but that there are no data outliers. On the recorded trace (Figure
19.7) we first draw Line 1, which is a tangent to the steepest part of the transient change, Line 2,
which is level with the final value attained by the output, and finally Line 3 is drawn in vertically to
allow the following measurements to be made:

1. L = 0.4

2. Δy = y1 – y0 = 330 – 300 = 30

3. R =
Δ
Δ Δ

y
T

y y
T

⎛
⎝
⎜

⎞
⎠
⎟ =

−
= ⎛
⎝
⎜

⎞
⎠
⎟ =

()
.

.1 0 30
45

667

4. Computation R
R
uN= ⎛

⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟ =

Δ
667
10

0667
.

.

588 PID controller tuning methods

0 5 10 15
295

300

305

310

315

320

325

330

335

Time (minutes)

M
ea

su
re

d
ou

tp
ut

 te
m

pe
ra

tu
re

 (°
C

)

Line 1

Line 3

Line 2

L = 0.4

D

D

t

y y y

T

= – = – =

= –

1 0 330 300 30

4 9 0 4. .

Figure 19.7 Process reaction curve: measurements on recorded trace.

Step 4: calculating the PID parameters
The PID controller is assumed to have the form

The PID parameters Kp, τ i and τ d are required. We are to find a PI controller, so we set the deriva-
tive time constant to zero, τ d = 0. We use the following line from the Ziegler–Nichols table:

Controller structure Proportional gain, Kp Integral time constant,

i

Derivative time constant,

d

Case (ii) PI 0 9.
R LN

3L –

We compute

K
R Lp

N
=
⎛

⎝
⎜

⎞

⎠
⎟ =

×
⎛
⎝
⎜

⎞
⎠
⎟ =

09 09
0667 0 4

337
. .

. .
.

and τ i = 3L = 3 × 0.4 = 1.2 with τ d =0.
The final step of the procedure would be to perform the controller assessment.

Step 5: controller assessment

(b) Fit an appropriate ‘first-order lag-plus-deadtime’ model transfer function given by

G(s) =
K sTe

s +1

d−

τ

From the data analysis step we have that L = T = 0.4; it is not difficult to determine the model time
constant, τ . We first need to find the value yτ at which y(t) reaches 63% of the rise in value.

yτ = 300 + 0.632 × (330 – 300) ≈ 319

Secondly, we need to find the time it takes for y(t) to reach this value. Thus, from Figure 19.7, the
time it takes is 3.5 seconds. However, we remember that there is a delay of 0.4 seconds, which
gives

τ = 3.5 – 0.4 = 3.1 seconds

We need to find the d.c. gain of the model now; for this we use

K
y
u

y y
u u

= ⎛
⎝
⎜

⎞
⎠
⎟ =

−
−

⎛
⎝
⎜

⎞
⎠
⎟ =

−
−

⎛
⎝

Δ
Δ

()
()

1 0

1 0

330 300
110 100
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟ =

30
10

3

The model may now be given as

(c) A Simulink model is shown in Figure 19.8. This requires that we use the model

19.2 Process reaction curve PID tuning method 589

t t t
t

È ˘
= + +Í ˙

Î ˚
Úp d0i

1 d
() () ()d

d

t e
u t K e t e

t

0.43e
()

(3.1 1)

s
G s

s

-È ˘
= Í ˙

+Í ˙Î ˚

0.43e
()

(3.1 1)

s
G s

s

-È ˘
= Í ˙

+Í ˙Î ˚

and the PI control

We have added measurement noise to the output. The parameters we used were: mean of zero,
variance of 0.5, initial seed 61233 and sample time of 0.5.

The Simulink model inputs a step of 30° (10% of the 300° reference temperature) to the model.
The change in temperature is given by the variable y. We have added the base operating tempera-
ture of 300 °C to our measured output in Figure 19.9.

590 PID controller tuning methods

ym

Measured output

y

Change in temperature
output, y

t

Time

Measurement noise

MODEL
delay

3

3.1s + 1

MODEL
1

+
+

+

+
+

+

+
–

1.2s

Integral term

3.37

Gain

Clock

300° base

10% ref
Change: 30°

Figure 19.8 Simulink model for PI control.

0 5 10 15
290

300

310

320

330

340

350

360

370

Time(minutes)

Reference level, 330 °C

M
ea

su
re

d
ou

tp
ut

 (°
C

)

Figure 19.9 PI Control system output.

0 0

1
() 3.37 () ()d 3.37 () 2.81 ()d

1.2

t t
u t e t e e t et t t tÈ ˘= + = +Í ˙Î ˚Ú Ú

We see quite clearly from Figure 19.9 that the design is closed-loop stable, but that it is very
oscillatory. We also notice that there has been a noise filtering effect in the process. The design is
only useful for a starting design, and some more tuning is going to be necessary to dampen out
these oscillations. In particular, we introduce some derivative control, as shown in the simulation
model: Figure 19.10.

The fascinating effect displayed here is that just a little bit of derivative control, where the deriv-
ative time constant is set to τ d = 0.06, has a really soothing effect on the oscillatory nature of the
step response. But note also that the output trace is just a little bit noisier that the PI system
output trace. This can be seen in Figure 19.11.

A summary of the requirements and advantages and disadvantages of the process reac-
tion curve method is given in Table 19.4.

19.2 Process reaction curve PID tuning method 591

ym

Measured output

y

Change in temperature
output, y

t

Time

Measurement noise

MODEL
delay

3+

+
++

– 3.1s + 1
MODEL

1
1.2s

Integral term

3.37

Gain

du/dt

Derivative

0.06

Deriv. tau

Clock

300° base

10% ref
Change: 30°

+
+

+
+

Figure 19.10 Process reaction curve: PI control + D added.

0 5 10 15
290

300

310

320

330

340

350

360

Time (minutes)

O
ut

pu
t t

em
pe

ra
tu

re
 (°

C
)

Figure 19.11 Process reaction curve method: output response for PI + D control.

19.3 Sustained oscillation PID tuning

In practical situations in industry, we often find that process operators are very reluctant
to (1) open up closed-loop systems for step response tests and (2) allow significant sized
test signals to be injected into process units. At the same time production management
will be energetically vigorous in their quest to improve quality at all stages of the produc-
tion process. If we wish to tune and re-tune PID control loops quickly, we soon find that
an alternative to the process reaction curve tuning method is needed. The main require-
ment of the new method is that we should use the system in closed loop. At the same
time as Ziegler and Nichols formulated the open-loop process reaction curve method,
they also introduced a new closed-loop PID tuning method. We know this as the
Ziegler–Nichols method of sustained oscillations. It is a simple idea and it has provided
the practical and theoretical framework for a long-lasting and highly successful PID
tuning technology. The basic principle at work in this method begins from the industrial
system being in closed loop, but only under proportional control. In the real world we find
that, for a large class of industrial systems, the proportional gain can be increased until a
sustained oscillation or continuous cycling of the process output variable is observed.
What has happened is that the sustained oscillation in the output indicates that the
proportional gain value has brought the system to the verge of closed-loop instability. For
this reason, we call this critical proportional gain value the ultimate gain, denoted Ku.
We can use the control systems theory of earlier chapters to establish a link between Ku
and the gain margin of the system, GM.

592 PID controller tuning methods

System setup Open loop

System restrictions Open-loop stable

For reasonable success, first-order-like step responses

Test signal Manually generated

Step signal

One test signal only

Test signal issues No disturbances during test

Minimal noise permitted

Test signal moves process away from operating point and nonlinear process

effects possible

Test signal may have to be large to give good system identification; could cause

production disruption

PID design rules Quarter amplitude decay design

Advantages Simple procedure and computations

Good method to find initial PID settings

Low level of process/control knowledge needed

Disadvantages Response too oscillatory

Overshoot too large

Design specification too limited

Table 19.4 Summary for the process reaction curve method.

19.3.1 Basic principles of the theory behind the sustained oscillations
To follow the basic principles of the theory we use Figure 19.12. The Bode plot shows the
system frequency response. To be at the verge of instability and to show sustained oscilla-
tions we would have to have a gain margin of 0 dB. To achieve this we would have to raise
the magnitude plot by Kx dB = 20 log10 Ku dB. Alternatively, we see on the Nyquist plot
that we can multiply the response by the ultimate gain, Ku, and have the frequency point,
ωpco, move out to the ‘–1’ point. From these ideas we can easily find a link between the
existing open-loop gain plot, G(jω), the ultimate gain, Ku, the gain margin, GM, and a
desired gain margin, GMD.

In Figure 19.12 we can see that the effect of increasing the system gain is to achieve a
sustained oscillation at the system output. This is a time domain trace which we can
record and use for measurements.

19.3 Sustained oscillation PID tuning 593

Time (sec)

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

Step response

0 2 4 6 8 10 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (sec) Time (sec)

Step response Step response

0 05 310 615 920 1225 1530 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

Value Kp = 1 Value 1< Kp< Ku Ultimate value Kp= Ku

Time plots showing behaviour as K Kp uis increased to the ultimate gain,

–150

–300

–100

–200

–50

–100

–1 0 1 2

0

0

10 10
Frequency (rad/sec)

P
ha

se
 (d

eg
re

es
)

M
ag

ni
tu

de
 (d

B
)

10 10

Re ()G jw

Im

–1

()G jw
Closed loop
unstable if
Nyquist plot
passes through
the ‘–1’ pt

Bode diagrams Nyquist plots

R s() +

–

E s()

Proportional
control

Kp Uc()s
Process

Y s()

Closed loop system diagram

C B A

Kp increasing

C B A

Kp = 1

f p= –

1 1 1

Figure 19.12 Sustained oscillations – time and frequency domain plots.

When we have turned up the gain to reach the point of sustained oscillation, we can
record the value of the proportional gain as the ultimate gain, Ku. We know that the
system is at the verge of instability and the output is oscillating at the frequency ω pco. We
have the relation

K Gu pcoj× =| ()|ω 1

and the unknown system information |G(jωpco)| is then given by

|G(jωpco)| = 1/Ku

To find a proportional gain, Kp, to achieve a desired gain margin, GMD we use the same type
of calculation. We need to find a proportional gain, Kp, so that GMD × Kp |G(jωpco)| = 1,
which rearranges to give

Kp = 1/(GMD × |G(jωpco)|)

From the sustained oscillation experiment, we have a measurement for |G(jωpco)| = 1/Ku,
which we use. Clearly we find

Kp = Ku/GMD

Since Ku is measured from the sustained oscillation experiment, and GMD is a design
specification, computation of the appropriate proportional gain Kp is straightforward.
The full Ziegler–Nichols sustained oscillation tuning procedure builds on these funda-
mentals to yield a PID controller parameter-setting routine. The rule base also uses the
phase crossover frequency information in the form of an ultimate period Pu, where
Pu = 2π/ωpco. We measure this from the oscillating y(t) or e(t) signals using a peak-to-peak
measurement, a zero crossing measurement, a peak-to-trough measurement or a trough-
to-trough measurement. These are simple procedures to automate and help to make an
automatic version of this procedure feasible, as we will see later in the chapter, but for
now we follow the individual steps of the sustained oscillation procedure.

19.3.2 Sustained oscillation PID tuning procedure

Step 1: The process setup
We start by assuming that the process is in steady state and under closed-loop control. We
try to make sure that measurement noise is minimal and that no process disturbances
occur during the experiment. We disengage the integral and derivative terms of the
controller. This may require the use of a large integral time constant, τ i, and a zero value
for the derivative time constant, τ d.

Step 2: The experimental stage
The proportional gain Kp is carefully incremented and closed-loop pulse response tests
are performed until a sustained oscillation is observed in the output variable. This will
not be a perfect oscillation, but a very slowly decaying one. Why? Because it is necessary
to strictly maintain closed-loop stability, otherwise an unstable process loop may occur.
The final oscillatory trace found should be recorded.

Step 3: Processing the data
We should make sure we have a note of the ultimate gain Ku value. From the sustained
oscillation trace it is necessary to measure the ultimate period, Pu. If there is noise on real
process data then we might need to find the mean of several Pu readings. Data outliers on

594 PID controller tuning methods

the trace should be ignored. A typical trace is shown in Figure 19.13, where both measure-
ment noise and data outliers are present.

Step 4: Calculating the PID parameters
The industrial PID controller form is assumed:

The data from the experiment are:

Estimated ultimate gain, Ku

Estimated ultimate period, Pu

and a table from the Chemical Engineers’ Handbook (eds. R. H. Perry and C. H. Chilton,
1973; published by McGraw-Hill, New York) is used (Table 19.5).

19.3 Sustained oscillation PID tuning 595

0 5 10 15
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (seconds)

M
ea

su
re

d
ou

tp
ut

Data outliers

Pu

Figure 19.13 Measurements for sustained oscillation tuning method.

Controller structure Performance
criterion

Proportional gain, Kp Integral time
constant, i

Derivative time
constant d

Case (i) P ¼ decay 0.5Ku – –

Case (ii) PI ¼ decay 0.45Ku 0.833Pu –

Case (iii) PID ¼ decay 0.6Ku 0.5Pu 0.125Pu

Case (iv) PID Some overshoot 0.33Ku 0.5Pu 0.33Pu

Case (v) PID No overshoot 0.2Ku 0.33Pu 0. 5Pu

Table 19.5 Sustained oscillation PID tuning rules.

t t t
t

È ˘
= + +Í ˙

Î ˚
Úp d0i

1 d
() () ()d

d

t e
u t K e t e

t

In this rule base the controller design philosophy has been made explicit, and we have a
wider choice of performance outcomes to choose from.

Step 5: Implement and assess performance of the controller
After implementation of the controller parameters, assessment of performance would be
from real-time and historical plant data analysis.

Problem In a steel works a sustained oscillation test was performed and the System Engineering Depart-
ment form filled out by the operand. This data form has been constructed to enable simple rule-
based tuning to be performed. On completion of the data analysis the PID coefficients were to be
implemented by the Maintenance Department.

JMR Steel plc, Rotherham, England, UK We provide the world’s best steel!

Process Unit Stand 4E, McCance Test Date 28 June 1998

Input reference 6.5 cm Output level – start 6.5 cm

Input pulse +0.65 cm (10% step) Oscillating gain value 2.5

Pulse time 0.1 s Noise variance 0.00005

Test approval John Michaelson Position Section Leader

Comments Data collection went well. Quite noisy.

(a) The data correspond to a sustained oscillation test. Process the data and produce the tuning
parameters for a PID controller using the rules to give some overshoot.

(b) The works design manual gives a transfer function model for the stand unit as G(s) = 3/(s + 1)3.
Use a Simulink simulation to obtain some idea of the likely success of the PID tuning.

596 PID controller tuning methods

0 5 10 15
6.4

6.45

6.5

6.55

6.6

6.65

Time (sec)

M
ea

su
re

d
ga

ug
e

(c
m

)

Solution (a) We follow the steps of the sustained oscillation PID tuning procedure.

Step 1: the process setup
We assume that the test conditions satisfied those required for the test to be a success. In partic-
ular, we assume that the process was in steady state; the data sheet says that the steady level at
the start of the test was 6.5 cm and that a +10% pulse was applied for 0.1 s.

Step 2: the experimental stage
The proportional gain Kp was incremented in closed loop until a sustained oscillation was
observed. The data sheet shows that this occurred at Kp = 2.5. This is the value of the ultimate
gain, Ku. The final oscillatory trace found was recorded.

Step 3: processing the data
We need to measure the ultimate period, Pu. If there is noise or data outliers on the traces we have
to do the best we can, since this procedure is only approximate. The trace is shown in Figure
19.14 where the measurement of Pu is shown.

We should ensure that the trace has settled, and if the data is noisy we should take the average
of several readings. In this case we take Pu to be the average of 3.76 and 3.70: Pu = 3.73.

Step 4: calculating the PID parameters
The industrial PID controller form is assumed:

The data from the experiment yields the estimated ultimate gain, Ku = 2.5, and the estimated ulti-
mate period, Pu = 3.73. From the rule base we select the formula line marked some overshoot.

19.3 Sustained oscillation PID tuning 597

0 5 10 15
6.4

6.45

6.5

6.55

6.6

6.65

Time (sec)

M
ea

su
re

d
ga

ug
e

(c
m

)

Pu = 3.76 Pu = 3.70

Figure 19.14 Sustained oscillation test recording.

t t t
t

È ˘
= + +Í ˙

Î ˚
Úp d0i

1 d
() () ()d

d

t e
u t K e t e

t

Controller structure Performance
criterion

Proportional gain, Kp Integral time
constant, i

Derivative time
Constant d

Case (iv) PID Some overshoot 0.33Ku 0.5Pu 0.33Pu

We calculate the PID parameters as follows:

Kp = 0.33Ku = 0.33 × 2.5 = 0.825

τ i = 0.5 Pu = 0.5 × 3.73 = 1.865

τ d = 0.33 × 3.73 = 1.23

In a real tuning exercise we are now ready to complete the procedure.

Step 5: implement and assess performance of the controller

(b) We are going to use the transfer function model G(s) = 3/(s + 1)3 and Simulink to obtain
some idea of the performance of the PID tuning.

We write

The Simulink simulation is given in Figure 19.15 with the measurement block parameters of
mean 0, variance 0.00005, seed 61233 and sample time 0.05. The 10% (0.65 cm) step response
plot in Figure 19.16 shows an overshoot of 23% in the measured output, which is a little high for
most design purposes, but the method has produced quite good results for the very little process
information which was supplied to the design.

A summary of the sustained oscillation procedure and the advantages and disadvan-
tages of the method is given in Table 19.6.

598 PID controller tuning methods

ym

Measured gauge

y

Change in
gauge output, y

t

Time

Measurement noise

3
s +3s +3s+13 2

MODEL

1 +

+

+
+

+

+
–

+
+1.865s

Integral term

0.825

Gain

du/dt

Derivative

1.23

Deriv. tau

Clock

6.5 cm reference gauge

10% ref
Change = 0.65

Figure 19.15 Simulink model for sustained oscillation assessment.

p d0 0i

1 d 1 d
() () ()d 0.825 () ()d 1.23

d 1.865 d

t te e
u t K e t e e t e

t t
t t t t t

t
È ˘ È ˘= + + = + +Í ˙ Í ˙Î ˚Î ˚

Ú Ú

19.3 Sustained oscillation PID tuning 599

0 5 10 15
6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

Time (sec)

M
ea

su
re

d
ga

ug
e

(c
m

)

Reference level=7.15cm

Figure 19.16 Step response for sustained oscillation test model.

System setup Closed-loop

Proportional control only

System restrictions System must have phase lag in excess of –180° otherwise sustained oscillation

not possible. Most industrial systems have delays and/or nonlinearity present

and these usually ensure a sustained oscillation will occur as the proportional

gain is increased

Test signal Manually generated

Short pulse to initiate the oscillating response

Sequence of tests needed to find Ku

Test signal issues No disturbances during test

Minimal noise permitted

Oscillation may have to be large to ensure sufficient measurement resolution

A sequence of tests needed; may be time-consuming

PID design rules Quarter amplitude decay design

Other qualitative rules available

Advantages Simple non-parametric model assumed

Procedure has good theoretical basis relating it to more advanced controller

specifications

Simple procedure and computations

Process test performed in closed loop

Disadvantages Verge of closed-loop instability reached

Procedure requires multiple tests and can be disruptive and lengthy

Table 19.6 Summary: sustained oscillation method.

19.4 Damped oscillation or quarter amplitude decay PID tuning
procedure

Despite the simplicity of the sustained oscillation procedure, we do not think that the
idea of operating a closed-loop system close to the verge of instability is very practical or
desirable. Consequently, we use a variant of the sustained oscillation procedure known
as the damped oscillation or quarter amplitude decay method instead. In this procedure,
the proportional gain alone is used to try and achieve a quarter amplitude decay response
and the tuning rules use data extracted from this.

Step 1: The process setup
As with the sustained oscillation method, we make the tuning experiment with the
system in closed loop. We also disengage the integral and derivative actions. This we
achieve by making the integral time constant, τ i, as large as possible, and setting the
derivative time constant, τ d, to zero. During the experiment we will need to ensure that
no process disturbances occur and that measurement noise is minimised.

Step 2: The experimental stage
The objective of this step is to adjust the proportional gain, Kp, until we obtain the
quarter amplitude decay step response shape. Thus, experimentally a sequence of step
response tests will be performed. However, we should remember that real practical
systems do not always have nice perfect second-order responses. So we must exercise
some good judgement to obtain a reasonable approximation to the quarter amplitude
decay response and terminate the procedure sensibly. If we fail to do so we will make an
excessive number of step responses tests in search of an accuracy which is simply unat-
tainable from the system! We decompose this step into a number of sub-steps as follows.

Step 2.1: initialise
Set the loop counter to zero: k = 0.
Choose the initial proportional gain Kp so that the closed-loop system is stable.

Step 2.2: step response test
Run an appropriate step response for the system, the step change being applied to the
closed-loop system reference input. We record the step response trace.

Step 2.3: measurement step
We use Figure 19.17 for the details of this step.

Measure the amplitudes Ak and Bk.
Compute ratio Rk = Bk/Ak; if Rk≈0.25 then measure the period, P, between the first and

second peaks and go to Step 3.
If Rk << 0.25 then increase Kp
If Rk >> 0.25 then decrease Kp
Set k = k + 1 and repeat Step 2.2.

As we can see, this is an engineering procedure which needs some trial and error investi-
gation to decide on the appropriate gain size for increase Kp or decrease Kp. Also, the
accuracy with which the process can deliver a quarter amplitude decay response will only
be discovered by careful observation of the actual system responses.

600 PID controller tuning methods

Step 3: Calculating the PID parameters
The data obtained from the experimental stage are:

1. Kp, the proportional gain yielding an approximate quarter amplitude decay response.

2. P, a measurement of the period between first and second peaks of the quarter ampli-
tude decay response.

The damped oscillation method provides only a rule base for a full PID controller, as
given in Table 19.7.

Step 4: implement and assess controller performance
The calculated controller parameters are ready for use. We would complete the tuning
exercise with a thorough assessment of closed-loop performance. This would use a set of
explicit test experiments or we would suggest subjective assessment by process operator
observations and records of closed-loop process performance over a period of time.

Problem At the Clyde Power company, the engineers favour the quarter amplitude decay PID tuning proce-
dure. An engineer has been running the procedure for a fan pressure loop in the power station
and has completed the company data sheet for processing by the Instrumentation and Controls
Department. The data collection sheet is given on p. 603.

19.4 Damped oscillation or quarter amplitude decay PID tuning procedure 601

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

M
ea

su
re

d
ou

tp
ut

Ak

Bk

P

Figure 19.17 Damped oscillation method: measurements to be made.

Controller structure Performance
criterion

Proportional gain, Kp Integral time constant, i Derivative time
constant, d

PID ¼ decay Kp P/1.5 P/6

Table 19.7 PID tuning for damped oscillation data.

(a) Examine the trace obtained and comment on the possible type of process under control. Will
the process be easy to control?

(b) Process the data and produce the tuning parameters for the quarter amplitude decay PID
tuning method.

(c) It is found from the design reports that the transfer function model for the process is given as

G(s) =
s s

s s s

2

3 2
2 2

3 425
− +

+ + +() (.)

Use a MATLAB root locus plot to analyse the possible control difficulties. Use a Simulink
simulation to obtain more insight into the success of the PID tuning.

Solution (a) The data trace is obtained from a positive-going step, yet what we see is a small transient
before the main transient gets under way. We associate this behaviour with an inverse
response type and anticipate a Right Half Plane zero effect. We know the test was performed
under proportional control only. We see that the process has not achieved a steady state
value anywhere near 21 bar, so the integral control is going to have a significant job to do.
The sizes of the response values are also very small, hardly moving away from the 20 bar
level. We therefore think that the open-loop process gain is very small.

(b) To produce the PID tuning parameters for the quarter amplitude decay PID tuning method,
we need the final Kp value, and the period, P, between first and second peak values. From the
data sheet we have Kp = 0.2, and the trace yields a period of 3 seconds. We complete the
tuning table in Table 19.8.

(c) We are given the transfer function model for the process as

G(s) =
s s

s s s

2

3 2
2 2

3 425
− +

+ + +() (.)

Using the MATLAB function conv we find tha the numerator and denominator can be written as

gdenom conv([1 9 27 27], [1 1 4.25])
gnum = [1 -2 2]

This will enable us to have a look at the possible control difficulties and the time domain
performance of the PID design we have performed. From the transfer function we can find
the poles and zeros.

The open-loop poles: solve (s + 3)3(s2 + s + 4.25) and we find s = –3, –3, –3, and
s = –0.5 ± 2j as the open-loop poles. This complex conjugate pair of poles is close to the
imaginary axis and will give rise to a very underdamped type of response.

602 PID controller tuning methods

Controller structure Performance
criterion

Proportional gain, Kp Integral time constant,

i

Derivative time
constant, d

PID ¼ decay Kp P/1.5 P/6

Numerical values 0.2 τ i = 3/1.5 = 2 τ d = 3/6 = 0.5

Table 19.8 Tuning for damped oscillation data for fan pressure loop.

19.4 Damped oscillation or quarter amplitude decay PID tuning procedure 603

Test sheet Generating power for
Scotland

Clyde Power plc Glasgow, Scotland

Position Section Leader Authorised by Wilkie MacJack

Comments Loop free from measurement noise. Procedure took 20 mins

Process unit Unit 445-E, Colville Test date 25 March 1999

Loop details Fan pressure loop, slow responding

Input reference 5% of nominal (= 1 bar) Start value 20 bar

Data taken

Gain First peak Second peak Steady value Ratio calculation

1 20.0249 20.0187 20.0170
Rk =

−
−

⎛
⎝
⎜ ⎞

⎠
⎟ =

20 0187 20 0170
20 0249 20 0170

0 0017
0 00

. .

. .
.
. 79

0 22⎛
⎝
⎜ ⎞

⎠
⎟ = .

0.5 20.0125 20.0094 20.0087
Rk =

−
−

⎛
⎝
⎜ ⎞

⎠
⎟ =

20 0094 20 0087
20 0125 20 0087

0 0007
0 00

. .

. .
.
. 38

0 18⎛
⎝
⎜ ⎞

⎠
⎟ = .

0.2 20.0050 20.0038 20.0034
Rk =

−
−

⎛
⎝
⎜ ⎞

⎠
⎟ =

20 0038 20 0034
20 0050 20 0034

0 0004
0 00

. .

. .
.
. 16

0 25⎛
⎝
⎜ ⎞

⎠
⎟ = .

FINAL TRACE (Gain 0.2)

0 5 10 15
19.998

19.999

20

20.001

20.002

20.003

20.004

20.005

20.006

Time (seconds)

P
re

ss
ur

e
(b

ar
)

Steady start level 20 bar

Steady finish level

The zeros: solve s2 – 2s + 2 = 0 and we find s = +1.0 ±1j as the process zeros. This complex
conjugate pair of zeros is in the RHP and close to the imaginary axis. This will make the control
of the process very difficult by restricting the proportional gain that can be applied.

The process gain: we find G(0) = 2/(33 × 4.25) = 0.0174. This is why the proportional gain
is having little effect in achieving good steady state values as seen in the data provided in the
test.

A MATLAB root locus plot is easily generated as in Figure 19.18. Clearly the dominant poles lie
even closer to the imaginary axis and good time performance is going to be hard to obtain.

A Simulink simulation to obtain more insight into the success of the PID tuning is given in Figure
19.19. The results of a 5% step response (Figure 19.20) show a very slow response, taking over
40 minutes to reach the desired steady state level. Notice that the final response is not quarter
amplitude decay. However, we are at least pleased that the quarter amplitude decay method has

604 PID controller tuning methods

–5 –4 –3 –2 –1 0 1 2 3
–8

–6

–4

–2

0

2

4

6

8

Real axis

Im
ag

in
ar

y
ax

is

Increasing proportional gain
gives poorer responses

Right half plane zeros

Figure 19.18 Root locus plot of system for damped oscillation tuning method.

y

Pressure, y

t

Time

gnum(s) +
+

gdenom(s)

Process model

1+
+

+
+– 2s

Integral term

0.2

Gain

du/dt

Derivative

0.5

Deriv. tau

Clock

20 bar pressure

10% ref
Change: 1 bar

Figure 19.19 Simulation model for damped oscillation example.

produced closed-loop stable PID parameters. But we do know from the root locus plot that the
performance is going to be poor. We might therefore advise a closer look at the process itself to
see if the fan actuators are powerful enough for this process. Alternatively, we might look at what
is causing the RHP zero to be present in this process.

A summary of the procedure and comments on the performance of the damped oscilla-
tion method are shown in Table 19.9.

19.5 The relay experiment

We have seen that the key motivation for the development of process control PID test
routines is to have a tuning procedure which is simple, quick, reliable, repeatable and
economical. We need these properties to deal with the tuning of the large number of
simple PID loops present in many industrial process plants. In the 1980s, process
controller technology changed from analogue to digital and the controller-to-engineer
interface became more sophisticated. Electronic displays enabled small but effective
trending graphs to be devised and keypads enabled the digital input of controller param-
eters. At that time control engineers were challenged to develop automated PID tuning
procedures. Several technologies were pursued, expert systems and pattern recognition
methods, for example. But it was a very simple and elegant solution which leads the way
to today’s autotune technology. This was the relay experiment, proposed as a solution
to the automated PID problem by Karl Astrom of Sweden. The idea is shown in Figure
19.21.

19.5 The relay experiment 605

0 500 1000 1500 2000 2500
20

20.1

20.2

20.3

20.4

20.5

20.6

20.7

20.8

20.9

21

Time (seconds)

P
re

ss
ur

e
(b

ar
)

Figure 19.20 Step response (5%) for damped oscillation example.

606 PID controller tuning methods

System setup Closed-loop

Proportional control only

System restrictions Closed-loop stabilised by proportional control only

Test signal Manually generated

Step test signal

Sequence of tests needed to find Kp and period, P

Test signal issues No process disturbances during test

Minimal measurement noise preferred

Careful selection of increment size for the proportional gain to minimise the

number of experiments and production process disruption

Important to appreciate that the system may not be able to deliver perfect

quarter-amplitude decay response

PID design rules Quarter amplitude decay

Only rules for PID structure available

Advantages Simple procedure and computations

Process test performance in closed loop

Decaying process response obtained; avoids the verge of instability associ-

ated with sustained oscillation

Disadvantages Procedure requires multiple tests

Excessive test time possible unless careful and sensible judgement exercised

Production disruptions possible

Table 19.9 Summary: Damped oscillation method.

Signal
processing unit

PID control
rule base

PID
control law

Relay block

Industrial
system

–M
+M

0

z t()u t()

S1
e t()r t()

–

+

Figure 19.21 The relay setup experiment for PID tuning.

The relay is an ON–OFF control device, and this is the experimental core of the new
controller unit. The characteristic of the relay is shown in Figure 19.22.

These new process controller devices typically have an autotune button marked A or T
(A for Autotune or T for Tune). When pressed, an automatic procedure starts whereby the
closed-loop controller is switched to the ON–OFF relay and system oscillation is set up.
This is monitored at the error signal e(t) and used by a signal processing unit to find the
ultimate gain Ku and ultimate period, Pu. This data is then used in a rule base to compute
PID parameters. Finally, the parameters are passed to the actual PID controller algo-
rithm, and control switched from the ON–OFF relay back to the PID controller. This
completes the process of automated PID controller tuning.

This procedure sounds remarkably like the sustained oscillation method in that the
relay experiment finds the process’s ultimate data, Ku, and Pu through the use of a oscilla-
tion. Indeed we find this to be the case, since the relay sets up a stable oscillation at the
phase crossover frequency, ωpco. Technically we call this oscillation a limit cycle. The
significant and important difference from the sustained oscillation experiment is that
the relay experiment produces a self-generated and stable oscillation, so that the closed-
loop system does not have to be driven to the verge of instability. The role of the signal
processing component of the controller unit is to find the ultimate period, Pu, and to
measure the amplitude of the oscillation, which we call Aosc. We find the ultimate gain,
Ku, using a very simple formula:

K
M

Au
osc

=
4

π

where M is the height of the ON–OFF relay controller characteristic.
The immediate aspect of the relay experiment which makes it such an attractive solu-

tion to the automated PID problem is its simplicity. It is easy to implement, and the
computations needed to find Ku and Pu are simple in form. We can also identify some
added bonuses: for example, the height of the relay, M, can be used to control the size of
the process output oscillation, thereby reducing the disturbances to production opera-
tions. We also note that the relay experiment is a one-off procedure, so that we do not
have to conduct a repeated sequence of test experiments. We now follow through the indi-
vidual steps of this procedure.

19.5 The relay experiment 607

+M

0
–M

e t()
u t()

u t()

e t()

INPUT OUTPUT
If () < 0 then () = –e t u t MError signal from the comparator
If ()e t ≥ 0 then () = +u t M

Figure 19.22 The ON–OFF relay characteristic.

19.5.1 The relay experimental procedure

Step 1: The process setup
The process must be in a quiescent condition and in closed-loop operation. During the
experiment no process disturbances must occur and measurement noise should be
minimal. If we find a process disturbance occurring during the relay experiment we will
be able to see its effects fairly quickly. In some cases the oscillation becomes non-regular,
and in more extreme cases the process oscillation will cease altogether. In this process
controller technology, small modifications to the procedure have been introduced to
mitigate the possible erroneous effects due to the presence of measurement noise. We do
not consider these changes in our procedure.

Step 2: Apply the relay
For most situations, the relay height M is selected by trial and error, but we must select it
to be sufficiently large to set up the limit cycle oscillation. We can fine-tune the ampli-
tude of the process oscillation Aosc by changing the size of M. We show the ON–OFF relay
closed-loop control experiment in Figure 19.23.

Step 3: Processing the data
We use a small pulse at the reference input to activate the oscillation, and the recorded
data can be of the error, e(t), or the system output, y(t). We use the measured output signal
y(t) as shown in the trace in Figure 19.24.

608 PID controller tuning methods

0 5 10 15 20 25 30 35 40
–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2

Time

M
ea

su
re

d
ou

tp
ut

Pu

Aosc

Transient region Steady state region

Figure 19.24 Output response from relay experiment.

Industrial
system

–
–M

+Me t()r t() u t()+ y t()

Figure 19.23 The relay experiment loop setup.

From the figure we can see that the transient behaviour of the system dynamics must
be allowed to settle out before attempting to process the data. We must use the steady
state portion of the response for measuring the values of Pu and Aosc. In real process situa-
tions, we are quite likely to find that the recorded traces are contaminated by noise and
possible data outliers. Despite these small problems, the measurements should be made
as best as possible. It is possible that this may require taking the mean of a set of sampled
measurements. Two parameters are to be measured: the ultimate period, Pu, and the
oscillations amplitude, Aosc, as shown in Figure 19.24.

Step 4: calculating the PID parameters
When we have completed the data processing step we will have values for the following
parameters:

1. the recorded relay height, M

2. the measurement of the ultimate period, Pu

3. the measurement of the oscillation amplitude, Aosc.

We follow this by completing one computation for the ultimate gain using the formula:

K
M

Au
osc

=
4

π

The values for Ku and Pu are then used in a rule base to compute an appropriate PID
controller. The original rule base due to Ziegler and Nichols can be used, but here we
augment it with some phase margin rules devised by Astrom in 1982 (Table 19.10).

Step 5: implement and assess controller
We would determine the structure of the appropriate PID controller from the nature of
the application and the type of performance required and implement the structure using
the usual Kp, τ i, τ d industrial form given by

19.5 The relay experiment 609

Controller structure Performance
criterion

Proportional gain,
Kp

Integral time constant,

i

Derivative time
constant, d

Case (i) P ¼ decay 0.5Ku – –

Case (ii) PI ¼ decay 0.45Ku 0.833Pu –

Case (iii) PID ¼ decay 0.6Ku 0.5Pu 0.125Pu

Case (iv) PID φPM = 30° 0.87Ku 0.55Pu 0.14Pu

Case (v) PID φPM = 45° 0.71Ku 0.77Pu 0.20Pu

Case (vi) PID φPM = 60° 0.50Ku 1.29Pu 0.30Pu

Table 19.10 PID controller parameter rule base.

t t t
t

È ˘
= + +Í ˙

Î ˚
Úp d0i

1 d
() () ()d

d

t e
u t K e t e

t

As before, we would conduct an assessment of the performance of the design using a set of
real-time tests or an analysis of real-time data. We would be seeking to see how the
controller copes with significant plant events, such as reference changes, process distur-
bances or measurement noise.

Problem At the Clyde Power company, the difficulties of controlling the fan pressure system had long been
known. A new graduate engineer determined that new, more powerful fan drive motors were
needed, and that better locations for the sensors could be found. As there was some uncertainty
about the process model, the engineer decided to introduce relay experiment tuning and use a
phase margin PID design law. In the commissioning the engineer devised a new company data
sheet for processing by the Instrumentation and Controls Department. The experimental data
collected is shown opposite.

(a) Examine the experimental relay trace obtained and use the 45° phase margin rule to design a
PID control law.

(b) The engineer has produced a transfer function model for the process as

G(s) =
20 2 2
3 425

2

3 2
()

() (.)
s s

s s s
+ +

+ + +

Use a Simulink simulation to obtain more insight of the success of the PID tuning.

(c) Use root locus analysis to see the inherent difficulties of the new process.

Solution (a) We can see from the experimental trace that the required data have been taken after the
period of the initial transient. These data can be tabulated in two tables: one for the experi-
mental results, and one for the calculation of the PID parameters.

(b) We use the transfer function model for the process in a Simulink simulation to obtain more
insight into the success of the PID tuning. The Simulink simulation is shown in Figure 19.25
and the output response to a 5% step change in input is given in Figure 19.26. We can see
that the new process modifications have increased the speed of response from over 2500

610 PID controller tuning methods

(a)

Recorded relay height, M Ultimate period, Pu Oscillation amplitude, Aosc

M = 0.5 Pu = 1.38 Aosc = 0.1

Ultimate gain calculation
K

M
Au

osc
= =

×
×

⎛
⎝
⎜ ⎞

⎠
⎟ =

4 4 0 5
0 1

6 4
π π

.
.

.

(b)

Controller structure Performance
criterion

Proportional gain, Kp Integral time
constant, i

Derivative time
constant, d

Case (v) PID φPM = 45° 0.71Ku 0.77Pu 0.20Pu

Calculation Kp τ i = 1.1 τ d = 0.28

Table 19.11 Phase margin PID controller tuning rule.

seconds to about 6 seconds. This is a great improvement. We can also see that the inverse
system response has also disappeared, since there are no RHP zeros now in the new
system. We must remember that these rule-based PID design methods have a success
which depends on the degree of model match between the actual system and the assumed
system. Model mismatch will be likely to increase as the system becomes more complicated.

19.5 The relay experiment 611

Test sheet Power for Scotland’s
industry

Clyde Power plc Glasgow,
Scotland

Position Section Leader Authorised By R. MacSonne

Comments Measurement free of noise. Relay Experiment performed. Pulse test.

Peak-to-peak measurements taken after 7 s. Relay height = 0.5

Process unit Unit 445-E, Colville Test date 5 January 2000

Loop details Fan pressure loop

Input reference 5% of nominal Start value 20 bar

Data taken from trace

Time Peak Amplitude Period

9.23 20.1 0.1 1.35

10.58 20.1 0.1 1.41

11.99 20.1 0.1 Mean = 1.38 s

TRACE

0 5 10 15
19.85

19.9

19.95

20

P
re

ss
ur

e
(b

ar
) 20.05

20.1

Time (seconds)

(c) To use root locus analysis to see the inherent difficulties of the new process we use a simple
MATLAB rlocus command. For the new fan pressure system:

G(s) =
20 2 2
3 425

2

3 2
()

() (.)
s s

s s s
+ +

+ + +

we have:

612 PID controller tuning methods

y

Pressure, y

gnum(s)

gdenom(s)
Transfer function model

for new fan pressure loop

t

Time

1+
+ +

++
+– 1.1s

Integral term

4.5

Gain

du/dt

Derivative

0.28

Deriv. tau

Clock

20 bar pressure

10% ref
Change: 1 bar

Figure 19.25 Simulink model for PID control of new fan pressure loop.

0 1 2 3 4 5 6
20

20.2

20.4

20.6

20.8

21

21.2

Time (seconds)

P
re

ss
ur

e
(b

ar
)

Figure 19.26 Output response under PID control with parameters from relay experiment.

The open-loop poles: solve (s + 3)3(s2 + s + 4.25) = 0 and we find s = –3, –3, –3 and s = –0.5 ±2j
as the open-loop poles. This complex conjugate pair of poles is close to the imaginary axis and will
give rise to a very underdamped type of response.

The zeros: solve s2 + 2s + 2 = 0 and we find s = –1.0 ± 1j as the process zeros. This complex
conjugate pair of zeros is close to the imaginary axis. As the proportional gain is wound up this
pair of zeros will attract a pair of closed-loop poles. This will limit the speed of response.

The process gain: we find G(0) = (20 × 2)/(33 × 4.25) = 0.348. This is still low, but is an improve-
ment on the previous fan pressure system, where this gain was 0.0174.

Using the simple root locus command with the given transfer function we obtain the root locus
plot in Figure 19.27.

While we can see that the closed-loop stability situation is much better than the old fan pres-
sure system, we are still prevented from achieving high gain performance. The LHP zeros are
attracting two closed-loop poles, and two closed-loop poles appear to go off into the right RHP
as the proportional gain increases without bound.

Table 19.12 gives a summary of the relay tuning configuration and the considerations
that should be made when applying it to a process.

19.6 Conclusions; or is the PID tuning problem solved?

The change from analogue to digital technology over the past twenty years was the
enabling factor in the evolution of the PID autotune culture. This was the catalyst which
led the end-user in the process industries to demand something better than the existing
manual procedures, like the reaction curve method. We have worked with students and
talked to industrial control engineers in local industries to see whether there are still

19.6 Conclusions; or is the PID tuning problem solved? 613

–4 –3 –2 –1 0 1 2
–4

–3

–2

–1

0

1

2

3

4

Real axis

Im
ag

in
ar

y
ax

is

Figure 19.27 Root locus plot for fan pressure system.

 problems with the PID tuning of process loops. These surveys have shown that despite
the existence of automated technology there are still difficulties in industry. One
problem is that technicians and engineers still do not fully understand what PID can and
cannot achieve. We hope this chapter has clarified some of these limitations.

We have also seen how automated PID tuning technology does not solve all problems,
it simply makes the solution of a subset of control problems easier. At present, the tuning
technology is a push button method and still requires a very limited amount of interven-
tion. The next stage in the technology will be to remove the push button and simply have
plug-in PID control – a completely autonomous and self-configuring PID controller! Such
technology when it arrives will not mean the end of control, since we have also learnt
that there are some much more difficult control problems to be solved. These problems
are usually nonlinear and multivariable and involve complex, highly interactive

614 PID controller tuning methods

System setup Closed-loop configuration

Use of ON–OFF relay controller

Device with adjustable relay height, M

System restrictions There are few system restrictions, but the relay experiment formula is an approxi-

mation.

Accuracy needs |G(jnωpco)| << |G(jωpco)| for n > 1

Test signal Automatically generated by the ON–OFF relay

One experimental test is usually sufficient

Test signal issues No process disturbances during the test, but easily identified if they occur

during test

Minimal process measurement noise must be present

Must allow transient to settle out to reach steady state stage of response before

measurements made

Measurement of Pu and Aosc very simple to take and to automate

PID design rules Can use existing sustained oscillation Ziegler–Nichols rules or Astrom’s phase

margin rules

New improved rules available in the technical literature

Advantages Closed-loop procedure involving a stable limit cycle oscillation. The method

overcomes key disadvantage of the sustained oscillation method and avoids the

verge of instability

Test signal is self-generating and adjustable to minimise production disputation

Existing and new PID rule-based available for use with the procedure

The procedure works with a large class of industrial process loops

The process is conceptually simple and is easily implemented using digital

technology

Disadvantages Susceptible to poor and/or incorrect performance in the presence of process

disturbances and measurement noise

The computational formula for Ku is an approximation, and for a few processes

can give poor results

Table 19.12 Summary table: relay experiment method.

technological processes. Trying to solve these problems keeps the control engineer in
employment, so we must not complain at the challenge as we work at these harder
problems!

What we have learnt

� The general principles of manual and automated tuning procedures for PID
controller tuning.

� The concepts of a simple system identification routine, and the use of a PID
controller parameter rule bases of formulas.

� Some of the real-world features of these test procedures, such as process distur-
bances, measurement noise and data outliers.

� The routines of PID tuning were linked to process control technology and concluded
with the relay experiment, which is a typical example of current autotune technology
used in today’s commercial controllers.

Multiple choice

Multiple choice 615

M19.1 We can find the PID parameters using the
autotuning methods if:
(a) a system model is not available
(b) test signals can be injected to the process
(c) the process is open loop stable
(d) all of the above

M19.2 We cannot use the reaction curve method
if:
(a) the system has a delay time
(b) the system is minimum phase
(c) the system is unstable
(d) (a) and (b)

M19.3 The sustained oscillation method can only
be used with systems where their Nyquist plot:
(a) intersects the imaginary axis
(b) intersects the negative real axis
(c) intersects the unity gain circle
(d) has a large gain margin

M19.4 The relay tuning method is:
(a) an open-loop method
(b) a closed-loop method
(c) both (a) and (b)
(d) neither (a) nor (b)

M19.5 The robustness of a control system can be
studied using:
(a) the GM, PM and the peak of the sensitivity

function
(b) the poles on the jωaxis
(c) the zeros on the real axis
(d) the steady state error

M19.6 The control system design specification for
a chemical process is described as short
settling time, improved damping and zero steady
state error. What control do we choose?
(a) P
(b) PI
(c) ID
(d) PID

M19.7 The PID gain tables suggested in this
chapter:
(a) guarantee closed-loop stability for any

system
(b) do not guarantee closed-loop stability for

any system
(c) guarantee closed-loop stability if the open-

loop system is stable
(d) guarantee closed-loop stability if the open-

loop system is unstable

Questions: practical skills

Q19.1 There are strong links between the method of sustained oscillations and the calculation of the
system’s gain margin, GM. To establish the connection consider the system

G s
s s s

() =
+ + +

5
3 3 13 2

(a) Use a Bode plot or Nyquist plot to establish the gain margin for this system.
(b) What is a physical system interpretation for this gain margin value?
(c) Construct a simple Simulink closed-loop system simulation for the transfer function G(s), with a

step reference signal and a slider proportional gain block. Monitor the output signal as the propor-
tional gain is increased.

(d) How do the results of the experiment match up with the gain margin value calculated?

Q19.2 In a sustained oscillation experiment, the ultimate gain was found to be 9.75 and the oscillating
output trace is shown below.

616 PID controller tuning methods

M19.8 The captain of a car ferry requests your help
to tune the ferry’s PID autopilot while the
system is in closed loop control. Which method
do you suggest?
(a) reaction curve method
(b) relay method
(c) sustained oscillation method
(d) none of the above

M19.9 When a system’s frequency response
passes the –1 point:
(a) the GM is 1 dB
(b) the GM is ∞
(c) the PM is zero
(d) the PM is 180°

M19.10 When a closed loop system oscillates:
(a) all the closed-loop poles are on the real axis
(b) at least a pair of closed-loop poles are on

the imaginary axis
(c) at least a pair of the closed-loop poles is on

the real axis
(d) all closed-loop poles are in the RHP

0 5 10 15 20
–1

–0.5

0

0.5

1

1.5

2

2.5

Time (seconds)

O
ut

pu
t,

y

(a) What decisions about the structure of the controller are derived from an assessment of the data
trace?

(b) Design a PID controller for this system using a PID rule so that the resulting response has quarter-
decay overshoot. Clearly state the values for the controller coefficients of the design obtained.

(c) On implementing the PID controller designed, some performance tests were conducted. These
gave the following performance figures:

Unit step load disturbance: Peak disturbance = 1.427
5% settle time = 53.2 s

What does this test show? Use the performance figures to give two clear statements about the
PID controller’s performance.

Q19.3 It is claimed that the relay experiment and the method of sustained oscillations work for a large
class of practical industrial systems.
(a) Many industrial systems are modelled as a first-order transfer function model. Construct a Bode

or Nyquist plot for any first-order system transfer function, G(s) = K/(τ s + 1), and determine why
the method of sustained oscillation will not work for this system. Construct a simple Simulink
experiment to confirm this result.

(b) Consider the Bode plot or Nyquist plot for the transfer function

G s
K

s

sT
() =

−e
+1

D

τ

using sensible parameter values. Determine whether the method of sustained oscillation will work
for this system. Construct a simple Simulink experiment to confirm this result.

(c) What features do real industrial processes have that might cause the method of sustained oscilla-
tions to actually work in practice? Give two possibilities.

Q19.4 The relay height used in a relay experiment was ± 5, the measured oscillating output amplitude was
a = 0.189 and the Pu = 4.32 s.
(a) Use the Ziegler–Nichols table to design a PI controller.
(b) On implementing the PI controller designed, some performance tests were conducted. These

gave the following outcomes:

Unit step load disturbance: Peak disturbance = –0.954
5% settle time = 74.4 s

Unit step reference change: Overshoot = 110.4%
5% settle time = 40.09 s

What do these two tests attempt to show?
(c) Give two clear assessments of the PI controller’s performance.

Problems 617

Problems

P19.1 A control design for the coke oven at WJK Coking plant involved a reaction curve tuning exercise.
The company form (below) has all the data.

(a) Use the reaction curve method to process the data file and produce the tuning parameters for a PI
controller.

(b) Fit an appropriate first-order lag-plus-deadtime model transfer function, given by

for which K is the d.c. gain, τ is the time constant and T is the deadtime of the process. Use a
Simulink simulation to obtain some idea of the likely success of the PI tuning designed from the
reaction curve method.

618 PID controller tuning methods

WJK Coking Plant – Industrial Controls Department

Date of test 23 March 2001 Process unit code Coke Oven No. 2

Input level – start 50 Output level – start 700 °C

Input level – end 55 (10% step) Output level – end 785 °C

Comments

Coke oven on startup schedule. Maintenance completed 15 March 2001

Thermocouple burnt out. Replaced and test was successful. Noisy data, no load disturbances.

Authorised by M. Hamish Date 23/03/01

0 10 20 30 40 50 60
680

700

720

740

760

780

800

Time (minutes)

Te
m

pe
ra

tu
re

 (°
C

)

Date 23/03/01

Coke Oven No 2

t

-È ˘
= Í ˙

+Í ˙Î ˚

e
()

(1)

sTK
G s

s

P19.2 A flow loop on a wastewater treatment plant unit has its transfer function estimated as

G s
s s sUnit()

. .
=

+ + +
1

5 155 115 13 2

(a) Determine the ultimate gain and ultimate period for the sustained oscillation experiment.
(b) Use the original Ziegler–Nichols rules for PI design and implement the controller using a Simulink

simulation.
(c) Assess the reference tracking response obtained and give an opinion on the response obtained.

P19.3 A power station engineer is finding difficult operational problems on the PID control of a boiler
loop. The loop had been tuned by an external contractor, and the engineer asks the junior engineer to
investigate. The contractor has identified the open-loop transfer function as

G s
s

s s s sBL()
.

. .
=

+
+ + + +

15
5 40 565 585 54 3 2

(a) Determine the ultimate gain and ultimate period from the relay experiment.
(b) Use the Modified Ziegler–Nichols rules for a PID design with no overshoot and calculate the

appropriate PID coefficients.
(c) Construct a Simulink simulation and implement the controller designed.
(d) Assess the reference tracking response obtained.
(e) Examine an open-loop step response of the system. How does this affect your assessment?

Problems 619

Introducing a state variable
description of a system

20

General procedure
for writing a state
variable description

Forced response

Responses from an ABCD
model

What is a state variable?

Companion form

Free response

Resulting ABCD model

Representations

State variable to transfer
function model

By analysis

Transfer function to state
variable model

Conveyor belt system

Using ss2tf

Using tf2ss

Help? Time to readGaining confidence Skill sectionGoing deeper

Although the representation of systems in terms of transfer functions is a very convenient way to
describe control systems and their individual components, there is an alternative form for writing
the system model. This common alternative is referred to as a state variable representation of the
system. There are some advantages and disadvantages of using either transfer function or state
variable representation; however, to appreciate the differences we must first learn what a state
variable is and how to use state variable notation.

Learning objectives

� To identify a feasible set of states, inputs and outputs from a description of a system.

� To express a system in state variable form.

� To be able to convert from a state variable model to a transfer function model and to
convert from transfer function model to state variable model.

20.1 What is a state variable?

The state or set of system variables provides us with the status of a particular system at
any instant in time. In real life, the state of your finances may represented by the balance
of your bank account; the state of your education may be represented by the number of
exams or assessments that have been passed.

In the industrial example of a steam boiler system (Figure 20.1), the state of the boiler
system is the collection of state variables which describes its status. Therefore, at time t,
the steam boiler state is given by

xsb(t) = [Ts(t); ps(t); Tw(t); hw(t)]T

where we have introduced the system state, xsb(t), which is a set of state variables. In this
example, the state variables have been chosen to be Ts(t), ps(t), Tw(t) and hw(t), which
represent the steam temperature, the steam pressure, the water temperature and the
water level respectively. Since we are usually concerned with how a system behaviour

20.1 What is a state variable? 621

Inlet water Steam offtake

Fuel supply

Tw()t

T ps s
()t ()t

State variables
Ts()t Temperature of steam
ps()t Pressure of steam
Tw()t Temperature of water
hw()t

hw()t

Level of water

Figure 20.1 Steam boiler.

changes with time, we find that the most useful state variables are often the
rate-of-change variables within a system or combinations of these variables and their
derivatives.

1. In a mechanical system, we are often interested in the position and/or velocity (rate of
change of position) of a component which moves due to an input force. If we are able to
write down the differential equations relating the acceleration, velocity and position,
we would often let the state variables be the position and velocity within the system.

2. In an electrical circuit, the rate-of-change variables are the rate of change of current in
an inductor, and the rate of change of voltage across a capacitor. The state variables can
be chosen as the inductor current and capacitor voltage.

3. In a chemical engineering system, we find that the rate of change variables are often
temperature, pressure and flow. These would usually become state variables in a state
variable model.

What we will find out in this chapter is that although these may be common choices for
state variables, there are many different state variable representations for the same
system. However, although the states may be different, the inputs to the system and the
defined outputs will remain the same! Therefore, in terms of input–output behaviour, all
the state representations will produce equivalent responses for the same inputs. In
defining a state variable model, we first define the inputs, outputs and state variables for
the system.

We should note that although we use the term state variable model, the representation
is also referred to as a state space system. We consider a state space simply as a working
region where system descriptions are represented by states and the rules for the space
include rules for operations on these states.

20.2 State vectors and matrices of coefficients

Before we proceed to writing down our first state variable model, we need to revise some
vector–matrix notation. Why? Because sets of state variables are almost always written
conveniently in terms of a vector with a system description which uses matrices of coeffi-
cients. We note that vectors and matrices will be denoted by bold characters.

20.2.1 Vectors
Consider a set of system variables: temperature, T(t), pressure, p(t), and flow, q(t). Instead
of continuing to write all three variables, we can develop a succinct vector notation.

Let x1(t) = T(t), x2(t) = p(t), x3(t) = q(t). We can define the vector x(t):

The vector x(t) contains the information on the temperature, pressure and flow at each
time instant, t.

For example, we find that, given an nth-order differential equation which represents the
system behaviour, a state variable description would use a set of n first-order differential

622 Introducing a state variable description of a system

1

2

3

() ()
() () ()

() ()

x t T t
t x t p t

x t q t

È ˘ È ˘
Í ˙ Í ˙= =Í ˙ Í ˙
Í ˙ Í ˙Î ˚Î ˚

x

equations, giving n state variables. We then use the vector notation to collect together
these n state variables as a state vector, x(t) = [x1(t), x2(t), ... , xn(t)]T.

20.2.2 Matrices of coefficients
Often we find that the system variables are linked to the system inputs, outputs and
other state variables through matrices of coefficients. Consider the following equation,
where x(t) = [x1(t), x2(t), x3(t)]T is a function of variables h(t), m(t) and p(t)

x1(t) = –3h(t) + 2m(t) + 6p(t)

x2(t) = 4h(t) – 3m(t) + 9p(t)

x3(t) = h(4) – p(t)

This can be written as

which has the succinct form:

where we have let u(t) = [h(t), m(t), p(t)]T and x(t) = [x1(t), x2(t), x3(t)]T. This equation can
also be written as

We will use this type of vector–matrix notation whenever we meet state variable systems
with more than one state.

20.3 General procedure for writing a state variable representation

We would like to form a state variable description of a general linear system (Figure 20.2).
The system of Figure 20.2 can be represented in more detail by Figure 20.3.

We usually use the notation u(t) for inputs and y(t) for outputs, and we usually denote the
state of the system by x(t). Up till now the systems analysed in this book have been repre-
sented by an input–output transfer function relationship between Y(s) and U(s). By repre-
senting the system in terms of the system states we not only have access to the inputs and
outputs but we can produce a record of the internal variables – the system states – within the
system. Previously we may have been restricted to knowledge of the measurable output, y(t),
but by forming a state variable model we can calculate the values of the measurable and
unmeasurable system states. We find that in place of output feedback, which we have
covered in this book up till now, we can move into the realm of state feedback, which can
provide options which were not available previously. We investigate the control of a system

20.3 General procedure for writing a state variable representation 623

1 1

2 2

3 3

() 3 2 6 () 3 2 6 ()
() 4 3 9 () 4 3 9 ()
() 1 0 1 () 1 0 1 ()

x t h t u t
x t m t u t
x t p t u t

- -È ˘ È ˘È ˘È ˘ È ˘
Í ˙ Í ˙Í ˙Í ˙ Í ˙= - = -Í ˙ Í ˙Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚Î ˚ Î ˚

3 2 6
() 4 3 9 ()

1 0 1
t t

-È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

x u

3 2 6
() () where 4 3 9

1 0 1
t t

-È ˘
Í ˙= = -Í ˙
Í ˙-Î ˚

x Au A

using state variables in Chapter 23. Another advantage of state variable notation is that this
succinct notation gives us the means of writing a multivariable system description in a
concise form. We have often met single-input single-output systems within this book, but
the state variable notation, with its vector–matrix form is an immediate aid to writing
multi-input multi-output system models.

We now provide a procedure for creating a state variable description of a system.

20.3.1 General procedure

(a) Define the system equations
We start by deriving the system equations, which are usually combinations of differ-
ential and algebraic equations. We consider ways in which they might be ordered in
preparation for step (b).

(b) Identify the system inputs, outputs and states
Since the state variable description relies on inputs, outputs and system states, we
must define these for the system and reformulate the system equations using the
new state variable notation

(c) Rewrite the new system equations in standard state variable vector–matrix notation
We introduce a systematic vector–matrix notation which uses four matrices: A, B, C
and D. We collect together the equations to define the A, B, C and D matrices for the
system.

We illustrate the procedure by applying it to the trailer suspension model of Chapter 7.

20.3.2 State variable model of trailer suspension system

(a) Define the system equations
We first examine the system and the equations which describe its dynamic behaviour. We
remember that the model represents a second-order system where the position of the
trailer mass is dependent on the input force, fi (Figure 20.4).

624 Introducing a state variable description of a system

State
variables

x1(),…t
…, xn()t

.

.

.

.

.

.

y1()t
y2()t

yp()t

u2()t
u1()t

um()t

Inputs Outputs
System
state

Figure 20.3 Inputs, outputs and state variables.

System
y()tu()t

Figure 20.2 General system block diagram.

The differential equation that describes the system is given by

M
K

z
t

B
K

z
t

z t
K

f t
s

2

s s
i

d
d

d
d2

1
+ + =() ()

or

9 375 10 4 55 10 125 104
2

3 5. . () . ()× + × + = ×− − −d
d

d
d

2

i
z

t
z
t

z t f t

(b) Identify the inputs, outputs and states

System inputs
We use the notation u(t) to represent the input signal to the system. In this example, there
is one input signal, fi(t); therefore we define

u(t) = [fi(t)]

If there were more than one input signal, such as two forces f1(t) and f2(t), then the inputs
would have been

u1(t) = f1(t)

u2(t) = f2(t)

and the input vector u(t) would have been given by

20.3 General procedure for writing a state variable representation 625

1 1

2 2

() ()
()

() ()
u t f t

t
u t f t

È ˘ È ˘
= =Í ˙ Í ˙

Î ˚ Î ˚
u

Spring force: f Damper force: fs d

Input force: f
Trailer mass

i

Trailer
suspension
system

Input System Output

Sign conventions:
positive direction

Displacement: x Force: f

fi: input force z: displacement

System Trailer suspension system

Differential equation
)(

1
)(2

2

tf
K

tz
dt

dzB

dt

zdM
i

sKsKs
=++

Parameter Ks 80 000 N/m

Parameter B 3464 N/ms–1

Parameter M 75 kg

Figure 20.4 Trailer suspension system and parameters.

State variables
The system equation for the trailer suspension system is a second-order differential equa-
tion, and therefore we look for two states for the system, x1(t) and x2(t). We then aim to
write two first-order differential equations for � ()x t1 and � ()x t2 .

Let the first state be the position and the second state be the velocity

x1(t) = z(t) (position)

x2(t) =
d
d
z
t

(velocity)

From the definition of velocity we find that the first differential equation is given by

� ()x t
z
t1 =

d
d

= x2(t).

For the second differential equation, we use the equation in terms of the highest deriva-
tive and rewrite it in the form

d
d

d
d

2
s

i
z

t
B
M

z
t

K
M

z t
M

f t2
1

= − − +() ()

We now substitute in this equation the state variable notation:

x1(t) = z(t) (position)

x2(t) =
d
d
z
t

(velocity)

� ()x t
z

t2

2

2=
d
d

is the derivative of the highest state (acceleration)

Input signal: u(t) = fi(t)

Substituting these variables gives

� () () () ()x t
B
M

x t
K
M

x t
M

t2 2 1
1

= − − +s u

This is a first-order differential equation for � ()x t2 . We also use the first-order equation
relating states 1 and 2 (position and velocity) for the other first-order differential equation
in x1(t).

Summary of state equations

� () ()

� () () () ()

x t x t

x t
B
M

x t
K
M

x t
M

t

1 2

2 2 1
1

=

= − − +s u

System outputs
We use the notation y(t) to represent the system’s output signal. We have only one output
signal, the position z(t), which, in this example, is also the first state variable, x1(t):

y(t) = z(t) = x1(t)

Note: if there were more than one output signal, such as position and velocity (x1(t) and
x2(t)), then the outputs would have been

626 Introducing a state variable description of a system

y1(t) = x1(t)

y2(t) = x2(t)

and the output vector y(t) would be given by

(c) Vector–matrix ABCD notation
Although we have written the second-order differential equation in terms of two first-order
equations, the notation is still not very concise. We adopt a matrix convention by rewriting
the state variable equations in vector–matrix form, followed by the output equation.

We have two first-order equations replacing the second-order differential equation

� () ()

� () () () ()

x t x t

x t
B
M

x t
K
M

x t
M

t

1 2

2 2 1
1

=

= − − +s u

We define the state vector

with

and go to a vector–matrix form directly from the above equations:

or

This can be written as

�()x t = Ax(t) + Bu(t)

where

The output equation is given by

y(t) = x1(t)

and this can be written in terms of the state vector x(t) = [x1(t), x2(t)]T and the control
input u(t) as

20.3 General procedure for writing a state variable representation 627

1

2

()
()

()
y t

t
y t

È ˘
= Í ˙

Î ˚
y

1

2

()
()

()
x t

t
x t

È ˘
= Í ˙

Î ˚
x

1

2

()
()

()
x t

t
x t

È ˘
= Í ˙

Î ˚
x

�
�

�

1 1

s2 2

0 1 0() ()
()

/ / 1/() ()
x t x t

t
K M B M Mx t x t

È ˘ È ˘È ˘ È ˘
= +Í ˙ Í ˙Í ˙ Í ˙- - Î ˚Î ˚Î ˚ Î ˚

u
�
�

s

0 1 0
() () ()

/ / 1/
t t t

K M B M M
È ˘ È ˘

= +Í ˙ Í ˙- - Î ˚Î ˚
x x u�

s

0 1 0
/ / 1/K M B M M

È ˘ È ˘
= =Í ˙ Í ˙- - Î ˚Î ˚

A B

However, for completeness we can write the output equation as a function of both the
state x(t) and the input u(t): y(x(t), u(t)). In this example, we have

y x u() [] () [] ()t t t= +1 0 0

This leads us to the form

y(t) = Cx(t) + Du(t)

where C = [1, 0] and D = [0].
We summarise the complete state variable system model description in the following.

Key result: State variable notation summary

Given a system of

m inputs
n states
r outputs

the full state space system is given by

�()x t = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where A (size n × n) is the system matrix
B (size n × m) is the input matrix
C (size r × n) is the output matrix
D (size r × m) is the direct feedthrough matrix

The matrix D represents any direct connections between the input and the output. However, in
many simple cases, such as the trailer suspension example, the D matrix is zero.

Skill section Writing vector–matrix forms for state variable ABCD matrices

The rewriting of state variable equations in vector–matrix form will occur often in state space
work. The step of identifying the number of states (n), inputs (m) and outputs (r) automatically sets
up the size of the ABCD matrices to be filled:

�() () ()
() () ()

x A x B u
y C x D u

t t t
t t t

n n n m

r n r m

= +
= +

× ×

× ×

Problem For the following two systems, determine the dimensions of the A, B, C and D matrices.

System 1: Number of states is 3, number of inputs is 2, number of outputs is 1.
System 2: Number of states is 6, number of inputs is 6, number of outputs is 3.

Solution System 1:

628 Introducing a state variable description of a system

1

2

()
() [1 0] [1 0] ()

()
x t

t t
x t

È ˘
= =Í ˙

Î ˚
y x

We are given the information: n = 3, m = 2 and r = 1. Therefore

A: (3 × 3); B: (3 × 2); C: (1 × 3); and D: (1 × 2)

System 2:

We are given the information: n = 6, m = 6 and r = 3. Therefore

A: (6 × 6); B: (6 × 6); C: (3 × 6); and D: (3 × 6)

20.4 State variable diagram

We can represent the state variable model diagrammatically as in Figure 20.5. We have
often used block diagrams to represent control systems. The state variable diagram has a
particular format. This started from the time when digital computers were not available
and analogue circuits were used to form integrating components and the gain blocks.

The forms of Figure 20.5 have been used to represent an integral component.

We will use blocks 3 and 4, depending on whether we are using the time domain or the
s-domain in our block diagram. In the time domain, the general state variable diagram
then looks like Figure 20.6. We have shown the lines connecting the D matrix as dotted,
since for many examples in this book the D matrix will be zero, and these connections
will not be present.

The ABCD model represents a set of first-order differential equations which can be
integrated to find the values of the system states. We require a set of initial condi-
tions, x(0), to be able to solve the differential equations exactly. Since there are n differen-
tial equations we have an n-dimensional vector containing the n initial conditions.
Very often these initial conditions are zero and we do not put them in our diagram.
However, to be fully correct, we would add x(0) to the diagram of Figure 20.6 to give
Figure 20.7.

20.4 State variable diagram 629

Ú 1
s

1. Traditional
analogue
symbol

2. Hand-sketched
version of 1

3. Time-domain
integral symbol

4. -domains
integral transfer
function

)(tx�)(tx)(tx)(tx)(2 sX)(tx�)(tx�)(1 sX

Figure 20.5 State variable block representations.

Ú

A

B C

D

y()tx()tu()t)(tx�

+

+ +
+

Figure 20.6 General ABCD block diagram.

20.5 MATLAB–Simulink representation of state variable models

In MATLAB there is a block, called state-space (under Simulink, Continuous,
Statespace), that represents a state space or state variable model.

We can see that the block icon shows the state variable equations. It has one input port for
u(t) and one exit port for y(t).

MATLAB requires all four matrices to be entered into the system. Even if there is no D
matrix in the model, MATLAB will require a matrix of zeros to be entered. The D matrix
should be the size [number of outputs × number of inputs].

Example: Trailer suspension model
We wish to enter the following trailer suspension model into a Simulink format:

where Ks = 80 000 N/m, B = 3464 N/m s–1 and M = 75 kg.
Since we intend using an ABCD model, we must first ensure that we know the size and values

of all four matrices. The D matrix often has zero entries, but we must check the size of the matrix. In
this example, the D matrix will be zero and the size is given by r × m where r and m represent the
number of outputs and number of inputs respectively. The trailer suspension example has only
one input and one output, giving a size for D of 1 × 1.

We can enter now this model into a Simulink ABCD block easily. However, by using features of
MATLAB we can make life easier for ourselves.

1. Direct entry of parameter values
The most obvious way to enter the matrices is by double-clicking on the ABCD-Simulink block,
which reveals the data entry table (Figure 20.8).

630 Introducing a state variable description of a system

Ú

A

B C
y()tx

x

()t

(0)

u()t)(tx�

+

+

Figure 20.7 Initial conditions in a state variable system.

x Ax Bu¢ = +
= +y Cx Du

State space

È ˘
= = =Í ˙

Î ˚
È ˘

= = =Í ˙- -Î ˚

1

2

s

()
() () [()] () [()]

()

0 1
[0 1/] [1 0]

/ /

x t
t t y t t u t

x t

M
K M B M

x y u

A B C

We can then enter the matrices directly as:

A: [0 1; –1066.7 –46.187]

B: [0; 0.01333]

C: [1 0]

D: [0]

2. Direct entry of parameter calculations
We could have defined variables Ks, M and B in the MATLAB workspace, and entered the data as

A: [0 1; -Ks/M -B/M]

B: [0; 1/M]

C: [1 0]

D: [0]

3. Entry of matrix names
The Simulink data entry table could contain simply the matrix notation A, B, C and D in the corre-
sponding entry places and we could could enter the parameter data and calculations in a MATLAB
M-file which we would call before running the simulation. This is in most cases preferable, since we
do not need to retype data and any changes to the data are made in one place and stored on file.

The M-file would contain

Ks = 80 000; % Stiffness value in N/m
B = 3464; % Damping value in N/ms–1
M = 75; % Mass in kg
A = [0 1; -Ks/M -B/M]; B=[0; 1/M];
C = [1 0]; D=[0];

20.5 MATLAB–Simulink representation of state variable models 631

Figure 20.8 Data entry table for Simulink ABCD block.

We tend to develop and use state variable descriptions in their physical parameter form rather than
insert the numerical data. This allows us to follow the development of the equations more clearly,
and only at the final step will we substitute the parameter values in to the equations. As shown
above, it is easy to use data files containing parameter values and subsequent calculations
rather than to enter data directly. This allows us the flexibility to change parameters more easily in
one data file rather than throughout the simulation files, as well as having a file which records the
values used.

In the next problem, taken from electrical engineering, the modelling equations have
been given to us; this enables even the non-electrical engineer to complete the exercise.

20.6 Example of the development of a state variable model

Problem The following set of electrical equations describe the behaviour of the currents and voltages in
the electrical circuit in Figure 20.9.

System equations
The table provides the system equations for the circuit.

Voltage round loop (1) V t i t R L
i t

t
i t Rin

d
d

() ()
()

()= + +1 1
2

2 2

Voltage across the capacitor C
V t

t
i tx

d
d
c()

()= 3

Voltage round combined loops V t i t R V tin c() () ()= +1 1

Current at node A i1(t) = i2(t) + i3(t)

Let the input u(t) be the applied voltage, Vin(t), the output signal be the voltage across the capac-
itor, Cx and the system states be given by

x1(t) = i2(t): current through the inductor

x2(t) = Vc(t): voltage across the capacitor

Produce a state variable ABCD representation for this system.

632 Introducing a state variable description of a system

Vin()t Vc()t

R2

R1

i3()ti1()t

i2()t

(1) (2)

A

L

Cx

Figure 20.9 RLC circuit.

Solution We follow the general procedure for creating an ABCD model: develop the system equations,
define the system inputs, outputs and states and rewrite the system equations in these variables
and finally, produce the ABCD model.

(a) Develop the system equations
In this problem, the modelling equations have been defined, which completes the first step of the
general procedure.

(b) System inputs, outputs and states
The inputs, outputs and system states are defined in the example; however, we need to incorpo-
rate these in the system equations and find the set of first-order differential equations in the
system states.

System input:
The input to the circuit is the applied voltage Vin(t):

u(t) = Vin(t)

States:
The problem specification gives the two states as

x1(t) = i2(t): current through the inductor

x2(t) = Vc(t): voltage across the capacitor

In the four system equations we see that we have two algebraic equations and two differential
equations. We would like to produce a set of two first-order differential equations for this system
in terms of the derivatives of the system states: � ()x t1 and � ()x t2 . We firstly substitute in the model-
ling equations for u(t), x1(t) and x2(t).

Replacing physical variables by state and input variables

Physical variable equations State variable equations Eqn. No.

V t i t R L
i t

t
i t Rin

d
d

() ()
()

()= + +1 1
2

2 2 u t i t R L x t x t R() () � () ()= + +1 1 1 1 2 (1)

C
V t

t
i tx

d
d
c()

()= 3 C x t i tx � () ()2 3= (2)

V t i t R V tin c() () ()= +1 1 u t i t R x t() () ()= +1 1 2 (3)

i t i t i t1 2 3() () ()= + i t x t i t1 1 3() () ()= + (4)

We note that the variables i1(t) and i3(t) are not inputs, outputs or states. We now eliminate these
from the set of equations. Substituting for u(t) from (3) in equation (1) gives

x2(t) = + L � ()x t1 + x1(t)R2

Rearranging gives

� () () ()x t
R
L

x t
L

x t1
2

1 2
1

= − +

This is one state equation and we can see the linear dependency on both x1(t) and x2(t). To find a
second first-order equation we use equation (4) to replace i3(t) in (2):

Cx � ()x t2 = i1(t) – x1(t)

20.6 Example of the development of a state variable model 633

Then, by using equation (3), i1(t) can be replaced by i1(t) = (1/R)u(t) – (1/R)x2(t) to give

Cx � ()x t2 =
1
R

u(t) –
1
R

x2(t) – x1(t)

Rearranging gives

� () () () ()x t
R C

u t
R C

x t
C

x t
x x x

2
1 1

2 1
1 1 1

= − −

This gives a set of two first-order differential equations:

� () () ()x t
R
L

x t
L

x t1
2

1 2
1

= − +

� () () () ()x t
R C

u t
R C

x t
C

x t
x x x

2
1 1

2 1
1 1 1

= − −

System output:
The output of the system is the voltage across the capacitor, Vc(t), which is the second state in
this example:

y(t) = Vin(t) = x2(t)

(c) Vector–matrix ABCD notation
We note that the dimensions of the required ABCD form are n = 2, m = 1, r = 1. we therefore
expect to define:

System matrix A, size (2 × 2)
Input matrix B, size (2 × 1)
Output matrix C, size (1 × 2)
Direct feedthrough matrix D, size (1 × 1)

We rewrite the set of two differential equations in ABCD form:

or

From this we can identify the A, B, C and D matrices.

634 Introducing a state variable description of a system

2

1 1 1

2 2 2
1

1

1 0
() () ()

() with () [0 1] [0] ()11 1() () ()
x

x x

R
x t x t x tL L

t y t t
x t x t x t

R CC R C

È ˘ È ˘-Í ˙È ˘ È ˘ È ˘Í ˙Í ˙= + = +Í ˙ Í ˙ Í ˙Í ˙Í ˙Î ˚ Î ˚ Î ˚- - Í ˙Î ˚Í ˙Î ˚

u u
�
�

2

1
1

1 0
() () () with () [0 1] () [0] ()11 1

x
x x

R
L L

t t t t t t
R CC R C

È ˘ È ˘-Í ˙ Í ˙Í ˙= + = +Í ˙Í ˙- - Í ˙Î ˚Í ˙Î ˚

x x u y x u�

2

1
1

1 0
[0 1] [0]11 1

x
x x

R
L L

R CC R C

È ˘ È ˘-Í ˙ Í ˙Í ˙= = =Í ˙Í ˙- - Í ˙Î ˚Í ˙Î ˚

A B C D

The choice of states, although a common one, was arbitrary; we could have equally well chosen
the following:

x1(t) = Li2(t) x2(t) = CxVc(t)

This would have given the different state variable system

However, although the states of the system are not unique, both state variable systems will
provide the same output y(t) for the same input signal u(t). The internal states will be different
depending on our choice of representation, but the system output response will not change. To
examine this further we look at the problem of how to calculate the state x(t) once we have a state
variable model in ABCD form.

20.7 State variable free and forced responses

Given a system described by the ABCD state variable notation:

�()x t = Ax(t) + Bu(t)

y(t) = Cx(t)+ Du(t)

we would like to find out how the state variables behave both for zero-valued input and
non-zero-valued input signals. As before, when we looked at this problem for first- and
second-order transfer function models, we referred to the zero-input and non-zero input
problems as the free response and the forced response.

To find the solution x(t), we need to solve the differential equation; in this case,
however, it is a matrix equation, though we will find that familiar integration rules still
apply. The variable of integration in the following is τ . We have used this variable of inte-
gration here to be consistent with other textbooks, where we may find similar calcula-
tions. We begin from

� ()x τ = Ax(τ) + Bu(τ) 0 ≤ τ ≤ t

and we note that

� ()x τ – Ax(τ) = Bu(τ)

The key result we will need is:

d
dτ

[e–Aτx(τ)] = –Ae–Aτx(τ) + e–Aτ �()x τ = e–Aτ [�()x τ – Ax(τ)]

Now if we substitute for [�()x τ – Ax(τ)] from the above, we find

d
dτ

[e–Aτx(τ)] = e–Aτ Bu(τ)

Integrating this equation over the interval 0 ≤ τ ≤ t gives

20.7 State variable free and forced responses 635

2

1 1 1

2 2 2
1

1

1
0

() () ()
() with () [0 1/]1

1 1() () ()
x

x

x

R
L Cx t x t x t

t t C
x t x t x t

R
L R C

È ˘- È ˘Í ˙È ˘ È ˘ È ˘Í ˙Í ˙= + =Í ˙ Í ˙ Í ˙Í ˙Í ˙Î ˚ Î ˚ Î ˚- - Í ˙Í ˙ Î ˚Í ˙Î ˚

u y
�
�

[()] ()e e d− −= ∫A Ax Buτ ττ τ τ0 0
t t

Substituting in the limits of integration gives

e–Atx(t) – x(0) = e d−∫ A Buτ τ τ()
0

t

Rearranging gives the solution for x(t)

x(t) = eAtx(0) + e d− −∫ A Bu() ()tt τ τ τ
0

At a quick glance this equation might look quite complicated, but if we pause and
examine the components, we see that x(t) is comprised of two additive terms:

1. the term eAtx(0), which is dependent on the initial condition x(0); if the initial condi-
tion is zero this term will also be zero

2. the term e d−∫ A Butt
()τ τ

0
which is dependent on the input signal u(t) over the interval

[0,t]; if there is no forced input (that is u(t) = 0), this term will be zero

Therefore, as with the response from the transfer function model, we find that we have
two components due to the free (u(t) = 0) and forced (u(t) ≠ 0) responses:

x(t) = xfree(t) + xforced(t)

To gain some confidence in the use of this equation, we study the first-order example of
the control of liquid level in a tank (Chapter 5) in the next problem.

Problem: Finding an ABCD model and examining the state behaviour
A typical liquid level system is shown in Figure 20.10.

The modelling equation which relates the input flow, qi(t), in m3/s, to the output height, h(t), in
metres, is given by

AR
d
d
h
t

+ h(t) = Kqi(t)

636 Introducing a state variable description of a system

Flow out:
qo()t

Height/level
h t()

Flow in:
qi()t

Control signal:
uc()t

Figure 20.10 Liquid level filling system.

where K = 140 s/m2 and AR = 29.3 min = 1758 s (Chapter 5).

(a) Find a state variable model for this system and express the model in ABCD form.

(b) Solve �()x t = Ax(t) + Bu(t) to find how the system behaves over time.

Solution We follow the procedure for identifying a state variable model.

(a) Develop system equations.
We note that the modelling equation has already been given for the liquid level system problem.

(b) Define inputs, outputs, states and write system equations in state variables.

Inputs
This system has one input, the flow qi(t): u(t) = qi(t)

States
Since there is only one first-order differential equation, we look for one state variable, x(t). In this
case, we will let x(t) be the height in the tank, then x(t) = h(t).

The differential equation then becomes:

AR
d
d
x
t

+ x(t) = Ku(t)

or

�()x t = –
1

AR
x(t) +

K
AR

u(t)

Outputs
The output in this system is also the height of the liquid in the tank: y(t) = h(t) = x(t).

(c) Rewrite state variable equations in ABCD format.
We take the differential equation and the output equation

�()x t = –
1

AR
x(t) +

K
AR

u(t)

y(t) = x(t)

and note that

From which we identify:

We now examine the free and forced responses for the one-dimensional system.

20.7 State variable free and forced responses 637

1
() () ()

() [1] () [0] ()

K
x t x t u t

AR AR
y t x t u t

È ˘ È ˘= - +Í ˙ Í ˙Î ˚ Î ˚
= +

�

1
[1] [0]

K
AR AR

È ˘ È ˘= - = = =Í ˙ Í ˙Î ˚ Î ˚
A B C D

Key result: General state response

From the previous development we have derived the solution to the general state variable differ-
ential equation as

x(t) = eAtx(0) + e d− −∫ A Bu() ()tt τ τ τ
0

In our case, with one state, this reduces to

x t x buat a tt
() () ()()= + − −∫e e d

Free response Fo

0
0��� ��

τ τ τ

rced response
� ���� ����

20.7.1 Free response (no input signal)
Consider firstly the one-dimensional system with no input (u(t) = 0):

�()x t = ax(t)

The solution is given by

x(t) = eatx(0)

which in our liquid level example with a = –1/AR becomes

x(t) = e–t/ARx(0)

This represents the free response of the system; that is, the response of the system if there
was no input and the initial condition were non-zero. In other words, if the initial height
were 1.2 m, we would set x(0) = 1.2, and if there was no input flow and the drain tap was
open, then the level would gradually fall (Figure 20.11) according to:

x(t) = 1.2e–0.000569t

where 0.000569 = 1/AR = 1/1758 s–1 and t is measured in seconds, or, equivalently,
x(t) = 1.2e–0.034t where t is measured in minutes.

638 Introducing a state variable description of a system

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Tank level, metres

Time, minutes

Initial level

Figure 20.11 Level in tank falling.

20.7.2 Forced response (input signal applied)
This time we apply an input step signal of u(t) = 0.005 m3/s and zero initial condition,
x(0) = 0. This corresponds to the situation where the inflow is at the constant flow of
0.005 m3/s and the tank is empty so that x(0) = 0, and we solve

�()x t = ax(t) + bu(t)

The solution is given by

x(t) = e da tt
bu() ()−∫ τ τ τ

0

which in our tank example, with a = –1/AR, b = K/AR and u(t) = 0.005 becomes

x(t) = e d e d− − − −∫ ∫= ×()/ ()/() .t ARt t ARtK
AR

u
K

AR
τ ττ τ τ

0 0
0 005

Rearranging gives

x(t) = 0.005e–t/AR K
AR

ARt
e dτ τ/

0
∫

= 0.005e–t/AR K
AR

AR AR t[]/eτ 0

Substituting in the limits of integration we find:

x(t) = 0.005e–t/AR K
AR

[ARet/AR + AR]

= 0.005K(1 – e–t/AR)

Substituting the values for the parameters K and AR gives:

x(t) = 0.7(1 – e–0.000569t)

The response x(t) is shown in Figure 20.12. This shows how the tank fills up to the steady
state level of 0.7 m.

20.7 State variable free and forced responses 639

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Tank level, metres

Time, minutes

Figure 20.12 Forced response of liquid level system.

We do not usually perform the n-dimensional integration required for state variable
systems; we use numerical packages such as MATLAB and Simulink to do this for us.
MATLAB and Simulink have specific code which performs the integration of sets of
first-order differential equations, such as those given by a state variable description.

20.8 Modelling and simulation in Simulink using an ABCD form

Problem Consider the conveyor belt example presented in Chapter 5, which has the Actu-
ator–Process–Transducer model shown in Figure 20.13. The system equations and parameters
are listed in Table 20.1.

(a) Produce the actuator–process equations in the state variable ABCD format.

(b) Use a Simulink state variable model to produce the step response of the shaft velocity, ω(t).

(c) Investigate what would happen to the shaft velocity if the inertia, J, were increased by 50%.

640 Introducing a state variable description of a system

Torque,
Nm

Angular velocity,
rad s–1

q t() w()t

Measured velocity,
pulses s–1

wm()t

Control input,
V

uc()t
d.c. motor Shaft and load Optical

encoder

q()t

Angular position
rad

Figure 20.13 Actuator–Process–Transducer model for conveyor belt.

Equations and parameters for the actuator and process systems Eqn. No.

d.c. motor

Field circuit
V t R i t L

i t
tf f f f

fd
d

() ()
()

= +
(1)

Rotational torque T t K K I i tA a f() () ()= 1 2 (2)

Shaft and load

Angular velocity J
t

B t T t
d
d A
ω

ω+ =() () (3)

Angular position
ω

θ
()t

t
=

d
d

(4)

Parameters (Chapter 5) R L

B J

K K I

f f

a

H

N m s kg m

N m / A c

= =

= =
= =

−

2 0 5

0 5 0 1

2

1 2

1 2

Ω .

. .

(onst.)

Table 20.1 Equations and parameters for the actuator and process systems.

Solution (a) Find an ABCD model. Once again, we follow the general procedure.

1. Develop the system equations: these are given in the example.

2. Define the inputs, outputs and states and rewrite system equations in state variables.

System input
The system input is given by the voltage Vf(t). Therefore we can write

u(t) = Vf(t)

System states
The actuator–process system comprises three related first-order differential equations and
several algebraic equations. We look for three rate-of-change variables as the system states. We
rewrite equations (1), (3) and (4) in terms of the derivative

d
d
d
d
d

f f

f
f

f
f

A

i t
t

R
L

i t
L

V t

t
B
J

t
J

T t

()
() ()

() ()

= − +

= − +

1

1ω
ω

θ
dt

t= ω()

We therefore let the state variables be

x1(t) = if(t), x2(t) = ω(t) and x3(t) = θ(t)

We can then directly rewrite the three differential equations in terms of the three states and the
input, u(t) = Vf(t).

� () () ()x t
R
L

x t
L

u t1 1
1

= − +f

f f

� () () () ()x t
B
J

x t
J

K K I x t2 2 1 2 1
1

= − + a using equation (2)

� () ()x t x t3 2=

System outputs
The system has two outputs:

y1(t) = ω(t) = x2(t)

y2(t) = θ(t) = x3(t)

3. Rewriting the equations in ABCD format
The dimensions of the required ABCD form are n = 3, m = 1, r = 2. We therefore expect to define:

System matrix A, size (3 × 3)
Input matrix B, size (3 × 1)

Output matrix C, size (2 × 3)
Direct feedthrough matrix D, size (2 × 1)

20.8 Modelling and simulation in Simulink using an ABCD form 641

We use the vector matrix notation:

System responses
We can use the ABCD block in Simulink to simulate this system (Figure 20.14). We can see that
this notation provides a very compact form of expressing system equations.

The parameters are given as:

Rf = 2Ω Lf = 0.5 H

B = 0.5 N m s–1 J = 0.1 kg m2

K1K2Ia = 2 N m/A (= const.)

We enter the system parameters into the MATLAB workspace:

Rf=2; Lf=0.5; B=0.5; J=0.1; const=2;

We enter the A, B, C and D matrices into the state space block. We could have worked out the
parameters directly and entered the numerical values, but if we wish to change any parameters,
for example, to work out how sensitive a system is to one parameter, it is easier not to have
entered the parameters in numerical values.

A = [-Rf/Lf 0 0 ; const/J -B/J 0; 0 1 0]
B = [1/Lf ; 0 ; 0]
C = [0 1 0; 0 0 1];
D = [0 ; 0]

We set the maximum time to three seconds and after running the simulation we can plot the
output. Remembering that the simulation output, y, is a vector, the command

plot(t,y(:,1))

will produce a plot of the velocity as shown in Figure 20.15.

642 Introducing a state variable description of a system

t

Time

Step

x Ax Bu¢ = +
= +y Cx Du

State space

y

Output
To Workspace

Clock

Figure 20.14 Simulink ABCD model implementation.

1 f 1 f

2 1 2 a 2

3 3

() 0 0 () 1/

() ()/ / 0 () 0 ()

() 0 1 0 () 0

x t R x t L
x t K K I J B J x t u t
x t x t

-È ˘ È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙ Í ˙= - +Í ˙ Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚ Î ˚

�
�
�

1
1

2
2

3

()
0 1 0 0()

() ()
0 0 1 0()

()

x t
y t

x t u t
y t

x t

È ˘
È ˘ È ˘ È ˘Í ˙= +Í ˙ Í ˙ Í ˙Í ˙Î ˚ Î ˚Î ˚ Í ˙Î ˚

If we increase the inertia, J, by 50% and plot the velocity again (Figure 20.15) we find the speed of
response has decreased, which is what we would expect for an increase in inertia.

20.9 State variable model to transfer function model

We have learnt how to represent a system in the concise state variable format. However,
by so doing, we initially lose any intuition gained in the development and manipulation
of transfer functions and the knowledge of poles/zeros and stability. We address these
matters now and show how to change a state variable model to transfer function form and
vice versa.

We start by developing the connection between the general state variable model and
our Laplace transform representations of systems.

20.9.1 State variables and Laplace transform representations.
Consider the standard state variable description of a control system

d
d
x
t

= Ax(t) + Bu(t)

y(t) = Cx(t)

Taking Laplace transforms of this equation gives

sX(s) – x(0) = AX(s) + BU(s)

Y(s) = CX(s)

Rearranging the expression for X(s) gives

(sI – A)X(s) = x(0) + BU(s)

X(s) = (sI – A)–1x(0) + (sI – A)–1BU(s)

20.9 State variable model to transfer function model 643

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Angular velocity, rad/s

Original step response

Inertia increase by 50%

Time, seconds

Figure 20.15 Simulation of conveyor belt velocity.

Taking inverse Laplace transforms of X(s) gives

x(t) = –1{(sI – A)–1}x(0) + –1{(sI – A)–1BU(s)}

If we equate this with the time domain solution

x(t) = eAtx(0) + e dA Bu() ()tt −∫ τ τ τ
0

we find

–1{(sI – A)–1} = eAt and –1{(sI – A)–1BU(s)} = e dA Bu() ()tt −∫ τ τ τ
0

Key result: Laplace transform model from ABCD form

The output equation is given by

Y(s) = CX(s) = C(sI – A)–1BU(s) + C(sI – A)–1x(0)

If we set the input conditions to zero, x(0) = 0, we note that the output Y(s) is related to the input
U(s) as follows:

Y(s) = C(sI – A)–1BU(s) = G(s)U(s)

where

G(s) = C(sI – A)–1B

This is a transfer function matrix which represents the input–output transfer functions.
For a single-input single-output system, the matrix G(s) would contain only one transfer
function. Many of our examples up till now have been single-input single-output
systems.

Problem: state space system to transfer function by analysis
Convert the following state space system to transfer function form given that the initial conditions
are zero.

Solution We remember that the Laplace transfer function form is given by

Y(s) = C(sI – A)–1BU(s)

Therefore

We remember that for a 2 × 2 matrix, the inverse is easily found by

644 Introducing a state variable description of a system

2.2 1 3
() () ()

3 6.5 1

() [2 1] ()

t t t

t t

È ˘ È ˘
= +Í ˙ Í ˙

Î ˚ Î ˚
=

x x u

y x

�

�

1

1

0 2.2 1 3
() [2 1] ()

0 3 6.5 1

2.2 1 3
[2 1] ()

3 6.5 1

s
s s

s

s
s

s

-

-

Ê ˆÈ ˘ È ˘ È ˘
= -Í ˙ Í ˙ Í ˙Á ˜Ë ¯Î ˚ Î ˚ Î ˚

- -È ˘ È ˘
= Í ˙ Í ˙- -Î ˚ Î ˚

Y U

U

Applying this gives

We note that the resulting transfer function gives us the ‘input–output’ representation. We could
implement this transfer function in a Simulink model but we would not have access to the internal
states within the system. One of the advantages of using state variable models is the ability to
access not only the outputs, y1(t), y2(t), ..., but to access the internal variables, x1(t), x2(t),
These variables may not be measured, and therefore by using the state variable model we gain
added information about the system.

It is also important to realise that although we can have many different state variable models of
the same system, depending on our choice of system states, the input–output transfer function
model will remain the same.

We have demonstrated how to produce a transfer function model from a state variable
model through Laplace transform analysis. Obviously, if the system were more than 2 × 2,
it would become very difficult to solve by hand and the advantage of using computer
packages becomes readily apparent. We now illustrate how to use a MATLAB command
to effect the conversion from state variable model to transfer function.

20.10 MATLAB function ss2tf: state space to transfer function conversion

We note that the function ss2tf (and its counterpart tf2ss) are functions in the control
toolbox in MATLAB. The form of the expression for ss2tf is given by

[num,den] = ss2tf(A,B,C,D,iu)

The inputs are the state variable matrices A, B, C and D. If there is no D matrix in the
model, then a D matrix must be created with zeros. The size of the D matrix is r × m,
where r is the number of outputs and m is the number of inputs.

The input iu is the input we are interested in, that is input number 1 or 2, etc. If we need
to find the transfer function matrix for all inputs we would have to enter the command
several times, changing the value of iu.

The output is given in the matrices num and den. The denominator of each transfer func-
tion with a particular input will be the same; therefore den is a vector which contains the
coefficients of the denominator polynomial. num contains rows of the numerator coeffi-
cients. The number of rows will be the same as the number of outputs of the system.

Example We now use MATLAB to repeat the same conversion from the given state variable model to
transfer function form where the initial conditions are zero.

20.10 MATLAB function ss2tf: state space to transfer function conversion 645

2

2

6.5 1 31
() [2 1] ()

3 2.2 1(2.2)(6.5) 3

3 18.51
[2 1] ()

6.8(8.7 11.3)
7 30.2

() () ()
(8.7 11.3)

s
s s

ss s

s
s

ss s
s

s s s
s s

-È ˘ È ˘
= Í ˙ Í ˙-- - - Î ˚ Î ˚

-È ˘
= Í ˙+- + Î ˚

-
= =

- +

Y U

U

U G U

1
1a b d b

c d c aad bc

- -È ˘ È ˘
=Í ˙ Í ˙--Î ˚ Î ˚

We use the MATLAB command: [num,den] = ss2tf(A,B,C,D,iu). We enter
A=[2.2 1; 3 6.5]; B=[3;1]; C=[2 1];

We must enter a D matrix with size of ‘outputs by inputs’ – in this example 1 × 1:

D=[0];

We only have one input so iu will be 1.

[num,den] = ss2tf(A,B,C,D,1)

MATLAB result:

num =
0 7.0000 –30.2000

den =
1.0000 –8.7000 11.3000

This is interpreted as

G s
s s

s s
()

.
. .

=
+ −
− +

0 7 302
1 87 113

2

2

Problem: conversion of multi-input single-output model
Convert the following state variable model which has two inputs to transfer function format.
Assume zero initial conditions.

Solution We enter the A, B, C and D matrices as follows:

A=[–6.3 3;0.5 –5.4]; B=[1 0.1;0.2 1]; C=[1 0]; D=[0 0];

We note that the system has the form

In our problem, we will find a transfer function model of the form:

Multiplying out the transfer functions gives

646 Introducing a state variable description of a system

State
variable
equations

x1()tu1()t

u2()t
Output
equation

y()t
x2()t

2.2 1 3
() () ()

3 6.5 1

() [2 1] ()

t t t

t t

È ˘ È ˘
= +Í ˙ Í ˙

Î ˚ Î ˚
=

x x u

y x

�

�

6.3 3 1 0.1
() () ()

0.5 5.4 0.2 1

() [1 0] ()

t t t

t t

-È ˘ È ˘
= +Í ˙ Í ˙-Î ˚ Î ˚
=

x x u

y x

�

�

1 11 12 1

2 21 22 2

1

2

() () () ()

() () () ()

()
() [1 0]

()

X s G s G s U s
X s G s G s U s

X s
Y s

X s

È ˘ È ˘ È ˘
=Í ˙ Í ˙ Í ˙

Î ˚ Î ˚ Î ˚
È ˘

= Í ˙
Î ˚

È ˘ È ˘
= = = = +Í ˙ Í ˙

Î ˚ Î ˚
1 1

1 11 12 11 1 12 2
2 2

() ()
() [1 0] () [() ()] () () () ()

() ()

X s U s
Y s X s G s G s G s U s G s U s

X s U s

The output Y(s) will depend on each input U1(s) and U2(s) through the transfer functions G11(s)
and G12(s) respectively. The function ss2tf only provides one transfer function at each call of the
function, so we must use it twice:

[num1,den1]=ss2tf(A,B,C,D,1)
num1 =

0 1 6
den1 =

1.0000 11.7000 32.5200

This gives

G11(s) =
s

s s
+

+ +
6

117 35522 . .

Applying the function again for input 2 gives

[num2,den2]=ss2tf(A,B,C,D,2)
num2 =

0 0.1000 3.5400
den2 =

1.0000 11.7000 32.5200

We find that

G12(s) =
s

s s
+

+ +
354

117 35522
.

. .

Therefore

Y(s) =
s

s s
+

+ +
6

117 35522 . .
U1(s) +

s
s s

+
+ +

354
117 35522

.
. .

U2(s)

We note that the denominator in each case remains the same, since it holds the key to the system
stability. The numerator of each transfer function does alter. This will become clearer in Chapter
22 when we look at the analysis of state variable models.

20.11 From transfer function to state variable model

We have found that a state space representation for a system is not unique. We emphasise
this again here when we present one method for determining a state space system from a
transfer function description. We illustrate this with a particular example before listing
the general case.

The following transfer function describes the dynamics of an actuator. We see that
there is one real pole and a pair of complex poles and that the system is of third order.

Y(s) =
1

4 4 72()()s s s+ + +
U(s) =

1
8 23 283 2s s s+ + +

U(s)

If we write

(s3 + 8s2 + 23s + 28)Y(s) = U(s)

we can see that this is equivalent to the differential equation given by

20.11 From transfer function to state variable model 647

d
d

d
d

d
d

3 2y t
t

y t
t

y
t

y t u t
() ()

() ()3 28 23 28+ + + =

We let the first state, x1(t) be equivalent to the output y(t), the second state equal its deriv-
ative, the third state equal the next derivative and so on (Figure 20.16).

Therefore we can write

x t y t
x
t

x t
y
t

x
t

x t
y

t

1

1
2

2
3 2

() ()

()

()

=

= =

= =

d
d

d
d

d
d

d
d

2

The full differential equation above can be rewritten in terms of its highest derivative:

d
d

d
d

d
d

3 2y t
t

y t
t

y
t

y t u t
() ()

() ()3 28 23 28= − − − +

and the state variable notation introduced to give

d
d
x t
t

x t x t x t u t3
3 3 2 18 23 28
()

() () () ()= − − − +

This gives us the following state variable system

This is called the companion or phase variable form of the state variable model. The last row
of the A matrix comprises all of the coefficients of the denominator of the transfer function
and the diagonal row above the main diagonal of the A matrix always contains unity terms.
It is therefore very easy to write this state variable description down directly. The disadvan-
tage with this form is that the state variables do not always represent physical quantities.

In the above example, the numerator was simply a ‘1’. We would like to know how to
deal with situations where the numerator is a polynomial in s.

For illustration we consider the same transfer function as above but add a lead term in
the numerator; this gives

648 Introducing a state variable description of a system

–8

d3y
dt3

2d y
dt2

–23

dy
dt

y t()

–28

u t()
x3()t = x2()t = x1()t =

1
+

+ +

+

Figure 20.16 State variable model.

1 1

2 2

3 3

() 0 1 0 () 0
() 0 0 1 () 0 ()
() 28 23 8 () 1

() [1 0 0] ()

x t x t
x t x t u t
x t x t

y t t

È ˘ È ˘È ˘ È ˘
Í ˙ Í ˙Í ˙ Í ˙= +Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙- - -Î ˚ Î ˚Î ˚ Î ˚

= x

�
�
�

Y(s) =
28 2 1
4 4 72

()
()()

s
s s s

+
+ + +

U(s) =
()

()
56 28

8 23 283 2
s

s s s
+

+ + +
U(s)

We can rewrite this expression as

Y s
U s

X s
U s

Y s
X s

()
()

()
()

()
()

=

where

X(s) =
1

8 23 283 2()s s s+ + +
U(s)

and

Y(s) = (56s + 28)X(s)

The transfer function from U(s) to X(s) is similar to the example above. However, the
additional equation is for Y(s). This can be converted back to a differential equation to
give

y(t) = 56
d
d
x
t

+ 28x(t)

If we include this in the state variable diagram of Figure 20.16 we have the new diagram as
shown in Figure 20.17.

Using the state variable notation

y(t) = 56x2(t) + 28x1(t)

Therefore in matrix form we have the output equation as

y(t) = [28 56 0]x(t)

with the state equations given as before:

20.11 From transfer function to state variable model 649

–8

d3x
dt3

d2x
dt2

–23

dx
dt x t()

–28

u t()
28

y t()

56

+
+

+

+

+

Figure 20.17 State variable model for transfer function description.

È ˘ È ˘È ˘ È ˘
Í ˙ Í ˙Í ˙ Í ˙= +Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙- - -Î ˚ Î ˚Î ˚ Î ˚

�
�
�

1 1

2 2

3 3

() 0 1 0 () 0
() 0 0 1 () 0 ()
() 28 23 8 () 1

x t x t
x t x t u t
x t x t

We have worked through the transformation from transfer function to state variable
model for a particular transfer function. For completeness, we now summarise the proce-
dure for application to a general transfer function model.

20.11.1 From a general transfer function to state variable model
Consider the general transfer function given by the following:

Y(s) =
1

1
1

1 0s a s a s an
n

n+ + + +−
− …

U(s)

This is equivalent to the differential equation given by

d
d

d
d

d
d

n

n n

n

n
y t
t

a
y t

t
a

y
t

a y t u t
() ()

() ()+ + + + =−
−

−1

1

1 1 0…

We let the first state, x1(t), be equivalent to the output y(t), the second state equal its
derivative, the third state equal the next derivative and so on (Figure 20.18).

We can write

x t y t
x
t

x t
y
t

x
t

x t
y

t
x
t

1

1
2

2
3 2

3

() ()

()

()

=

= =

= =

=

d
d

d
d

d
d

d
d

d
d

2

x t
y

t

x
t

x t
y

t
n

n

n

n

4 3

1
1

1

()

()

=

= =−
−

−

d
d

d
d

d
d

3

…

The full output differential equation can be rewritten in terms of its highest derivative:

d
d

d
d

d
d

n

n n

n

n
y t
t

a
y t

t
a

y
t

a y t u t
() ()

() ()= − − − − +−
−

−1

1

1 1 0…

and the state variable notation introduced to give

650 Introducing a state variable description of a system

an–1

dny
dtn

dn–1y

dt n–1
dn–2y
dtn–2

an–2

dy
dt

y t()

a0

u t()

xn()t = xn–1()t = x2()t = x1()t =

Figure 20.18 State variable model.

d
d

x t
t
n()

= – an–1xn(t) – an–2xn–1(t) – ... – a1x2(t) – a0x1(t) + u(t)

This gives us the following state variable system:

If we add a polynomial in s to the numerator:

Y(s) =
c s c s c s c

s a s a s a
m

m
m

m

n
n

n
+ + + +

+ + + +
−

−

−
−

1
1

1 0

1
1

1 0

…
…

U(s)

where m < n, we can rewrite this expression as

Y s
U s

X s
U s

Y s
X s

()
()

()
()

()
()

=

where

X(s) =
1

1
1

1 0s a s a s an
n

n+ + + +−
− …

U(s)

and

Y(s) = (cmsm + cm–1sm–1+ ... + c1s + c0)X(s)

The transfer function from U(s) to X(s) is similar to the example above. However, the
additional equation is for Y(s). This can be converted back to differential equations to give

y(t) = cm
d
d

m

m
x

t
+ cm–1 + ... + c1

d
d
x
t

+ c0x(t)

If we include this in our state variable diagram we obtain Figure 20.19.

20.11 From transfer function to state variable model 651

–an–1

dnx
dtn

–an–2

dx
dt x t()

–a0

u t()
c0

y t()

c1

cn–1

+
+

+

+

+

dn–1x
dt n–1

dn–2x
dt n–2

Figure 20.19 State variable model for transfer function description.

1 1

2 2

3 3

1 1

0 1 2 2 1

0 1 0 0 0 0() ()
0 0 1 0 0 0() ()
0 0 0 0 0 0() ()

0
0 0 0 0 1 0() ()

1() ()
n n

n nn n

x t x t
x t x t
x t x t

u

x t x t
a a a a ax t x t

- -

- -

È ˘ È ˘È ˘ È ˘
Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙

= +Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙

- - - - -Í ˙ Í ˙Í ˙ Í ˙Î ˚Î ˚Î ˚ Î ˚

� �
� �
� �

	 	 	
 	 		 	
� �
� �

()

() [1 0 0 0 0] ()

t

y t t= x�

Using the state variable notation:

y(t) = cmxm+1(t)+ cm–1xm(t) + ... + c1x2(t) + c0x1(t)

Therefore in matrix form we have

y(t) = []c c c cm m0 1 1 0 0… …− x(t)

with

Problem The following transfer function represents a fourth-order system:

Y(s) =
3 2 1

3 5 0 4 28

3

4 3 2
s s

s s s s
+ +

+ + + +.
U(s)

(a) Write down an equivalent state space representation.

(b) Sketch the ABCD block diagram.

Solution Since we have a polynomial in s on the numerator, we can separate the transfer function into two
cascaded transfer functions:

X(s) =
1

3 5 0 4 284 3 2s s s s+ + + +.
U(s)

and

Y(s) = (3s3 + 2s + 1)X(s)

If we examine the transfer function for X(s) first, we find that the denominator coefficients are 1, 3,
5, 0.4 and 28. They will appear in reverse order in the fourth-order state matrix (with the unity coef-
ficient of s4 neglected). Using the companion form gives

The polynomial transfer function relating Y(s) to X(s) has the coefficients in descending order: 3 0
2 1. These will appear in reverse order in the output equation:

y(t) = [1 2 0 3]x(t)

The state variable diagram is in Figure 20.20.

652 Introducing a state variable description of a system

1 1

2 2

3 3

1 1

0 1 2 2 1

0 1 0 0 0 0() ()
0 0 1 0 0 0() ()
0 0 0 0 0 0() ()

0
0 0 0 0 1 0() ()

1() ()
n n

n nn n

x t x t
x t x t
x t x t

u

x t x t
a a a a ax t x t

- -

- -

È ˘ È ˘È ˘ È ˘
Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙

= +Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙

- - - - -Í ˙ Í ˙Í ˙ Í ˙Î ˚Î ˚Î ˚ Î ˚

� �
� �
� �

	 	 	
 	 		 	
� �
� �

()t

È ˘ È ˘È ˘ È ˘
Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙= +Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙

- - - -Í ˙ Í ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚ Î ˚

�
�
�
�

1 1

2 2

3 3

4 4

0 1 0 0 0() ()

0 0 1 0 0() ()
()

0 0 0 1 0() ()

28 0.4 5 3 1() ()

x t x t
x t x t

u t
x t x t
x t x t

20.12 MATLAB command tf2ss: transfer function to state space
conversion

The form of the MATLAB expression is: [A,B,C,D] = tf2ss(num,den). The required inputs
are:

1. num: a matrix which contains the numerator coefficients for each transfer function in a
particular row of the transfer function matrix. For a SISO case, num will just be a single
polynomial.

2. den is a vector containing the denominator polynomial coefficients (The denominator
is the same for any row in the transfer function matrix.)

The resulting outputs are the state variable matrices A, B, C and D.

Problem The following transfer function represents a fourth-order system:

G(s) =
3

2 10 6 34 3 2s s s s+ + + +

(a) Write down an equivalent state space representation.

(b) Enter this model in MATLAB as an A, B, C, D representation.

(c) Use the MATLAB command tf2ss to create a different state variable model.

(d) Use the MATLAB step command for both models (a) and (c) and comment on the output from
both models.

Solution (a) We note the coefficients in the denominator and numerator polynomials and, using the
companion form, can quickly write down the equivalent state space form:

20.12 MATLAB command tf2ss: transfer function to state space conversion 653

1 1

2 2

3 3

4 4

0 1 0 0 0() ()

0 0 1 0 0() ()
()

0 0 0 1 0() ()

3 6 10 2 1() ()

x t x t
x t x t

u t
x t x t
x t x t

È ˘ È ˘È ˘ È ˘
Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙= +Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙

- - - -Í ˙ Í ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚ Î ˚

�
�
�
�

–3

d4x
dt 4

d2x
dt2

–5

dx
dt x t()

–28

u t()
1

y t()

2

3

+
+

+

+

+

–0.4

d3x
dt3

Figure 20.20 State variable diagram for model.

y t t() [] ()= 3 0 0 0 x

(b) Note that MATLAB requires you to enter values for the D matrix. You will have to enter a D
matrix as a matrix of zeros of size r × m, where r is the number of outputs and m is the number
of inputs.

A1= [0 1 0 0 ; 0 0 1 0; 0 0 0 1; 3 6 10 2]; B1= [0;0;0;1];
C1=[3 0 0 0]; D1=[0];
system1= ss(A1,B1,C1,D1);

(c) num=[3]; den=[1 2 10 6 3]
[A2,B2,C2,D2]=tf2ss([3],[1 2 10 6 3])

MATLAB gives the following results

system2=ss(A2,B2,C2,D2);

(d) The commands step(system1) or step(system2) or step(g) all produce the same output
response (Figure 20.21).

What we have learnt

� To identify the inputs, u(t), outputs, y(t), and state vector, x(t), of a system.

� To rewrite the system equations using the state variable notation.

654 Introducing a state variable description of a system

Time (seconds)

A
m

pl
itu

de

Step response

0 3 6 9 12 15 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 20.21 Step response from state variable and transfer function models.

1 1

2 2

3 3

4 4

2 10 6 3 0() ()

1 0 0 0 0() ()
()

0 1 0 0 0() ()

0 0 1 0 1() ()

() [0 0 0 3] ()

x t x t
x t x t

u t
x t x t
x t x t

y t t

- - - -È ˘ È ˘È ˘ È ˘
Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙= +Í ˙ Í ˙Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙

Í ˙ Í ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚ Î ˚
= x

�
�
�
�

� To reform the equations in state variables in the standard vector matrix ABCD
format:

�() () ()

() () ()

x Ax Bu
y Cx Du

t t t
t t t
= +
= +

� To go from a state variable model to a transfer function representation.

� To convert a system representation from transfer function to state space.

� To use the MATLAB functions tf2ss and ss2tf to make the conversion between
system representations easier.

Multiple choice

Multiple choice 655

M20.1 A system state variable representation:
(a) can only be used for SISO systems
(b) cannot be used for nonlinear systems
(c) provides a matrix–vector description of the

system
(d) is a multivariable transfer function descrip-

tion of a system

M20.2 Inputs, outputs and states are usually given
the notation:
(a) u(t), x(t), y(t)
(b) u(t), y(t), x(t)
(c) u(t), z(t), x(t)
(d) u(t), y(t), z(t)

M20.3 In an ABCD model, which matrix is often
zero?
(a) A
(b) B
(c) C
(d) D

M20.4 A two-input, three-output state variable
model:
(a) has two states
(b) has three states
(c) has a 2 × 3 state matrix
(d) the information does not define the number

of states

M20.5 What are the dimensions of the output C
matrix for a single-input, two-output, three-state
model?
(a) 3 × 3
(b) 2 × 3
(c) 3 × 2
(d) 3 × 1

M20.6 The free response of a system is the
response of the system with:
(a) a step input
(b) any input
(c) no input
(d) a bounded input signal

M20.7 The forced response of a system is:
(a) the output of �() ()x Axt t=
(b) the output of a system with no input forces
(c) the output of a system with a non-zero

input, u(t)
(d) the output of a system with non-zero initial

conditions

M20.8 The MATLAB function to transform a state
variable model to a transfer function description
is:
(a) tf2ss
(b) sv2tf
(c) ss2tf
(d) tf2sv

M20.9 The MATLAB state space ABCD block can
be used to implement:
(a) a SISO model
(b) a MIMO model
(c) a SIMO model
(d) all of the above

M20.10 A simple state variable model with A3×3,
B3×2, C1×3 and D1×2 has the following number
of inputs, outputs and states:
(a) 2, 1, 3
(b) 1, 2, 3
(c) 2, 2, 3
(d) 3, 1, 3

Questions: practical skills

Q20.1 Organise the following system equations as a state space system and identify the matrices, A, B,
C, D.

� () . ()
� () . () . () .

x t x t
x t x t x t u

1 2

2 1 2

427

221 396 304

= −
= − − + ()

() () . () ()

t
y t x t x t u t= − +1 2056

Q20.2 A tubular reactor study results in a state space model given by:

c
x
t

x t x t u tp C1 T
C

F

d
d

1
1 2

1
1

403
0 4= + +

⎛

⎝
⎜

⎞

⎠
⎟ +δ ν

δ
ω

η() ()
.

() . T

T C T

T

d
d

u t

c
x
t

x t x t u t

y t x

2

2
2 1 1 2

2

304

()

() () . ()

() (

= + +

=

δ η

η t)

Organise the system equations and identify the matrices A, B, C, D.

Q20.3 Verify that the two state space descriptions below have the same input–output transfer functions.

Q20.4 Find a state space model for the following equations given that the variable α(t) is the system
input, and β(t) is the system output. Define the matrices A, B, C, D for the system.

�() (), �() (), �() () () () (p t q t q t r t r t r t q t p t= = = − − − +5 9 5 2α t
t p t r t

)

() () ()β = +

Use MATLAB to find the system transfer function from input to output.

Q20.5 Find a state space model in companion form for the transfer function model

G s
s

s s s
()

(.)
(.)(.)(.)

=
+

+ + +
35 1

05 15 25

Draw the state space diagram for the solution found.
Use MATLAB to find a state space model from the transfer function.

Problems

P20.1 A liquid level process has the transfer function equation

H s
s

Q s()
.

()=
+

⎛
⎝
⎜

⎞
⎠
⎟

465
2 in

where the liquid height, h(t), is measured in metres, and the inflow, qin(t), is in litres per minute.
(a) Find the d.c. gain and the time constant for this system.

656 Introducing a state variable description of a system

0 1 0

1 2 1.125

[1 1]

1 1.5 1.125

0 1 1.5

[1 0]

x x u

y x

x x u

y x

È ˘ È ˘
= +Í ˙ Í ˙-Î ˚ Î ˚
=

È ˘ È ˘
= +Í ˙ Í ˙

Î ˚ Î ˚
=

�

�

(b) If the inflow is constant at 0.45 litres/min, sketch the step response for the system, showing the
steady state level expected.

(c) Use the transfer function to create a state space system description for the liquid level system.
(d) Use Simulink and the state space icon to generate a system step response for the constant inflow.
(e) Verify that the predicted steady state level is reached and that the time constant is as calculated.

P20.2 A model for a system in the steel industry relates steel product thickness, h(t), and product
tension, σ (t), as follows:

�() � () () () () . ()
�() .

h t t h t t v t

h t

+ = − − +

+

ησ η ησ

α

1 2 3 094

42T 5 12 475� () () () () . ()σ α δ σt h t t v t= − − +T

The input for this system is the motor drive voltage, v(t), the measured output is the thickness, h(t),
and η, αT and δ are physical system parameters. If an engineer defines the state variables as
x1(t) = h(t) and x2(t) = σ (t) with control input, u(t) = v(t), what state space model results? Define the
matrices A, B, C, D for the system.

P20.3 A simple d.c. motor-shaft system is described by the following block diagram, where there is a
tachogenerator and position transducer on the shaft to measure angular velocity and position,
respectively.

The model description is given as in the table below.

Variable description Notation

Input voltage v(t)

Angular velocity of shaft ω(t)

Angular position of shaft θ(t)

Inertia of the load J

Motor constants K, R

System equations

Position equation �θ ω=

Shaft velocity equation �ω ω ν=
−⎛
⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜ ⎞

⎠
⎟K

JR
K
JR

2

(a) Define suitable state and input variables to give a state space model. Define matrices A and B
algebraically.

(b) If the angular velocity is taken as one output, and the position is taken as a second output, define
an output equation for the system. Define matrices C and D.

(c) If –K/(JR) = 1.35 and K = 0.04, evaluate the state space matrices A, B, C, D.
(d) Find the transfer function from the input to the outputs.

P20.4 Two storage tanks in an oil depot are shown in the diagram and the notation, data and equations
are shown in the table.

Problems 657

d.c. motor
and
shaft

Angular
velocity, w()s

Position,
q()s

Voltage,
V()s

Variable description Notation Data

TANK 1 Head of oil in Tank 1 h1(t)

Inflow of oil in Tank 1 qIN(t) 1 m3 min–1

Area of cross-section (circular) A1 Radius: 2 m; Height, 10 m

Outflow of oil in Tank 1 q1OUT(t)

TANK 2 Head of oil in Tank 2 h2(t)

Area of cross-section (circular) A2 Radius: 5 m; Height: 10 m

Outflow of oil in Tank 2 q2OUT(t)

Proportionality constant for q2OUT(t) k 0.25 m2 min–1

Flow constant for interconnecting pipe R 0.5 m2 min–1

System equations: analysis stopcock fully open

Tank 1 level d
d IN 1OUT

()
() ()

A h
t

q t q t1 1 = −

Tank 2 level d
d 1OUT 2OUT

()
() ()

A h
t

q t q t2 2 = −

Interconnecting pipe q t R h t h t1OUT () (() ())= −1 2

Tank 2 outflow q t kh t2OUT () ()= 2

(a) If the state variables are x1(t) = h1(t) and x2(t) = h2(t), with input u(t) = qIN(t), show that the state
space model is given by

(b) If the measurements on the system are the levels in the two tanks and a flow meter measuring
q1OUT(t), determine an output equation for the system. Define matrices C and D.

(c) If the stop cock is fully open, and the tanks start from empty, use Simulink to determine the steady
levels that the in-flowing oil reaches in each tank.

(d) In an assessment of safety at the depot, the following scenario was investigated:

Tank 1: Full to a height of 9.5 metres. Tank 2: Empty
Stop cock: Was closed but fails and opens fully. Inflow supply: Turned fully on.

Use a Simulink simulation to determine the outcome of this situation. Is the system safe?

658 Introducing a state variable description of a system

1 1 1

2 2

/ / 1/
() () ()

/ ()/ 0

R A R A A
x t x t u t

R A R k A

-È ˘ È ˘
= +Í ˙ Í ˙- + Í ˙Í ˙ Î ˚Î ˚

�

Flow out:
q2OUT()t

Height
h1()t

Flow in:
qIN()t

Height
h2()t

Linearisation of systems from the
real nonlinear world

21

Working regions and
operating points

Linearisation of output equations

Linearisation by Taylor series

What do we mean by linear?

Companion form

Example: static nonlinear sensor

Simple nonlinear dynamical
equation

Block diagram for linear models

Linearising equations for liquid
level process

Summary and linearisation
procedure

Calculation of linear and
nonlinear outputs

Linearisation of a general
nonlinear state variable model

Linearising a state variable model
to find the linear ABCD form

Linearisation of dynamical system

Help? Time to readGaining confidence Skill sectionGoing deeper

Previously in this book, we have met systems whose descriptions can be represented by a set of
linear differential equations. These equations have then been transformed into a transfer function
or a linear state variable representation. In practice, most system models comprise nonlinear
equations or components with nonlinear descriptions. There is a wealth of knowledge on the
control of nonlinear systems (beyond the scope of this book), but in many cases the first stage of
analysis would be to consider whether the system could be approximated by a linear representa-
tion. If a linear form is valid then this linear representation is convenient and has the advantage
that we are able to use linear analysis techniques. In this chapter we focus on simple nonlinear
features in a system, how a linear approximation can be derived and the region over which this
approximation remains valid.

We therefore need to know how to take a set of nonlinear equations and write down a series of
linear equations describing the system. We do this by a series of examples:

1. Linearisation of a depth sensor’s static nonlinear characteristic

2. Linearisation of a simple nonlinear dynamic equation

3. Linearisation of the nonlinear model equations for a liquid level process

4. Case Study: Linearisation of a nonlinear state variable model

Learning objectives

� To understand what a nonlinear equation or nonlinear component is.

� To appreciate what an operating range and an operating point is for a system.

� To linearise a simple static equation.

� To linearise the dynamic equations for a system.

21.1 What do we mean by linear?

Consider the simple expression

y = 0.5x

We can graph the relationship between y and x as shown in Figure 21.1. We find that there
is a linear relationship between y and x. For every unit increment in x there is a corre-
sponding increment of 0.5 in y. This is also true in the case where we provide an offset to
the graph:

y = 0.5x + 3

Although the graph is offset, the relationship is still linear, since, as before, a unit incre-
ment in x causes the same increment of 0.5 in y. This is more easily seen through the
block diagram (Figure 21.2), where the offset is merely added to the linear representation.

So, how do we formally define a linear system? We define linear as follows:

A variable y given by y = ax, for some constant or function or system a, is linear in x if,
(a) when

y1 = a(x1) and y2 = a(x2)

660 Linearisation of systems from the real nonlinear world

then

y = a(x1 + x2) = ax1 + ax2 = y1 + y2

and (b) if y = a(cx) then y = ca(x) for scalars c.
We can write this pictorially using our block diagram notation as in Figure 21.3.

Example The gain block represents a linear relationship between Y(s) and U(s).

Sometimes we input sinusoids, such that u(t) = cos ω t, giving U(s) = s/(s2 + ω2). A sinusoid is
nonlinear. However, the relationship between Y(s) and U(s) will still be linear, even if the input
signal U(s) is nonlinear.

21.1 What do we mean by linear? 661

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8
y

x

y x= 0.5

y x= 0.5 + 3

Figure 21.1 Linear relationship between y and x.

0.5

(a) = 0.5y x (b) = 0.5 + 3y x

x y
0.5

x y
3

+ +

Figure 21.2 Linear systems.

a

x1

x2

y

+

+ ¤
a

x1 y1

x2 y2a

y

+

+

Figure 21.3 Linear system property.

K
U s() Y s()

21.2 Nonlinear examples

There are many examples of nonlinearities in physical systems and equipment. These
nonlinearities will appear as nonlinear equations and blocks in the control system
models. We give a few examples.

Example 1 In a liquid level system, the flow out, q(t), is proportional to the square root of the level, h(t).

q(t) = K h t()

where K represents a constant dependent on the geometry of the orifice. This flow behaviour is
not a linear relationship in h(t) since if we let

q1(t) = K h t1() and q2(t) = K h t2()

then if q3(t) = K h t h t1 2() ()+ , it does not equal q1(t) + q2(t). This contradicts our rule for linearity.
We find that square roots and squared functions are common nonlinearities in model equations.

Example 2 We consider the ideal gas law:

P t V t
T t

k
() ()

()
= =constant

where P, V and T indicate pressure, volume and temperature respectively. The equation states that

P(t) = KT(t)/V(t)

Hence pressure is linearly proportional to temperature, provided V(t) is constant. We also note that
P(t) ∝1/V(t). P(t) is therefore not linear in V(t), since we cannot find an equation of the form P(t) = kV(t).

This is an interesting example, since it illustrates that variables may be linearly related provided
other variables are held at constant values.

Example 3 The resistance output, R, of a thermistor (temperature measuring device) varies with temperature, T:

R(t) = Ae–b/T(t)

The relation between R(t) and T(t) is not linear. If we write

R1(t) = Ae–b/T1(t) and R2(t) = Ae–b/T2(t)

then if R3(t) = Ae–b/(T1(t)+T2(t)), we find that R3(t) ≠ R1(t) + R2(t). The exponential function is a
nonlinear function.

Example 4 We meet nonlinear components, especially actuators, in our control studies. Figure 21.4 shows
an example of saturation limits. For this explanation, we let the actuator slope be unity over the
range 0 ≤ u(t) ≤ d. When the controller output signal u(t), which represents the actuator input
signal, lies in the range 0 to +d, the output uc(t) will equal the input. In this range for u(t), the
component is linear. However, when either u(t) < 0 or u(t) > d, then the output saturates and we
find that the output signal magnitude is limited to 0 or +M, respectively. When the range of u(t)
includes the saturation range, the actuator is no longer linear. In practice we can think of a valve
which reaches its end points, that is, it is either fully closed or fully open. Once the valve needle,
for example, has travelled over its range, it can move no further and any further increase in input
will result in no change in the output. In practice, we often try to design controllers so that the
valve movement stays within its linear range.

662 Linearisation of systems from the real nonlinear world

Skill section Recognising nonlinear equations

Problem Determine whether the following functions are nonlinear. Use the test: given a function f(x) and
any scalar c, does (i) f(x + y) = f(x) + f(y) and (ii) f(cx) = cf(x)? If yes, then the function f(⋅) is linear;
if no, then f(⋅) is nonlinear.

(a) f(x) = x1x2, where x =

(b) f(x) = a(t)x(t)

Solution (a) We need to test if

(i)

Left-hand side of expression:

f(z) = (x1 + y1)(x2 + y2) = x1x2 + y1x2 + x1y2 + y1y2

Right-hand side of expression:

f(x) + f(y) = x1x2 + y1y2

Since x1x2 + y1y2≠ x1x2 + y1x2 + x1y2 + y1y2, the function f(⋅) is not linear, and we do not need to
apply test (ii).

(b) We need to test (i) if f(x + y) = f(x) + f(y), where f(x) = a(t)x(t) and f(y) = a(t)y(t).
Left-hand side of expression:

f(x + y) = a(t)[x(t) + y(t)] = a(t)x(t) + a(t)y(t)

Right-hand side of expression:

f(x) + f(y) = a(t)x(t) + a(t)y(t)

Both the left- and right-hand sides are equal, so we proceed to test (ii).

(ii) Test if f(cx) = cf(x)

Left-hand side of expression: a(t)[cx(t)] = c[a(t)x(t)]
Right-hand side of expression: c[a(t)x(t)]

Both the left- and right-hand sides are equal. Since both tests (i) and (ii) have been proved true,
the function is linear.

21.2 Nonlinear examples 663

M

u

uc

uc()t

Actuator
output

u t()

Controller
output

d

Figure 21.4 Non-linear actuator component.

1 1

2 2
() () (), where and

x y
f x y f x f y x y

x y
È ˘ È ˘

+ = + = =Í ˙ Í ˙
Î ˚ Î ˚

1

2

x
x

È ˘
Í ˙
Î ˚

1 1

2 2
() () where

x y
f x y f z z

x y
+È ˘

+ = = Í ˙+Î ˚

21.3 Working regions and operating points

The example of the nonlinear actuator showed us that system components (and systems
themselves) may have a range where the component may be considered to be linear. If we
can identify this range and find the linear model that corresponds to it, we can then apply
linear analysis techniques to design controllers and study the system behaviour.
However, our analysis will only remain correct provided our system remains within the
range of linearity we have found.

Example An engineer is working on a boiler control project and produces the plot in Figure 21.5 which
shows the process temperature, y (°C), for varying amounts of injected steam, x(%). The plot is
obviously nonlinear. However, if the engineer notices that the system operates close to point B for
most of its running time, a nominal linear model could be found around operating point B. Point B
corresponds to an input signal xp which results in the output signal yp. We refer to the values of xp
and yp as the nominal operating conditions at the operating point. We can see that the linear
model would be appropriate between input points x1 and x2. The input range x1 to x2 would then
correspond to a linear operating range, while the output temperature will lie between y1 to y2.

The following example illustrates how we can identify a linear working region for a
simple nonlinear sensor.

Example: A static nonlinear sensor characteristic
The tank system in Figure 21.6 shows a pump controlling the flow of water into a tank.

The depth sensor produces an output voltage which is related to the depth of liquid in the tank. A
calibration of the depth sensor involved taking output voltage readings for every 1 cm increase in

664 Linearisation of systems from the real nonlinear world

X

Injected
steam, %

Temperature,
°C

Point B

x1 x2

y1

y2

xp

yp

Figure 21.5 Process temperature varying with injected steam.

Pump
Depth sensor

Outflow

Inflow

Figure 21.6 Tank level system.

depth. This calibration started at 3 cm and continued till 28 cm. The resulting calibration curve is
plotted in Figure 21.7.

In the middle region between approximately 11.5 and 18.5 cm depth, the output sensor has a
reasonable linear approximation given by

v(t) = md(t) + c

where v(t) = sensor voltage (volts)
d(t) = depth of tank (cm)
m = linear relationship = 0.063 V/cm
c = offset = 0.15 V

Therefore

v(t) = 0.063 d(t) + 0.15

If we operate the system such that the level stays within the operating region between 11.5 and
18.5 cm, we can use this linear approximation. However, outside this region the linear formula
would no longer be valid.

For many simple nonlinear characteristics which depend on only one input, we can often
form linear approximations without going to the mathematical rigour of least-squares
approximations or other approximation techniques. However, in industrial process
systems we often find that the system itself is described mathematically by several
nonlinear differential equations from which it is more difficult to form a linear model.
Many industrial processes operate within a specified range of a set of operating condi-
tions. Within this range, a linear model may be valid. For example, we saw, in the depth
sensor example, that the linear approximation was valid over a particular range of depth.
Provided the system operated such that the depth remained within this range, the sensor
output could be considered as linear. What we are doing when we linearise a system

21.3 Working regions and operating points 665

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Voltage from level sensor
(volts)

Level in tank (cm)

Linear approximation

Experimental results

Operating
region

Figure 21.7 Graph of output from nonlinear sensor.

description is effectively the same as we saw for the nonlinear sensor above: we are
approximating a nonlinear curve by a straight line – that is, we are saying that one vari-
able is related linearly to one or more other variables.

When we linearise a system, we must choose an operating point around which we
provide the linear approximation.

If we denote the system description by a set of states x(t) and a set of inputs, u(t), then
the differential equations for the system are given by

d
d
x
t

= f(x, u)

These equations represent the nonlinear dynamic behaviour of the process and indicate
how the process outputs change with time. If we set the derivatives to zero (dx/dt = 0), we
find the steady state conditions. For example, if we consider a simple, linear differential
equation

3
d
d
x
t

+ x(t) = 5u(t)

and we set the derivative to zero, we are effectively saying that there is no change in the
state x(t) over time; that is, the system is in steady state given by the equation

x(t) = 5u(t)

We find that this corresponds to our understanding of first-order system responses: the
transient portion of the response was the response due to the dynamic differential equa-
tion, whereas the steady state portion was when the dynamics had decayed to zero and we
were left with the steady state response.

Key result

The operating conditions at which we base our linear models are often the steady state values of
the system, that is, for example: xp(t) = xp and up(t) = up. These operating points correspond to
the steady state condition

f(xp, up) = 0

Example: Operating condition for magnetic suspension system
Figure 21.8 shows a magnetic suspension system where the iron ball is suspended a distance h
below the actuator producing the magnetic field. The actuator (electromagnet) requires a current
i(t) to create the magnetic field which supports the iron ball against the downward force of gravity.
The differential equation for this system is simply derived by providing a force balance on the ball:

mh t mg
i t
h t

h t��()
()
()

�()= − −α β
2

2

where the right-hand side contains three terms: the first due to gravity, the second due to the
inverse square law attracting the ball and the last term due to air resistance opposing the fall of
the ball. The ball’s position is measured by a photocell light detection sensor.

The ball is initially suspended a distance hp from the electromagnet by applying a current ip. If
the ball moves slightly from this position, the amount of light detected on the opposite side of the
ball will change. The controller will then act on this change to alter the current to restore the ball to
its original position. The amount of current required will be a small change from the initial

666 Linearisation of systems from the real nonlinear world

operating point, ip, that is, i(t) = ip + δi(t). In this case, the operating point is given by (hp, ip). The
current ip is required to maintain the ball at its operating point, hp.

Once we have defined the set of operating conditions, we can move forwards to develop a
linear approximation.

21.4 Linear approximation through Taylor series

Our linear models for x(t) often represent the small variations, δx(t) and δu(t), around the
operating point (xp, up).

x(t) = xp + δx(t) giving δx(t) = x(t) – xp

u(t) = up + δu(t) giving δu(t) = u(t) – up

We note the following:

f(x,u): Nonlinear function which can be the set of state derivatives which may be
nonlinear in terms of the states or the inputs

fL(x,u): Linear function
f(xp,up): Value of function at operating conditions (= fL(xp,up))

We then form a Taylor series expansion and truncate at the first-order terms. Given a
nonlinear function f(x,u), the Taylor series expansion is given by

f(x,u) = f(xp, up) +
∂
∂
f
x x up p,

(x – xp) +
∂
∂
f
u x up p,

(u – up) + ...

The linear approximation is then given by

fL(x,u) = f(xp, up) + a(x – xp) + b(u – up)

where

a =
∂
∂
f
x x up p,

and b =
∂
∂
f
u x up p,

21.4 Linear approximation through Taylor series 667

h t()

Iron ball,
mass m

Transducer
creating
magnetic field

Current, ()i t

Detection
equipment

Photocell,
emits light

Controller
acts on change
in light
detected to
alter current

Figure 21.8 A magnetic suspension system.

The linear approximation can be written as

fL(x,u) = f(xp, up) + df(x – xp, u – up)

and a small change in state variable x(t), or a small change in input u(t), is linearly related
to a small change in the output of function fL(x, u). The linear variation around the oper-
ating point of (xp, up) is given by df(x – xp, u – up). Remembering that x – xp = δx and
u – up = δu, we can write

df(x – xp, u – up) = df(δx, δu) = aδx + bδu

We refer to this model as the ‘small change model’ to indicate that it represents the small
variations in the function around the operating condition.

21.4.1 Linearisation procedure
Given a nonlinear function f(x1, x2, ..., xn, u1, u2, ..., um):

1. Define the operating condition at which we will produce a linear model.
This condition is often found by setting f(x1, x2, ..., xn, u1, u2, ..., um) = 0 and consid-
ering the resulting values of x1, x2, ..., xn for a set of input values u1, u2, ..., um.

2. Use partial differentiation to find the linear coefficients and evaluate these at the oper-
ating points.

For example, a1 =
∂
∂

f
x x u1

p p,
, a2 =

∂
∂

f
x x u2

p p,
, ..., an =

∂
∂

f
xn x up p,

b1 =
∂
∂

f
u x u1

p p,
, b2 =

∂
∂

f
u x u2

p p,
, ..., bm =

∂
∂

f
um x up p,

3. Form the small change model equations:

df(δx, δu) = a1δx1 + a2δx2 + ... + an δxn + b1δu1 + b2 δu2 + ... + bmδum

Remark 1. In control systems we occasionally use large capital letters in the time domain to represent
the actual process variables. We then use small letters to denote small changes about an
operating point or reference point or reference level. This notation makes a clear distinction
between the output of the linear model and the nonlinear model equations.

2. We find that our linear models will often be written in terms of x(t) and u(t). If the system
were linear, then the states and inputs, x(t) and u(t), would be correct for small and large
changes in process values. However, if the system has been linearised, then the linear
model in x(t) and u(t) is only valid for small variations about xp and up. It is up to us to make
the correct interpretation for the system we are working with.

3. In this book, many of the examples have used linear models and the notation for the vari-
ables has been given in small letters.

21.5 Where do we apply linearisation?

Linearisation of systems
Consider the following set of nonlinear differential equations:

668 Linearisation of systems from the real nonlinear world

�()x t = f(x(t),u(t))

The condition at the operating point gives � ()x tp = f(xp, up) and for steady state conditions
we set � ()x tp = 0 and solve f(xp, up) = 0. We note that the nonlinear set of equations can be
approximated by

� ()x tL = f(xp, up) + df(δx(t), δu(t))

or

� ()x tL =
d
d pt

x x()+ =δ f(xp, up) + df(δx(t), δu(t))

and

� �x xp +δ = f(xp, up) + df (δx(t), δu(t))

Since �xp = f(xp, up), we find

δ �()x t = df (δx(t), δu(t)) = aδx(t) + bδu(t)

where

a =
∂
∂
f
x x up p,

and b =
∂
∂
f
u x up p,

However, engineers are sometimes lazy in their notation and, once the linear model is
established, tend to use x(t) and u(t) rather than δx(t) and δu(t) in expressing the linear
equations.

Linearisation of output equations
Consider the function

y(t) = g(x(t), u(t))

At the operating point we have yp = g(xp, up). Linearisation about this operating point
gives

yL(t) = g(xp, yp) + dg(δx(t), δu(t))

If we consider small changes about the operating point, we can write

yL(t) = yp + δy(t) = g(xp, yp) + dg(δx(t), δu(t))

Since yp = g(xp, up), we find that

δy(t) = dg(δx(t), δu(t))

where we have

dg(δx(t), δu(t)) = cδx(t) + dδu(t)

with

c =
∂
∂
g
x x up p,

and d =
∂
∂
g
u x up p,

21.5 Where do we apply linearisation? 669

Key result: Linearisation notation summary

Given a system: �()x t = f(x(t), u(t))
y(t) = g(x(t), u(t))

The operating condition solves: � ()x tp = f(xp, up), yp = g(xp, up)

For steady state conditions, set: � ()x tp = 0 and solve f(xp, up) = 0

Use the small change expressions: x(t) = xp + δx(t)
u(t) = up + δu(t)
y(t) = yp + δy(t)

We find the small changes around the operating point given by the model

δ �()x t = df(δx(t), δu(t)) = aδx(t) + bδu(t)

δy(t) = dg(x(t), δu(t)) = cδx(t) + dδu(t)

with

a =
∂
∂
f
x x up p,

, b =
∂
∂
f
u x up p,

c =
∂
∂
g
x x up p,

and d =
∂
∂
g
u x up p,

21.6 Linearisation of a simple nonlinear dynamic equation

We are going to apply the linearisation method to a simple dynamical equation to understand
more clearly the role of the operating point and the errors involved when the input moves from the
operating condition. Let us consider a system that has the nonlinear description:

�()x t = f(x,u) = –x2(t) + 9u(t)

In this example, we note that �()x t is a function of x(t) and u(t), both of which can vary. We would like
to linearise this system and we follow the general procedure.

1. Identify the operating condition at which we obtain a linear model
The operating condition will be provided by a set of operating points (xp, up) for the system vari-
ables. We shall choose the steady state condition, �()x t = 0. This gives

–x2(t) + 9u(t) = 0 or x(t) = 3 u t()

If we let the input signal be up = 1, then the steady state value of x(t) will be given by xp = 3. The
operating point is then (xp, up) = (3, 1). The value of the function at the operating point is zero, as
we have used the definition of steady state for our operating point: f(xp, up) = 0.

2. Apply partial differentiation to the model to find the linear coefficients
Applying a Taylor series expansion to f(x(t), u(t)) around up and xp gives the linear approximation
�xL = fL(x, u):

�xL = f(xp, up) + df(δx, δu) = f(xp, up) + a(x – xp) + b(u – up)

d

d

(())x x t

t
p +δ

= f(xp, up) + a(x – xp) + b(u – up)

670 Linearisation of systems from the real nonlinear world

Noting �xp = f(xp, up) then the ‘small change model’ for δ �()x t is given by

δ �()x t = a(x – xp) + b(u – up) = aδx + bδu

with

a =
∂
∂
f
x x up p,

= (–2x x up p,) = –6

and

b =
∂
∂
f
u x up p,

= 9

Therefore,

δ �()x t = –6 δx(t) + 9 δu(t)

21.6.1 Retrieving the ‘actual’ process value
The modelδ δ δ�() () ()x t x t u t=− +6 9 from example 2 gives the small changes around the oper-
ating point for small changes in δx(t) and δu(t). For example, since the operating value
of x(t) was xp = 3, a value of δx(t) = 0.1 would correspond to an absolute value of
x(t) = xp + δx(t) = 3.1. Likewise, the input signal δu(t) to the small change model should be
the small variation from the operating condition. In this case, with

u(t) = up + δu(t)

and up = 1, then to input the corresponding value of u(t) = 1.3 to the small change model
we would enter only δu(t) = 0.3.

If we wished to plot or use the actual values of the linear function, fL(x, u), we would
use the following equations:

fL(x, u) = f(xp, up) + aδx(t) + bδu(t)

= f(xp, up) –6δx(t) + 9δu(t)

= f(xp, up) – 6(x – xp) + 9(u – up)

We note that since in our example f(xp, up) = 0,

fL(x, u) = –6(x – xp) + 9(u – up)

21.6.2 Calculation of the linear and nonlinear output values
Let us calculate both the nonlinear and linear output for values of x around xp. We use the
following MATLAB code to create a vector of nonlinear and a vector of linear values
around the operating point.

x=0:0.5:6; % Create vector of x values spaced 0.5 apart
u=1; % Let u(t) be a constant value for the example
fnl=-x.*x +9*u; % Calculate nonlinear function
fl=–6*(x–3)+9*(u–1); % Calculate linear function
plot(x,fnl); % Plot nonlinear function
hold % Current plot held
plot(x,fl) % Superimpose linear function

21.6 Linearisation of a simple nonlinear dynamic equation 671

Figure 21.9 shows both the linear and nonlinear function plotted against varying values
of x with u held constant at u(t) =1. We can see that the functions take the same value at
the operating point and that the error between the nonlinear and linear function
increases as we move further from the operating point.

21.6.3 Block diagrams for linear models
The small change linear model

δ �()x t = –6δx(t) + 9δu(t)

can be expressed in block diagram format as shown in Figure 21.10.

What we must note is that the output δx(t) will only represent the small changes from the
operating point. We must remember that to find the correct output we must add on the
steady state value, xp. We show this in Figure 21.11. This becomes important in situa-
tions where we derive linear models for control design, simulate them in Simulink and
then must remember that the output is not the actual voltage or pressure, for example,
but the small change from the operating point. Likewise, if we wished to input the actual
process value u(t), we would alter the input shown in Figure 21.11.

672 Linearisation of systems from the real nonlinear world

0 1 2 3 4 5 6
–30

–25

–20

–15

–10

–5

0

5

10

15

20

Function output

Values of x

Nonlinear function

Linear function

Operating point

Figure 21.9 Non-linear and linear functions.

Ú

–6

+9
d du t() ()t�

+

+ x dx t()

Figure 21.10 Block diagram of small change linear model.

21.7 Linearising the model equations for a liquid level process

We now apply the linearisation method to an engineering example. We use a simple liquid level
example. The nonlinear equations for variations in the tank variables are:

Qi – Qo = A
d
d
H
t

and

Qo = Cdad 2gH

where

Qi flow in (m3 s–1)
Qo flow out (m3 s–1)
A area of tank (m2)
H height of tank (m)
Cd discharge coefficient
ad area of discharge orifice (m2)
g acceleration due to gravity (m s–2)

We can rearrange the differential equation to give the expression for the change in output level as:

d
d

i
i

H
t

Q
A

R
A

H f H Q= − = (,)

where R = Cdad 2g is a constant dependent on the orifice. We provide the following system
values:

Cd = 0.6, ad = 0.0314 m2, A = 0.97 m2, g = 9.81 m s–2

giving R = Cdad 2g = 0.0834. The function f(H, Qi) is linear in Qi but is not a linear expression in
H, and we will now linearise to produce a linear model. We follow the general procedure:

1. Define the operating condition for the linear model
We first need to define the operating point of the process. We will assume that we wish to control
the tank level to be at a depth of h(t) = 15 cm = 0.15 m. Therefore we will set the operating condi-
tion at hp = 0.15. From the original equation we find that in steady state, dH/dt = 0, giving

0 = −
Q
A

R
A

Hi

21.7 Linearising the model equations for a liquid level process 673

Ú

–6

+9
d du t() ()tx�

+

+ dx t() x t()

xp

+
+

–
+

up

u t()

Figure 21.11 Block diagram of small change model showing the use of actual process input
and output values.

or

Qi = R H

Therefore to achieve the steady state level of hp = 0.15 m, we need to input a constant flow of
Qi = qp, where

qp = 0.0834 × 015. = 0.0323 m3/s

We assume that we are working around an operating point, given by (hp, qp) and consider small
changes, h(t), around this point:

H(t) = hp + h(t)

Q(t) = qp + qi(t)

2. Apply partial differentiation to evaluate the linear coefficients and evaluate these coefficients
at the values given by the operating condition

We linearise the function dH/dt to find

d(

d
ph h t

t

+ ())
= f(hp, qp) + df(h(t), qi(t))

Since �hp = f(hp, qp), the small change model is given by

d
d
h
t

= df(h(t), qi(t)) = ah(t) + bqi(t)

where a and b are the linear model coefficients given by:

Then

d
d p

i
h
t

R
A h

h t
A

q t= − +
2

1
() ()

3. Form the linear model equations.
The linear model is given by

d
d i

p

h
t A

q t
R

A h
h t= −

1
2

() ()

This is a linear first-order differential equation expression in the small variations of flow and depth,
qi(t) and h(t), respectively. We can represent this in state variable form by using the following
notation change:

input u(t): qi(t), inflow

state, x(t): h(t), level

output, y(t): h(t), level

674 Linearisation of systems from the real nonlinear world

p p p p

p p p p

p, ,

, ,

1
2 2

1 1

q h q h

q h q h

f R R
a

H A H A h

f
b

Q A A

È ˘∂
= = - = -Í ˙∂ Î ˚

∂ È ˘= = =Í ˙∂ Î ˚

This gives

�() () ()

() ()

x t
R

A h
x t

A
u t

y t x t

= − +

=

2
1

p

or

Using the system values gives a = –0.1110, b = 1.0309.
We use the state space block in Simulink to provide a step response for the system (Figure

21.12). Since we have a linearised model, we have chosen the input step change in flow to be
0.001 m3/s. This represents a 3% change in flow from the operating condition of qp = 0.0323
m3/s. Likewise, the output signal from the ABCD model is the change in level from the operating
condition of 0.15 m = 15 cm. We should remember to add the operating point values if we wish to
report the actual tank input flow and the resulting tank level.

21.8 Linearisation of a more general nonlinear state variable model

If we generalise the above linearisation we find that given a system

�() ((), ())
() ((), ())

x f x u
y g x u

t t t
t t t
=
=

21.8 Linearisation of a more general nonlinear state variable model 675

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Change in tank level, cm

Time, seconds

Figure 21.12 Change in level of tank contents due to 3% inflow change.

p

() () ()

() ()

1
[1]

2

x t ax t bu t

y t cx t

R
a b c

AA h

= +
=

È ˘ È ˘Í ˙= - = =Í ˙Í ˙ Î ˚Î ˚

�

then the linear ABCD model will be given by (for a 3 × 3 system with two inputs and two
outputs):

Although this may look like complicated mathematics, the process of linearising the
nonlinear model is not difficult; once we have a nonlinear state variable model and the
operating conditions, it is a simple case of using partial differentiation with each state
and each input variable. We illustrate this with the magnetic suspension example.

21.9 Linearising a nonlinear state variable model to produce a linear
ABCD model

We consider the magnetic suspension example, which has a second-order differential equation
describing the behaviour of the ball under gravity and the magnetic force.

mh t mg
i t
h t

h t��()
()
()

�()= − −α β
2

2

or

��()
()
()

�()h t g a
i t
h t

bh t= − −
2

2

where a = α /m and b = β/m. To convert the model to state variable form, we first identify the
inputs, outputs and state variables.

The input signal is the current, i(t).
The output signal will be the distance, h(t).
We will let the states be the ball height and velocity.

x1(t) = h(t)

x2(t) = �()h t = � ()x t1

We now re-examine the equation for ��()h t , substituting in for the states x1(t), x2(t) and input, u(t), to
give

� ()
()

()
()x t g a

u t

x t
bx t2

2

1
2 2= − −

Therefore the two state variable nonlinear differential equations are

676 Linearisation of systems from the real nonlinear world

d d
d d
d d

È ˘ È ˘∂ ∂ ∂ ∂ ∂
Í ˙ Í ˙∂ ∂ ∂ ∂ ∂Í ˙ Í ˙È ˘ È ˘Í ˙ Í ˙∂ ∂ ∂ ∂ ∂Í ˙ Í ˙= +Í ˙ Í ˙Í ˙ Í ˙∂ ∂ ∂ ∂ ∂Í ˙ Í ˙Í ˙ Í ˙Î ˚ Î ˚Í ˙ Í ˙∂ ∂∂ ∂ ∂Í ˙ Í ˙

∂ ∂∂ ∂ ∂Í ˙ Í ˙Î ˚Î ˚

�
�
�

pp p

1 1 1 1 1

1 2 3 1 2
1 1

2 2 2 2 2
2 2

1 2 3 1 2
3 3

3 33 3 3

1 21 2 3 ,,

() ()
() ()
() ()

x ux u

f f f f f
x x x u u

x t x t
f f f f f

x t x t
x x x u u

x t x t
f ff f f
u ux x x

d
d

d
d d

d
d d

d

È ˘
Í ˙
Î ˚

∂ ∂ ∂ ∂ ∂È ˘ È ˘
È ˘Í ˙ Í ˙∂ ∂ ∂ ∂ ∂È ˘ È ˘Í ˙Í ˙ Í ˙= +Í ˙ Í ˙Í ˙Í ˙ Í ˙∂ ∂ ∂ ∂ ∂Î ˚ Î ˚Í ˙Í ˙ Í ˙Î ˚∂ ∂ ∂ ∂ ∂Í ˙Í ˙ Î ˚Î ˚

p

p pp p

1

2

1 1 1 1 1
1

1 2 3 1 21 1
2

2 2 2 2 22 2
3

1 2 3 1 2 ,,

()
()

()
() ()

()
() ()

()
x ux u

u t
u t

g g g g g
x t

x x x u uy t u t
x t

g g g g gy t u t
x t

x x x u u

� () () � () (, ,)

� ()
()

x t x t x t f x x u

x t g a
u t

x

1 2 1 1 1 2

2

2

1
2

= =

= −

or

()
() � () (, ,)

t
bx t x t f x x u− =2 2 2 1 2or

with the output equation given by

y(t) = x1(t) or y(t) = g1(x1, x2, u)

This model, although represented in terms of state variables, is not in a linear ABCD format. We
also note that since we have two state differential equations, we have two functions f1 and f2. The
output is given by g1. We apply the general linearisation procedure to the nonlinear system.

1. Identify the operating condition for linearisation
To produce a linear ABCD model from the nonlinear state variable and output equations, we must
linearise these equations about an operating point. We note that in this example, the output equa-
tion, y(t) = x1(t), and the first state variable equation is already linear, and therefore we only
consider the second state variable differential equation, which is given by

� ()x t2 = f2(x1(t), x2(t), u(t))

The operating point is given by the values of up and xp = [x1p x2p]T. In this example, we set the
operating current to be i(t) = 0.12 A, giving up = 0.12 A. We let the rates of the state variables be
zero, effectively saying that at the operating point the ball has a fixed position but with no velocity,
that is, �()h t = 0. In state variables this corresponds to x2(t) = 0 = x2p. If � ()x t2 = 0, then the nonlinear
differential equation for � ()x t2 gives

0 = g – a
u

x
p

p

2

1
2

which results in

x1p =
a
g

up

If we let m = 0.1 kg, β = 0.95 kg/s, α = 0.9 m3 s–2 kg/A2 and up = 0.12 A, then b = 9.5 s–1 and
a = 9 m3 s–2/A2. This gives

x1p =
9

981.
× 0.12 = 0.1101 m

Therefore we have up = 0.12, xp = [0.1101 0]T.

2. Apply partial differentiation to the nonlinear model equations to produce the linear coeffi-
cients, and evaluate these coefficients at the operating condition values.

We consider firstly the differential equation for state x1(t):

�x1(t) = f1(x1(t), x2(t), u(t)) = x2(t)

The linear approximation to this function gives

d

d
p()x x

t
1 1+δ

= f1(x1p, x2p, up) + df1(x1(t), x2(t), u(t))

The small change model can be determined as

21.9 Linearising a nonlinear state variable model to produce a linear ABCD model 677

δ � ()x t1 = df1(x1(t), x2(t), u(t)) = a11δ x1(t) + a12δ x2(t) + b11δ u(t)

where a11, a12 and b11 are the linear coefficients given by

a
f
x

a
f
x

b
f
u

x u

x u

x

11
1

1

12
1

2

11
1

0

1 1

= =

= = =

=

∂
∂

∂
∂

∂
∂

p p

p p

p

,

,

,

[]

up

= 0

This gives the small change model for � ()x t1 as

δ δ� () ()x t x t1 2=

We note that the original differential equation was linear and that linearising this equation merely
resulted in a similar equation in the small change variables.

We can see this also if we consider the linear output equation

y(t) = g1(x1(t), x2(t), u(t)) = x1(t)

Applying the linearisation procedure produces the small change model

δ y(t) = c11δ x1(t) + c12δ x2(t) + d11δ u(t)

where the linear coefficients are given by

c
g
x

c
g
x

d
g
u

x u

x u

x u

11
1

1

12
1

2

11
1

1

0

0

= =

= =

= =

∂
∂

∂
∂

∂
∂

p p

p p

p p

,

,

,

This gives the small change model for y(t) as

δ y(t) = δ x1(t)

and we note once again that applying the linearisation procedure to a linear equation produces
the same linear equation, but in terms of the small change variables.

We now consider the nonlinear function given by

� ()x t2 = f2(x1(t), x2(t), u(t))

The linear approximation is given by

d

d

()x x

t
p2 2+δ

= f2(x1p, x2p , up) + df2(x1(t), x2(t), u(t))

The small change model is given by

δ � ()x t2 = df2(x1(t), x2(t), u(t)) = a21δx1(t) + a22δx2(t) + b21δu(t)

678 Linearisation of systems from the real nonlinear world

where a21, a22 and b21 are the linear coefficients given by

a21 =
∂
∂

f
x x u1

p p,
= 2

2

1
3a

u

x
x u

⎡

⎣
⎢

⎤

⎦
⎥

p p,

= 2
2

1
3a

u

x
p

p
=

2 9 012
01101

2

2
× × .
.

= 21.38

a22 =
∂
∂

f
x x u2

p p,
= [–b] = – 9.5

b21 =
∂
∂
f
u x up p,

=
−⎡
⎣⎢

⎤
⎦⎥

2

1

au

x x u

p

p p,
=

−2au

x
p

1p
= −

× ×2 9 012
01101

.
.

= –19.62

This results in a model

δ � ()x t2 = 21.38δx1(t) – 9.5δx2(t) – 19.62δu(t)

3. Form the linear equation
The linear model equations are

δ � ()x t1 = δx2(t)

δ � ()x t2 = 21.38δx1(t) – 9.5δx2(t) – 19.62δu(t)

This can now be written in an ABCD linear model, where the coefficients of the ABCD matrices
correspond to the linearisation coefficients a11, a12,

Once again, the output of this system only represents the movement of the ball from the operating
point of yp = x1p = 0.1101 m. We would have to add this value to the output δy(t) to find the actual
position y(t) of the ball.

y(t) = yp + δy(t)

What we have learnt

� To recognise typical nonlinearities within a system.

� To identify the operating point, for example f(xp, up), for a linearisation and realise
that the variables δx(t) and δu(t) then represent small variations round that operating
condition.

� To linearise a nonlinear set of dynamical equations:

�() ((), ())

() ((), ())

x t f x t u t
y t g x t u t

=
=

leading to the linear dynamical model

� () (,)x t f x uL p p= + df(() , ())x t x u t u− −p p

y t g x uL p p() (,)= + dg(() , ())x t x u t u− −p p

Multiple choice 679

1 1

2 2

0 1 0() ()
()

21.38 9.5 19.62() ()

() [1 0] ()

x t x t
u t

x t x t

y t x t

d d
d

d d
d d

È ˘ È ˘È ˘ È ˘
= +Í ˙ Í ˙Í ˙ Í ˙- -Î ˚ Î ˚Î ˚ Î ˚
=

�
�

where

df(x – xp, u – up) = df(δx(t), δu(t)) = aδx(t) + bδu(t)

and

dg(x – xp, u – up) = dg(δx(t), δu(t)) = cδx(t) + dδu(t)

with

a
f
x

b
f
u

c
g
x

d
g
ux u x u x u x u

= = = =
∂
∂

∂
∂

∂
∂

∂
∂

p p p p p p p p

and
, , , ,

, ,

� To recognise the ‘small change’ model given by

df(x – xp, u – up) = df(δx(t), δu(t)) = aδx(t) + bδu(t)

as representing the small changes of the process variables from the operating points.

Multiple choice

680 Linearisation of systems from the real nonlinear world

M21.1 If a1, a2 and a3 are constants, which of the
following equations is linear in x?
(a) y = a1x + a2x2 + a3x3

(b) y = (a1 + a2 + a3)x
(c) y = x
(d) y = a1/x

M21.2 Saturation effects:
(a) are found in actuators
(b) are nonlinear effects
(c) limit the control output signal
(d) all of the above

M21.3 In most cases, a nominal linear model can
only be used
(a) over a wide operating range
(b) over a specified operating range
(c) at several operating points
(d) where the system output shows large

nonlinearity

M21.4 A linear approximation, at the operating
point xp = 1.5, to y = 3x2, is:
(a) δy = 6δx
(b) δy = 9δx
(c) δy = 6.75δx
(d) δy = 13.5δx

M21.5 The linear function δxL, at the operating
point up = 3, of x(u) = 2u3 + 4 is:
(a) δxL = 6δu
(b) δxL = 10δu
(c) δxL = 54δu
(d) δxL = 58δu

M21.6 A linear approximation, at the operating
point xp = 0.5, up = 1.5, to y(x, u) = 2x2 + xu +
u2, is:
(a) δy = 3.5δx + 3.5δu
(b) δy = 4δx + 2δu
(c) δy = 2δx + 3δu
(d) δy = 4.75δx + 3.75δu

M21.7 If we have defined a linear model
δx = 3.4δu1 + 6δu2, δx represents:
(a) the value of x(t) at the operating point
(b) the large variations in x(t) after the

linearisation process
(c) the small variations in x(t) around the oper-

ating point
(d) the change in the operating point

M21.8 The ABCD matrices resulting from a
linearisation of a nonlinear model:
(a) contain the nonlinear terms
(b) contain the operating points
(c) contain the linearisation coefficients
(d) contain the small change inputs

M21.9 If we use a linearised model, the output, δ y,
of the ABCD system will represent:
(a) the change in output from the operating

point
(b) the step response of the nonlinear system
(c) the step response of the linear system
(d) the change in output from zero

Questions: practical skills

Q21.1 Prove that the following functions are linear:
(a) f(x1, x2) = 4x1 + 7x2

(b) f(x) =

Q21.2 Prove that the following functions are nonlinear:

(a) f(x) =
x
x
1

2
where

(b) f(x,u) =

Q21.3 The resistance relationship for a thermistor is given by R = Ae–b/T.
(a) If the following variables are defined:

y = ln R and x = 1/T

show that the resistance relationship can be transformed into the linear relationship

y = ln A – bx

(b) Suggest what experimental use this transformation might have in calibrating a thermistor device.

Q21.4 A process furnace unit has a dynamical state variable model given by

�()x t = –10x(t) + 0.2u(t)

y(t) = 2550x(t)

where u(t) represents the fuel flow in m3/min, x(t) represents the thermocouple output in volts and y(t)
represents the measured temperature in °C/volt

A steady operating condition arises when the fuel flow input is 10 m3/min. Determine the furnace
operating temperature.

Practical skills 681

M21.10 Given a SISO nonlinear model, and a
linearisation of this model, then if we double
the size of the input step to both the nonlinear
and linear system:
(a) the output from each system will always

double
(b) the output from the nonlinear system will

always double
(c) the output from the linear system will always

double
(d) the output from the nonlinear system will

always be double the output from the linear
system

-È ˘ È ˘
=Í ˙ Í ˙+Î ˚ Î ˚

1 2 1

1 2 2

3.5 2.4
where

7.2 0.5

x x x
x

x x x

1

2

x
x

x
È ˘

= Í ˙
Î ˚

2
1 11 1 2 2

2 22 1
where and

x ux u x u x u
x ux u

È ˘ È ˘ È ˘+ + = =Í ˙ Í ˙ Í ˙
+Í ˙ Î ˚ Î ˚Î ˚

Problem

P21.1 Consider a simple nonlinear tank filling operation.
The dimensions of the tank, which is of circular
cross-section are shown opposite.

Dimensions, data and features:

Ro: radius at the tank base = 0.2 m
RT: radius at the tank top = 3.2 m
HT: height of tank = 3 m
qin(t): inflow = 0.2 m3/s
qout(t): outflow = q h t Rout f= () /

Rf: outflow proportionality constant = 2.74

(a) Use the volumetric conservation principle:

d
d
V
t

= qin(t) – qout(t)

to prove

d
d
h
t
=

−
+ +

R q t h t
h t R h t R R

f in

o o f

() ()
(() ())π α α2 2 22

where

α =
R R

H
T o

T

−

(b) If the level h(t) is defined to be state x(t) and a flow meter is located at the orifice, define the
nonlinear system equations

�()x t = f(x(t), u(t))

y(t) = g(x(t), u(t))

(c) For constant inflow qin(t) = qIN, prove that the operating level of the tank satisfies

hp = R qf IN
2 2

(d) If the operating inflow qIN = 0.2 m3/s, derive a linear state variable model for the tank system.

P21.2 The magnetic suspension system has a state variable model given by

� ()x t1 = x2(t)

� ()x t2 = g – a
u t

x t

2

1
2
()

()
– bx2(t)

where the system data gives a = 9 units; b = 9.5 s–1 and g = 9.81 m s–2. The input for the system
was in the range 0.08 to 0.175 A.
(a) Calculate a set of linear models for the input signal changing in steps of 0.02 from 0.08 to 0.18

and examine the change in model parameters over the range.
(b) If a control design is to follow the modelling exercise, which model would you use and why?

682 Linearisation of systems from the real nonlinear world

Flow out:

qout()t
h t()

Flow in:

q in()t

Ro

R T

H T

Analysis of state variable systems22

Eigenvalues and eigenvectors

Inverted pendulum example

Poles, eigenvalues and
system stability

Matrix revision: multiplication,
inverse, determinant

Ship steering example

Further analysis:
Eigenvalues and time responses

System analysis example:
masses and springs

eig command

Help? Time to readGaining confidence Skill sectionGoing deeper

Industrial systems are found in a range of sizes and complexity. Liquid level systems tend to be
simple, cold rolling steel mills and aircraft systems tend to be complicated, and utility systems like
water distribution networks tend to be large-scale applications of process units that are in them-
selves fairly simple. What we have learnt, though, from the previous chapter is that the realistic
system models are generally nonlinear. We therefore spent some considerable time and intellec-
tual effort understanding the method of finding a representative linear model so that we can use
linear control techniques. Even before that we learnt the rather abstract methods of how to repre-
sent a control system model in the concise state variable format. All this is fairly mathematical, and
by concentrating on these formal processes we have perhaps lost sight of the insight we gained
from the development and manipulation of transfer functions, and our knowledge of the system
poles and zeros and their relation to system stability. We address these issues in this chapter by
providing some analysis of our state variable model and, in particular, linking our results on
stability to those we developed for transfer function models.

It turns out that the eigenvalues of the system model matrix, A, are important indicators of the
stability of a system. This means that matrix operations and matrix analysis are going to be very
important in this chapter. We begin the chapter with some revision material on these topics. We
look at matrix multiplication, the matrix determinant and inverse matrix calculations. We then intro-
duce eigenvalues and eigenvectors. It might seem surprising, but the more abstract expressions
for many of the results in this chapter say exactly what needs to be said with far fewer symbols
than long-winded explanations. But we also find that we need to practice finding deeper interpre-
tations in our mathematical formulas, and this takes time and patience. MATLAB and Simulink can
remove one difficulty from these issues by allowing us direct calculation of many of the more
abstract matrix operations and expressions, and we have included commands where appropriate.

Learning objectives

� To revise some elementary matrix operations.

� To introduce eigenvalues and eigenvectors.

� To relate eigenvalues to system poles and system stability.

� To analyse state variable system time responses in more detail.

22.1 Matrix revision

We look at some of the elementary rules for matrix multiplication, and then at how to
calculate the determinant and the inverse of a 2 × 2 matrix. These formulas will be useful
for simple bookwork examples. For more complicated examples we would use the
MATLAB commands given.

22.1.1 Matrix multiplication
Matrix multiplication is not always defined, so we must be far more careful to check that
the dimensions of any matrix expression are compatible.

684 Analysis of state variable systems

Compatibility rule: if matrix A has ma rows and na columns, and matrix B has mb rows
and nb columns, then to be able to form the matrix product, AB, the inner dimensions
must be equal:

that is, na = mb. The resulting matrix, AB, will have dimensions given by the outer
dimensions of the product, ma × nb.

Skill section

For the following matrix multiplications, AB, BC, CB, BD, EC, CE, we need to check whether the
proposed product is an allowable matrix calculation. When we have a compatible product, we will
perform the required calculation.

We first check the dimensions of the matrices and determine which of the products are compat-
ible (Table 22.1).

The allowable calculations are:

22.1 Matrix revision 685

A ma × na Bmb × nb

Inner
dimensions

Outer
dimensions

Dimensions of
first matrix

Dimensions of
second matrix

Are inner dimen-
sions equal?

Is product
allowable?

If yes, what are the dimen-
sions of the final matrix
product (outer dimensions)?

A: 2 × 2 B: 2 × 1 Yes Yes AB: 2 × 1

B: 2 × 1 C: 1 × 3 Yes Yes BC: 2 × 3

C: 1 × 3 B: 2 × 1 No No

B: 2 × 1 D: 2 × 2 No No

E: 3 × 2 C: 1 × 3 No No

C: 1 × 3 E: 3 × 2 Yes Yes CE: 1 × 2

Table 22.1 Matrix multiplication skills test.

1 0
1 1 3 0 7

, , [3 2 5], , 3 4
2 3 2 1 0

5 1

È ˘
-È ˘ È ˘ È ˘ Í ˙= = = = =Í ˙ Í ˙ Í ˙ Í ˙-Î ˚ Î ˚ Î ˚ Í ˙-Î ˚

A B C D E

1 9 6 15
, , [34 3]

12 6 4 10
È ˘ È ˘

= = =Í ˙ Í ˙
Î ˚ Î ˚

AB BC CE

When we manipulate matrix expressions we must ensure that the dimensions of the
resulting equations are compatible. We must preserve this compatibility property when
we use the operations of matrix pre-multiplication and matrix post-multiplication. Thus
we have to bring extra rigour to our thinking about matrix equations, because matrix
multiplication is not commutative. This means that if A and B are compatible and both
products AB and BA can be defined, then, in general, AB ≠ BA.

Example Let

Then, since both A and B are 2 × 2 matrices, their products AB and BA will be defined. However,
we find that

and

Obviously AB ≠ BA.
Thus, we cannot interchange the order of matrix multiplication at will in the way that we can for

our usual scalar algebra, because this will invalidate the matrix expression or equation.

22.1.2 Inverse matrix calculation
The equivalent of ‘1’ in matrices is the unit matrix or the identity matrix. The identity
matrix is a square matrix that contains ones on the diagonal and zeros elsewhere. It is
usually given the symbol I, sometimes it is written as In×n, where the subscript shows the
size of the unit matrix being used. For example, the identity matrix I3×3 is given by:

We use the identity matrix to define the inverse matrix when it exists.

Inverse matrix: any square (n × n) matrix, A, that has an inverse matrix, denoted A–1,
produces an (n × n) identity matrix from the following multiplication operations:

AA–1 = A–1A = In×n

Matrix pre-multiplication: Let A (n × n), B (n × r) and X (n × r) be matrices such that A–1

exists and that AX = B. Then to find X, we must pre-multiply both sides by A–1:

AX = B

A–1 × (AX) = A–1 × B

A–1AX = A–1B

In×nX = A–1B

X = A–1B

686 Analysis of state variable systems

1 3 4 1
and

2 3 0 2
È ˘ È ˘

= =Í ˙ Í ˙- -Î ˚ Î ˚
A B

1 3 4 1 4 5

2 3 0 2 8 8

-È ˘ È ˘ È ˘
= =Í ˙ Í ˙ Í ˙- -Î ˚ Î ˚ Î ˚

AB

4 1 1 3 6 9

0 2 2 3 4 6
È ˘ È ˘ È ˘

= =Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚
BA

¥

È ˘
Í ˙= Í ˙
Í ˙Î ˚

3 3

1 0 0
0 1 0
0 0 1

I

Matrix post-multiplication: Let A (n × n), B (r × n) and X (r × n) be matrices such that A–1

exists and that XA = B. Then to find X, we must post-multiply both sides by A–1:

XA = B

(XA) × A–1 = B × A–1

XAA–1 = BA–1

XIn×n = BA–1

X = BA–1

Determinant of a 2 × 2 matrix: If ,

then the determinant is calculated as det(A) = ad – bc. The determinant of matrix A is
denoted by det(A).

Inverse of a 2 × 2 matrix: If matrix ,

and det(A) ≠ 0, then the inverse matrix, A–1, is calculated as

This can be verified by proving that AA–1 = A–1A = I2×2.

Inverse of an n × n matrix: We can generalise the 2 × 2 matrix result as follows. If matrix
A = [aij] and det(A) ≠ 0, then the inverse matrix, A–1, is formally calculated as

A
A
A

− =1 adj()
()det

The numerator term, adj(A), in the expression is known as the adjoint matrix. In words,
the adjoint matrix is the transposed matrix of signed co-factors of matrix A.

The MATLAB command for matrix inversion is simple. To find the inverse of matrix
A, we write

inv(A)

Skill section

Simple 2 × 2 matrix examples will be found in your class tests, assessed tutorials and even exami-
nations, so it is really useful to polish your 2 × 2 matrix skills.

For the matrices

we look at the determinant and, if possible, the matrix inverse calculations.

22.1 Matrix revision 687

a b
c d

È ˘
= Í ˙

Î ˚
A

a b
c d

È ˘
= Í ˙

Î ˚
A

1 1 1
det()

d b d b
c a c aad bc

- - -È ˘ È ˘
= =Í ˙ Í ˙- --Î ˚ Î ˚

A
A

-È ˘ È ˘
= =Í ˙ Í ˙-Î ˚ Î ˚

1 1 0 7
,

2 3 1 0
A D

1 1
, det() (1 3 (1) 2) 5

2 3

-È ˘
= = ¥ - - ¥ =Í ˙

Î ˚
A A

Since det(A) ≠ 0, we can compute the matrix inverse as

Since det(D) ≠ 0, we can compute the matrix inverse as

Many matrices have structure in the elements that make some matrix calculations simpler.
Consider calculating F–1, where

The matrix F is diagonal, so that only the diagonal elements of the matrix have non-zero values. If
we compute the determinant, we find

det(F) = (3 × (–2) – 0 × 0) = –6

Since det(F) ≠ 0, we can compute the matrix inverse as

We find that the inverse of the diagonal matrix F is just the matrix F with the diagonal entries inverted.
We could have easily written this down without completing the formal inversion calculation.

22.2 Eigenvalues and eigenvectors

For a square matrix A which is of dimension n × n we can find a set of n eigenvalues and
eigenvectors. Eigenvalue and eigenvector tell us about properties of the A matrix that are
not immediately obvious from just looking at the matrix. The equation which defines an
eigenvector and its corresponding eigenvalue takes the form

Ax = λx, x ≠ 0

The eigenvector x has dimensions of n × 1 and the eigenvalue λ is a scalar. We can inter-
pret the eigenvector as a vector direction that, when multiplied by A, gives a scalar
multiple, λ, of itself.

22.2.1 Using determinants to find eigenvalues
We can rewrite the eigenvalue–eigenvector equation as

()λI A x− = 0

688 Analysis of state variable systems

1 3 11
2 15

- È ˘Ê ˆ= Í ˙Á ˜Ë ¯ -Î ˚
A

0 7
, det() (0 0 7 (1)) 7

1 0
È ˘

= = ¥ - ¥ - =Í ˙-Î ˚
D D

1 0 71
1 07

- -È ˘Ê ˆ= Í ˙Á ˜Ë ¯ Î ˚
D

3 0

0 2
È ˘

= Í ˙-Î ˚
F

1
31

1
2

02 01
0 36 0

-
È ˘-È ˘Ê ˆ Í ˙= =Í ˙Á ˜ Í ˙Ë ¯- -Î ˚ Î ˚

F

where I is an identity matrix of the same dimension as A. Any value of λ which makes the deter-
minant of λI – A zero is a solution of the above equation. We call the solutions the eigenvalues.

Key result: Eigenvalues of matrix A

To find the eigenvalues of a matrix A, we solve the following equation

det()λI A− = 0

This method leads to an nth order polynomial equation for which the n solutions will be
the eigenvalues of the matrix A. We would only recommend this method for low values of
n, say n = 2 or 3. This polynomial link also leads us to realise that a real matrix A can have
complex eigenvalues and that these always occur in complex conjugate pairs.

22.2.2 Using eigenvectors to diagonalise a matrix
If A is a 3 × 3 matrix for which we have found the three eigenvalue–eigenvector pairs
(λ1,m1), (λ2,m2), (λ3,m3), then we can introduce an eigenvector matrix, M, defined by
M = [m1, m2, m3]. We can then set up an equation where we pre-multiply M by matrix A
and obtain the following analysis:

where

is a diagonal matrix of eigenvalues.
It is not difficult to realise that this analysis will generalise to the n × n case. We can use

the relationship AM = MË in two different ways:

(a) Post-multiply by M–1 to give A = MËM–1

(b) Pre-multiply by M–1 to give M–1AM = Ë

Case (b) illustrates that we can use the inverse of the eigenvector matrix, M, to
diagonalise the matrix A.

22.2.3 MATLAB eig command
Evaluating eigenvalues and eigenvectors is time-consuming to do for more than a simple
second-order system, and the following MATLAB commands are useful:

22.2 Eigenvalues and eigenvectors 689

l l l l l l

l
l

l

= =
= =

È ˘
Í ˙= Í ˙
Í ˙Î ˚

=

1 2 3 1 2 3

1 1 2 2 3 3 1 1 2 2 3 3

1

1 2 3 2

3

[] []

[] []

0 0
[] 0 0

0 0

AM A m m m Am Am Am

m m m m m m

m m m

MË

1

2

3

0 0
0 0
0 0

l
l

l

È ˘
Í ˙= Í ˙
Í ˙Î ˚

Ë

� The command eig(A) produces a vector containing the eigenvalues of a square matrix
A.

� [M,lambda] = eig(A) produces a diagonal matrix lambda of eigenvalues and a full
matrix M whose columns are the corresponding eigenvectors, so that

A*M = M*lambda

Problem Use the MATLAB command eig(A) to calculate the eigenvalues and eigenvectors for

Solution We enter the matrix A first as

A = [1 0 3; 4 6 9; –7 1 0];

We could simply type

eig(A)

which would give us the following vector of eigenvalues:

–0.0222 + 4.2793i
–0.0222 – 4.2793i
7.0444

We note that we have two complex eigenvalues and one real eigenvalue. To find the eigenvectors,
we use

[M, lambda] = eig(A);

The matrix lambda will give us a square matrix with the eigenvalues on the diagonal and the
eigenvector matrix M will appear as:

M =
–0.3552 – 0.1884i –0.3552 + 0.1884i 0.0469
–0.6015 + 0.3589i –0.6015 – 0.3589i 0.9944
0.3897 – 0.4425i 0.3897 + 0.4425i 0.0945

Note that this has three eigenvector columns, and that two of the eigenvectors are complex
vectors.

In some matrices the eigenvalues can simply be read from the matrix, for example:

1. If A is diagonal, the eigenvalues will be equal to the diagonal entries:

has eigenvalues –0.22 + 4.28i, –0.22 – 4.28i, 7.04.

2. Matrices with upper or lower triangular structure have eigenvalues as the diagonal
entries.

690 Analysis of state variable systems

È ˘
Í ˙= Í ˙
Í ˙-Î ˚

1 0 3

4 6 9

7 1 0

A

- +È ˘
Í ˙= - -Í ˙
Í ˙Î ˚

0.22 4.28i 0 0
0 0.22 4.28i 0
0 0 7.04

A

has eigenvalues 4.8, –2.2 + 8.5i, –2.2 – 8.5i.

has eigenvalues 8.1, 3.9, – 12.8.

22.3 Poles, eigenvalues and system stability

We have found that many investigations in which we have developed models for indus-
trial systems and components benefited from using the extra precision of a state variable
representation. The first stage in developing these system models was the routine step of
finding the state variable matrices, A, B, C and D, but once we have these matrices, what
can they tell us about the system? To obtain a deeper understanding of this we have to
further develop our state variable analysis. In the sections above we revised some matrix
concepts and introduced the idea of eigenvalues and eigenvectors of a matrix. Now we
will link the system eigenvalues to the poles of a system transfer function. Once we have
this link we can make a direct connection to system stability. Let us assume that we have
developed a state variable system model, and that, as often happens, the D matrix of the
model is zero, so we have the equations

�() () ()
() ()

x Ax Bu
y Cx

t t t
t t
= +
=

We will introduce some standard Laplace transform relations for the state, output and
control vectors, as

State vector transform X x() (())s t= L
Output vector transform Y y() (())s t= L
Control vector transform U u() (())s t= L

We also use the Laplace transform of the derivative of the state vector, as

L(�()) ()x X xt s s= − 0

where X(s) is the state vector transform and x0 is an initial condition for the state vector.
If we now take the Laplace transform of the state variable system model, we obtain

L L L L(�()) (() ()) (()) (())
()

x Ax Bu A x B u
X x

t t t t t
s s

= + = +
− =0 AX BU() ()s s+

We must now use our matrix manipulation skills to rearrange this as follows:

s s s s
s s s

X AX x BU
I A X x BU

() () ()
() () ()

− = +
− = +

0

0

We pre-multiply by the inverse matrix, (sI – A)–1, to obtain the state transfer function

22.3 Poles, eigenvalues and system stability 691

U

4.8 0.5 7.2
0 0.22 8.5i 0.6
0 0 2.2 8.5i

È ˘
Í ˙= - +Í ˙
Í ˙- +Î ˚

A

L

8.1 0 0
5.2 3.9 0
5.6 2.8 12.8

È ˘
Í ˙= Í ˙
Í ˙-Î ˚

A

X(s) = (sI – A)–1x0 + (sI – A)–1BU(s)

Now to Laplace transform the output equation:

L L L(()) (()) (())
() ()

y Cx C x
Y CX

t t t
s s
= =
=

If we set the initial condition for the state to zero (so that x0 = 0), we obtain the transfer
functions of the state variable system equations as

State equation: X I A BU() () ()s s s= − −1

Output equation: Y CX() ()s s=

We can combine these two equations to find the system input–output transfer function
relation as

Y C I A BU() () ()s s s= − −1

The system transfer function is then identified as

G C I A B() ()s s= − −1

We should note that, in general, we have arrived at a matrix transfer function G(s) with
dimensions r × m, where r and m are the numbers of output and inputs respectively. We
mainly deal with so-called square systems in this book, where the numbers of inputs and
outputs are the same. If we use the formula for the n × n matrix inverse that we revised
earlier, we can give a result for this system transfer function as

G(s) = C(sI – A)–1B = C
adj()
det ()

s
s
I A
I A
−
−

B =
N()

()
s

d s

where the numerator polynomial matrix is N(s) = Cadj(sI – A)B and the denominator poly-
nomial is d(s) = det(sI – A). The poles of the transfer function G(s) are then roots of the
denominator polynomial, d(s). Thus we have the first link, that to find the poles of the
transfer function of the state variable system model we must solve

d(s) = det(sI – A) = 0

This clearly links the system poles to the system matrix, A. But we also know, from the
section above on matrix eigenvalues, that the eigenvalues of matrix A are given by
det(λI – A). We conclude, therefore, that the pole locations are precisely the eigenvalues
of the system matrix, A. We can now make the final connection with system stability and
proceed to use the eigenvalues of system matrix A to determine the system stability.

Key result: Link between model type and system stability

Representation of model equations Stability determined by
Laplace transform descriptions Poles of transfer functions
State variables Eigenvalues of A matrix

We make a formal statement about system stability:

System stability: We call the state variable system model given by (A, B, C, D) stable if and only if
all the eigenvalues of the system matrix A have negative real parts. We write this precisely as
requiring that Re(λ i(A)) < 0 for i = 1, ..., n.

692 Analysis of state variable systems

Example A state variable model for a compressor unit is given by the following data:

We first find the transfer function model using the MATLAB command

[num,den] = ss2tf(A,B,C,D,1)

where we have used D = 0 and a ‘1’ in the ss2tf command since we are using the first input (in
our case we have only one input!). This produces the following output:

[num,den]=ss2tf(a,b,c,d,1)
num =

0 10.4000 19.7810
den =

1.0000 5.0000 7.2625

This gives us the information to write the transfer function model as

G s
s

s s
()

. .
. . .

=
+

+ +
10 4000 97810

10000 50000 726252

Since the poles are the roots of the denominator of the transfer function, we use the following
MATLAB command to obtain the two transfer function poles:

roots([1 5.0 7.2625])
ans =

–2.5000 + 1.0062i
–2.5000 – 1.0062i

This system is stable because we can see that the poles have negative real parts and therefore lie in the
LHP of the s-domain. We check this system stability result, but this time using the system eigenvalues.
First, we compute the eigenvalues of the system matrix, A, and we use MATLAB to do this.

We enter the matrix A first as

A=[–1.78 –1.89;0.81 –3.22]

We simply type

eig(A)
ans =

–2.5000 + 1.0062i
–2.5000 – 1.0062i

These eigenvalues are the same as the transfer function poles, which is what our theory predicts.
Furthermore, the eigenvalues have negative real parts, so we are able to declare the system stable.

Problem: Stability of ship steering system
The aim of a ship steering system is to follow a prescribed course with minimal deviation due to
wind, waves or current. However, in reality there is a trade-off between excessive use of the
rudder to maintain a tight heading and wear and tear on the actuation systems. Although the ship
has six degrees of freedom, that is, it has six independent motions, the ship steering problem
involves only three of these motions: the forward surge motion, u(t), the sideways velocity, v(t),
and the rotational motion, called the yaw rate, r(t). A change in rudder angle, δ(t) will produce a

22.3 Poles, eigenvalues and system stability 693

- -È ˘ È ˘
= = =Í ˙ Í ˙-Î ˚ Î ˚

1.78 1.39 1.2
, and [1 4]

0.81 3.22 2.3
A B C

change in heading angle, ψ(t). We note that the yaw rate, r(t), is the derivative of the heading
angle. In this problem we examine the stability of the system in terms of the eigenvalues and the
poles of the vessel’s model. A particular 250 000 tonne tanker at full load has the following state
variable description:

Use MATLAB to examine the stability of the system:

(a) by finding the system matrix eigenvalues

(b) by transforming the system to transfer function form and finding the poles of the system.

Solution (a) We identify matrix A as A = [–0.13 –8.6; –9.3 × 10–5 –4.3 × 10–2]. The MATLAB command
eig(A) produces two eigenvalues:

0.00401249755955
–0.06001249755955

We see that both eigenvalues are real, so the stability condition relies on whether an eigenvalue is
positive (unstable) or negative (stable). We immediately see that one of the real eigenvalues is
positive and hence that overall this model represents an unstable system.

(b) Using the following MATLAB command we can produce a transfer function model:

[NUM,DEN] = ss2tf(A,B,C,D,1)

This produces the following MATLAB output:

NUM =
0 0.07030000000000 0.00697030000000
0 –0.00045900000000 –0.00001250490000

DEN =
1.00000000000000 0.05600000000000 –0.00024080000000

This gives us the information to write the following model transfer function description:

Since the poles are the roots of the denominator transfer function and both denominators are the
same, we use the following MATLAB command:

roots([1 0.056 –2.408e–4])
ans =

–0.0600
0.0040

694 Analysis of state variable systems

2

5 2 4

0.13 8.6 7.03 10() ()
()

() ()9.3 10 4.3 10 4.59 10

1 0 0() ()
()

0 1 0() ()

v t v t
t

r t r t

v t v t
t

r t r t

d

d

-

- - -

È ˘- -È ˘ ¥È ˘ È ˘ Í ˙= +Í ˙Í ˙ Í ˙ Í ˙- ¥ - ¥Í ˙Î ˚ Î ˚ - ¥Î ˚ Î ˚
È ˘ È ˘È ˘ È ˘

= +Í ˙ Í ˙Í ˙ Í ˙
Î ˚ Î ˚Î ˚ Î ˚

�
�

2 4

3 5

2 4

0.703 0.0069703

0.056 2.408 10()
()

()
4.59 10 1.25 10

0.056 2.408 10

s

s sv t
t

r t
s

s s

d

-

- -

-

È ˘+Í ˙
+ - ¥Í ˙È ˘ Í ˙=Í ˙ Í ˙Î ˚ Í ˙- ¥ - ¥

Í ˙
Í ˙+ - ¥Î ˚

These poles are the same as the eigenvalues, which is what we would expect from our theory. The
poles are wholly real and one lies in the LHP (s = –0.06), indicating a stable pole, and one lies in
the RHP (s = 0.004), indicating an unstable pole. Overall the system is therefore unstable.

Problem: An inverted pendulum system
Figure 22.1 shows a cart with an inverted pendulum. This is a typical problem given to many
control students. The cart is driven by the force F and has a state variable model given by

where y = [y1(t) y2(t)]T, with y1(t) as the cart position and y2(t) as the pendulum position, and u(t)
is the force input, F(t).

(a) Calculate the transfer functions from U(s) to Y1(s) and Y2(s).

(b) Calculate the poles of the open-loop system. Comment on the stability of the system.

(c) Calculate the eigenvalues of the system and verify that they are the same as the system
poles. Comment on the stability of the system.

Solution (a) System transfer function
Note that the system has two outputs: the cart position in metres and the pendulum position in
radians. We are seeking a transfer function expression of the form

Y s
Y s

g s
g s

U s
1

2

11

12

()

()

()

()
()

⎛
⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟

We use MATLAB to calculate the transfer function. We enter matrices A, B, C and D and use the
command:

[num,den]=ss2tf(A,B,C,D,1);
g11 = tf(num(1,:),den)

We note that in this case, num is a matrix of numerator polynomials.

22.3 Poles, eigenvalues and system stability 695

m I,

F
M

x

q

Figure 22.1 Inverted pendulum.

0 1 0 0 0

0 0.2 2.7 0 1.8
() () ()

0 0 0 1 0

0 0.5 31 0 4.5

1 0 0 0
() ()

0 0 1 0

t t t

t t

È ˘ È ˘
Í ˙ Í ˙-Í ˙ Í ˙= +Í ˙ Í ˙
Í ˙ Í ˙

-Í ˙ Í ˙Î ˚ Î ˚
È ˘

= Í ˙
Î ˚

x x u

y x

�

Ignoring very small coefficients, the transfer function element, g11(s) is given by

g s
s

s s s s11

2

4 3 2
1818 4455

01818 3118 4 455
()

. .
. . .

=
−

+ − −

The transfer function element g21(s) is given by the following command:

tf(num(2,:),den)

This produces, approximately,

g s
s

s s s s21

2

4 3 2
4 455

01818 3118 4 455
()

.
. . .

=
+ − −

(b) Open-loop poles
The poles are the roots of the denominator polynomials, which are the same for both g11 and g21.
Using the MATLAB roots command gives

roots([1 0.1818 –31.18 –4.455 0])

p1 = 0, p2 = –5.6039, p3 = 5.565, p4 = –0.1429

We can see that the open-loop system is unstable, with one pole (p3) in the RHP and one pole
(p1) at the origin.

(c) System eigenvalues
The MATLAB command eig(A) gives

λ λ λ λ1 2 3 40 56039 5565 01429= =− = =−, . , . , .

The eigenvalues are the same as the system poles, and we see that they are all real. To assess the
stability status, we only have to check whether the eigenvalues are negative (stable) or positive
(unstable). We can see that the open-loop system is unstable with one positive eigenvalue
(λ3 = 5.565) and one eigenvalue at the origin (λ1 = 0).

To close this section on the links between system transfer function poles, state variable
models and system matrix eigenvalues we must say that there is still more to be said on
these connections. However, these deeper issues must be left to other courses and books.
We now turn to look at the use we can make of the property where the eigenvector matrix
diagonalises a state variable system matrix.

22.4 More on state variable system time responses

We have already learnt that the state variable representation is not unique, and that for
the same input–output system behaviour we can have different internal state descrip-
tions. However, we must not get confused over this. If we derive a model for a physical
system, then the state equations must and will represent the actual physical processes
taking place. What we are saying is that mathematically we can find many different
internal state representations for a given input–output representation. Within this set of
multiple state representations some things are fixed, and that is where the
eigenvalue–eigenvector theory enters the picture. It is the eigenvalues that are fixed
inside all this flexibility of mathematical structure, and, as we have seen, the eigenvalues
can be linked to system poles and system stability. In this next short piece of analysis we

696 Analysis of state variable systems

show how the time domain state variable equations can be unravelled to reveal the
internal dynamical structure and the relationship to the system eigenvalues.

22.4.1 System eigenvalues and state variable system dynamics
We consider how to transform the state variable system into one where we have a diag-
onal system matrix, A. This is found to be useful, since the eigenvalues of a diagonal
matrix are simply the elements on the diagonal. We start from the state variable
equation:

�() () ()x Ax But t t= +

with an initial condition, x0.
We have learnt that the system matrix, A, has a set of n eigenvalue–eigenvector pairs,

(λi, mi), i = 1, ..., n. From the eigenvectors, we can form an eigenvector matrix defined as
M = [m1, m2, ..., mn]. If we pre-multiply M by matrix A, we can derive the equation
AM = MË, where the matrix Ë is a diagonal matrix of the eigenvalues. Typically we have:

Further analysis leads to an eigenvalue–eigenvector expression for the system matrix, A,
given by

A = MËM–1

We use this in the state variable equation to obtain

�() () ()

() ()

x Ax Bu

M M x Bu

t t t

t t

= +

= +−Ë 1

We now pre-multiply this equation by M–1 to find

M x M x M Bu− − −= +1 1 1�() () ()t t tË

We introduce the state transformation, z(t) = M–1x(t), for which �() �()z M xt t= −1 . Substituting
this into the above state variable model gives

�() () ()z z M But t t= + −Ë 1

Let us assume that n = 3 and that we have just one control input, so that m = 1, and let us
write out the structure of this transformed state variable system. We get

We see that the eigenvalues of the system matrix, A, are the diagonal entries in the Ë

matrix and that the complicated interactions of the original state variable equation have
been resolved into a set of very simple dynamical equations. If we take just one of these
equations:

� () () ()z t z t u t2 2 2 2= +λ β

22.4 More on state variable system time responses 697

l

l

È ˘
Í ˙
Í ˙= Í ˙
Í ˙
Í ˙Î ˚

Ë

1 0 . 0
0 . . .
. . . 0
0 . 0 n

1 1 1 1

2 2 2 2

3 3 3 3

() 0 0 ()
() 0 0 () ()
() 0 0 ()

z t z t
z t z t u t
z t z t

l b
l b

l b

È ˘ È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙ Í ˙= +Í ˙ Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚ Î ˚

�
�
�

we can recall that this can be solved very easily using the integrating factor method that
was outlined in Chapter 20. Using this method its solution is

z t z u t tt t tt
2 2 2 1 10

2 2 10() () ()()= + −∫e e dλ λβ

where z2(0) is the initial condition for state z2. We see that this equation has two parts:
one an initial condition response and the other a forced term due to the control input,
u(t). We see that each system eigenvalue gives rise to an exponential time function, eλ it ,
within the complete system response. We should not be too surprised at this result
because we already know that each eigenvalue is linked to a system pole, and we asso-
ciate pole locations with particular exponential time responses. This state variable result
is another interpretation of this time domain finding. So, eigenvalues and poles are just
different ways at looking at the time responses in linear system responses.

Example A compressor unit has a state variable model given as

The input, u(t), is the reference gas pressure, and the output, y(t), is the actual gas pressure.
We are going to show how all the aspects of this chapter come together in one example. We

first calculate the eigenvalues of the system matrix. We do this by stepping through a hand calcu-
lation first.

Hence

λ λ= − = −15 05. .and

We see that the system is stable, since both eigenvalues are real and negative. From our time
domain interpretation we expect to see two exponential functions e–1.5t and e–0.5t occurring in
the time response.

If we calculate the transfer function, which we do using MATLAB, we arrive at

G(s) = C(sI – A)–1B =
3 21 28162

2 0752
. .

.
s

s s
+

+ +
=

n s
d s

()
()

from which d(s) = s2 + 2s + 0.75 and the poles are p1 = –1.5 and p2 = –0.5.
This links up the state variable eigenvalues, the transfer function poles and the stability status.

Finally, to resolve the time domain form, we use MATLAB to find the eigenvector matrix, M, and its
inverse, M–1. The details of the eigenvalue–eigenvector structure of A are given as

698 Analysis of state variable systems

-È ˘ È ˘È ˘ È ˘
= +Í ˙ Í ˙Í ˙ Í ˙- -Î ˚ Î ˚Î ˚ Î ˚

È ˘
= Í ˙

Î ˚

�
�
1 1

2 2

1

2

1.55 0.3 2.1() ()
[()]

0.175 0.45 1.2() ()

()
[()] [0.9 1.1]

()

x t x t
u t

x t x t

x t
y t

x t

2

1.55 0.3
det() det

0.175 0.45

(1.55) (0.45) (0.175) (0.3)

2 0.75

(0.5) (1.5) 0

l
l

l
l l

l l
l l

+ -È ˘
- = Í ˙+ +Î ˚

= + ¥ + - ¥ -

= + +
= + ¥ + =

I A

11.55 0.3 0.9864 0.2747 1.5 0 1.0645 0.3041

0.175 0.45 0.1644 0.9615 0 0.5 0.1820 1.0920
-- - - - -È ˘ È ˘ È ˘ È ˘

= = =Í ˙ Í ˙ Í ˙ Í ˙- - - - - -Î ˚ Î ˚ Î ˚ Î ˚
A M MË

When we use a transformation of the state vector, we use z(t) = M–1x(t). Applying this to the state
variable model of the compressor unit gives

�() �() () () (())z M x M Ax M Bu M A Mz M But t t t t= = + = +− − − − −1 1 1 1 1 ()t

Equivalently:

�() () ()z z M But t t= + −Ë 1

We have calculated the eigenvalue matrix, Ë, so we only need calculate the new input matrix,
M–1B. Thus the transformed state variable equation is

We see that the original state variable equation has been resolved into two very simple dynamical
equations:

� () . () . ()
� () . () .

z t z t u t
z t z t

1 1

2 2

15 18704

05 09282

= − −
= − − u t()

Using the integrating factor method that was outlined in Chapter 20, we find that these give trans-
formed state responses

z t z u t t

z t

t t tt
1

15
1

15
1 10

2

0 18704 1() () . ()

(

. . ()= −− − −∫e e d

) () . (). . ()= −− − −∫e e d05
2

05
1 10

0 09282 1t t tt
z u t t

Quite clearly the eigenvalues have appeared as exponential time functions in the final result.

22.5 Case study: Eigenvalues, eigenvectors and time responses

We conclude this chapter with the detailed working for a state variable example. This
example investigates the way eigenvalues, eigenvectors and time responses are all inter-
related. Although the example has only two sets of second-order dynamics, it uses
MATLAB and Simulink in quite an advanced way.

Example We consider the system of masses and springs as shown in Figure 22.2.

The dynamic equations are given by

m z t k z t k z t z t F t
m z t

1 1 1 1 2 1 1

2 2

�� () () (() ()) ()
�� ()

= − + − +
=

c

− − − +k z t k z t z t F t2 2 2 1 2() (() ()) ()c

22.5 Case study: Eigenvalues, eigenvectors and time responses 699

m1 m2

k1 kc k2

z1, F1 z2, F2

Figure 22.2 System of masses and springs.

1 1

2 2

0.5 0 1.275() ()
()

0 1.5 3.075() ()

z t z t
u t

z t z t

-È ˘ È ˘È ˘ È ˘
= +Í ˙ Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚ Î ˚

We let the input signals u1(t) and u2(t) be F1(t) and F2(t) respectively. The states are given by

x t z t
x t z t
x t z t
x t z t

1 1

2 1

3

4 2

() ()

() � ()

() ()

() � ()

=
=
=
=

The state variable model can be written as

If we let k = k1 = k2 = kc and m = m1 = m2, we find

If we further let k = 100 N/m and m = 0.2 kg, the system becomes

Simulink simulation of mass–spring system
We can construct a simple Simulink state variable model to analyse the system under
different initial and input conditions (Figure 22.3).

700 Analysis of state variable systems

11

1 c 1 c 1 2 1 12

3 23

c 2 2 c 2 4 24

1

1 2

2

0 1 0 0 0 0()
()/ 0 / 0 1/ 0()

0 0 0 1 0 0()
/ 0 ()/ 0 0 1/()

()

1 0 0 0() ()

0 0 1 0()

xx t
k k m k m x m ux t

x ux t
k m k k m x mx t

x t
y t x t
y t x

È ˘ È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙ Í ˙- - È ˘Í ˙ Í ˙ Í ˙ Í ˙= + Í ˙Í ˙ Í ˙ Í ˙ Í ˙ Î ˚Í ˙ Í ˙ Í ˙ Í ˙

- - Í ˙ Í ˙Í ˙ Í ˙ Î ˚ Î ˚Î ˚ Î ˚

È ˘ È ˘
=Í ˙ Í ˙

Î ˚Î ˚

�
�
�
�

3

4

()

()

t
x t

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

11

2 12

3 23

44

0 1 0 0 0 0()

2 / 0 / 0 1/ 0()

0 0 0 1 0 0()

/ 0 2 / 0 0 1/()

xx t
k m k m x m ux t

x ux t
k m k m x mx t

È ˘ È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙ Í ˙- È ˘Í ˙ Í ˙ Í ˙ Í ˙= + Í ˙Í ˙ Í ˙ Í ˙ Í ˙ Î ˚Í ˙ Í ˙ Í ˙ Í ˙

-Í ˙ Í ˙ Í ˙Í ˙ Î ˚ Î ˚ Î ˚Î ˚

�
�
�
�

11

2 12

3 23

44

0 1 0 0 0 0()

1000 0 500 0 5 0()

0 0 0 1 0 0()

500 0 1000 0 0 5()

xx t
x ux t
x ux t
xx t

È ˘ È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙ Í ˙- È ˘Í ˙ Í ˙ Í ˙ Í ˙= + Í ˙Í ˙ Í ˙ Í ˙ Í ˙ Î ˚Í ˙ Í ˙ Í ˙ Í ˙

-Í ˙ Í ˙ Í ˙Í ˙ Î ˚ Î ˚ Î ˚Î ˚

�
�
�
�

t

Time

Step to Mass 2

Step to Mass 1 y

Output

Clock

x = Ax + Bu¢
y = Cx + Du

Mass–spring
State variable model

Figure 22.3 Simulink state variable model of spring–mass system.

Figure 22.4 shows a fun picture in which we have given mass 1 an initial offset of 10 cm
and then let the system oscillate with no force input. Since there is no damping, the oscil-
lations do not decay, but the energy is transferred from one mass to the other and back
again.

22.5.1 System analysis for mass–spring system
We can analyse this system further by examining the eigenvalues and eigenvectors of the
system matrix. We use MATLAB to do this analysis (Part A). For those who are interested,
we also include a section on the derivation of the eigenvalues and eigenvectors from first
principles (Part B).

Part A: analysis using MATLAB
The eigenvalues are found using MATLAB by using the eig(A) command. This gives
λ1,2 = ± j38.7298 and λ3,4 = ± j22.3607. We see that we have two pairs of wholly complex
eigenvalues with no damping present. We can also find the eigenvectors for this matrix.
We use the MATLAB command

[M,lambda]=eig(A);
M =
0.0183 0.0183 0.0316 0.0316
0 + 0.7069i 0 – 0.7069i 0 + 0.7064i 0 – 0.7064i
–0.0183 –0.0183 0.0316 0.0316
0 – 0.7069i 0 + 0.7069i 0 + 0.7064i 0 – 0.7064i

22.5 Case study: Eigenvalues, eigenvectors and time responses 701

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–0.1

–0.08

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

0.08

0.1

Time, seconds

Mass position, metres

Mass 1

Mass 2

Figure 22.4 Mass position after initial offset given to mass 1.

What we have is a matrix M of four eigenvectors, M = [m1, m2, m3, m4]. We find that each
eigenvector has four components relating to the four states (position and velocities of the
masses). The actual values of the eigenvector components are not important, since they
can be arbitrarily scaled; what is important is the relation between the components. We
see from the first eigenvector, m1 (the eigenvector relating to the first eigenvalue,
λ1 = +38.7298i), that the components relating to the position of mass 1 and the position of
mass 2 are equal and opposite (+0.0183, –0.0183). If we examine the eigenvector m3,
relating to λ3 = +22.3607i, we find that the components relating to the position of each
mass are equal and have the same sign (0.0316, 0.0316). What we can see in our simula-
tion is that the system has two modes. One mode has the masses moving in the same
direction with the same magnitude at one particular frequency. A second mode has the
masses moving in opposite directions, but with the same magnitude, at a higher
frequency. You can see this if you actually construct the system using toy trains and
elastic bands! For this example it was fairly easy to connect the mathematics to the
actual example. In more complex situations, it is more difficult to relate the information
to physical variables but the basic state variable techniques will still hold.

For those who are more familiar with matrix algebra and who may wish to understand
more about the derivation of the eigenvalues and eigenvectors, we give the analysis in the
following. However, it can be readily missed and we can proceed to the Simulink simula-
tion of the mass–spring example with forces active.

Part B: derivation of eigenvalues and eigenvectors for mass–spring example
The eigenvalues are given by the solutions of det(λI – A) = 0:

If we are familiar with calculating determinants of matrices of size greater than 2 × 2, we
can find:

Expanding about the first row:

= +
⎛
⎝
⎜

⎞
⎠
⎟ +
⎛
⎝
⎜

⎞
⎠
⎟ =λ λ2 23 0

k
m

k
m

702 Analysis of state variable systems

l
l

l
l

-È ˘
Í ˙-Í ˙ =Í ˙-
Í ˙
-Í ˙Î ˚

1 0 0
2 / / 0

det 0
0 0 1
/ 0 2 /

k m k m

k m k m

2 2

2 2

1 0 0 1 0 0
2 / / 0 2 / / 0

det() det (1) det
0 0 1 0 0 1
/ 0 2 / / 0 2 /

2 2
(1) 2 (1) (1) 0

k m k m k m k m

k m k m k m k m

k k k k k
m m m m m

l l
l l

l l
l l

l l

l l l l l

l l

- -È ˘ È ˘
Í ˙ Í ˙- -Í ˙ Í ˙- = + ¥ - - ¥Í ˙ Í ˙- -
Í ˙ Í ˙
- -Í ˙ Í ˙Î ˚ Î ˚

È ˘ È ˘- -Ê ˆ Ê ˆ Ê ˆ Ê ˆ= - - ¥ + - - ¥ + ¥ - - ¥Í ˙ Í ˙Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Î ˚ Î ˚

= +

I A

2
2

2

2 2 2
4 2 2 4 2

2 2

2 2
2

4 3
2 2 4

k k k k
m m m m

k k k k k k
m m m mm m

l

l l l l l

È ˘Ê ˆÈ ˘Ê ˆ Ê ˆÍ ˙+ + -Í ˙ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Ë ¯Î ˚ Î ˚

= + + + - = + +

This gives

λ1 2, = ±j
k
m

and λ3 4
3

, = ±j
k

m

In a typical end order mass–damping–stiffness system, the period of oscillation is given
by k m/ . We will find through simulation that the mass–spring example has two natural
modes: one with a frequency of k m/ rad/s and another with a frequency of 3k m/ rad/s.
Given the values in our example, these values work out to be 500 = 22.3607 rad/s and
1500 = 38.7298 rad/s.

Calculation of eigenvectors
We have one eigenvector m = [v1 v2 v3 v4]T associated with each eigenvalue. We find them
by replacing the value of λ in

and solving for v1 to v4. We find that when we substitute for a value of λ, the equations
will not be independent; that is, we are not able to solve explicitly for each component v1,
v2, v3 and v4. Rather, we can find the relationship between them.

For λ1 = 500 j, we have from the first row

500 jv1 – v2 = 0 or v2 = 500 jv1

The second equation gives

1000v1 + 500 jv2 – 500v3 = 0

Substituting for v2 gives

1000v1 – 500v1 – 500v3 = 0 or v3 = v1

From the third equation we find that

500 jv3 – v4 = 0 or v4 = 500 jv3 = 500 jv1

Since we cannot solve for a numerical value we set an arbitrary value on v1 and this gives
the values for the remaining components. In this case, let us set v1 = 1.

The eigenvector m1 =

If we do likewise for λ3 = 1500 j, we have

1500 jv1 – v2 = 0 or v2 = 1500 jv1

The second equation gives

1000v1 + 1500 jv2 – 500v3 = 0

Substituting for v2 gives

22.5 Case study: Eigenvalues, eigenvectors and time responses 703

1 1

2 2

3 3

4 4

1 0 0 1 0 0
2 / / 0 1000 500 0

0
0 0 1 0 0 1
/ 0 2 / 500 0 1000

v v
k m k m v v

v v
k m k m v v

l l
l l

l l
l l

- -È ˘ È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙ Í ˙- -Í ˙ Í ˙ Í ˙ Í ˙= =Í ˙ Í ˙ Í ˙ Í ˙- -
Í ˙ Í ˙ Í ˙ Í ˙
- -Í ˙ Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚ Î ˚

1

500 j
1

500 j

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

1000v1 – 1500v1 – 500v3 = 0 or v3 = –v1

From the third equation we find that

1500 jv3 – v4 = 0 or v4 = 1500 jv3 = – 1500 jv1

Since we cannot solve for a numerical value we set an arbitrary value on v1 and this gives
the values for the remaining components. In this case, let us set v1 = 1.

The eigenvector m3 =

What does this tell us about the system? The eigenvalues of the system are related to
different modes in the system. In this example, the eigenvalues are related to the two
natural frequencies within the system. If the system was oscillating at the lower
frequency the two masses would be moving in the same direction and with the same
magnitude. This is indicated by the values of v1 and v3 in m1 having the same magnitude
and same sign (v1 and v3 are the components relating to the position of the masses). For
the higher frequency of oscillation, we have the masses moving in opposite directions but
with the same magnitude, demonstrated by the values of v1 = 1 and v3 = –1 in m3.

Scaling of eigenvectors: relation to MATLAB eigenvector solution in Part A
The eigenvector m3 corresponded to the eigenvalue λ3 = 1500 j and had the value

m 3 1 1500 1 1500= − −[]j j T

The eigenvector produced from the MATLAB solution which corresponded to the same
eigenvalue was:

m1 0 0183 0 0183= [. .]+j0.7069 j0.7069 T

We see that they are not equal in magnitude. However, as we saw from Part B when we
calculated the eigenvalues, it was the ratio between each eigenvector element that was
important; therefore we can scale the eigenvectors by any constant number. If we scaled
our eigenvector m3 by 0.0183, we would find

m 3 0 0183 0 0183= − −[. .]+j0.7088 j0.7088 T

which corresponds to the eigenvector given by MATLAB in Part A (given the number of
significant figures used throughout all the calculations).

22.5.2 Simulation of mass–springs with force inputs
In particular we can examine what happens if:

(a) we inject the same force input to both masses

(b) we inject the same magnitude of force but in different directions
If we inject a force of 10 N to each mass, we find that the masses oscillate with exactly the
same magnitude and direction (the plot lines overlay each other). Figure 22.5(a) shows the
position of the masses oscillating ±20 cm. If we apply a force of +10 N to mass 1 and –10 N

704 Analysis of state variable systems

È ˘
Í ˙
Í ˙
Í ˙-Í ˙
Í ˙-Î ˚

1

1500 j
1

1500 j

to mass 2, we see, in Figure 22.5(b), the masses oscillating at higher frequency and in
opposite directions. We can use MATLAB to evaluate the frequency of oscillation of the
masses.

For graph (a):

Period = 0.28 seconds
Frequency (Hz) = 1/0.28 = 3.57 Hz
Frequency (rad/s) = 3.57 × 2 × 3.14 = 22.42 rad/s

For graph (b):

Period = 0.16 seconds
Frequency (Hz) = 1/0.16 = 6.25 Hz
Frequency (rad/s) = 6.25 × 2 × 3.14 = 39.25 rad/s

If we compare these with the values of the eigenvalues of the system, we find that

λ1 22 36= . rad / s and λ2 3873= . rad / s

which are close to our values given the resolution of the Simulink simulation.

What we have learnt

� To remember the extra rigour needed with matrix equations.

� To find the eigenvalues and eigenvectors of a system matrix.

� To realise the connection between a diagonal matrix and its eigenvalues.

� To understand that the system poles and the system eigenvalues have the same
interpretation.

� To relate the system eigenvalues to a system’s stability.

� To analyse state variable system time responses in more detail.

22.5 Case study: Eigenvalues, eigenvectors and time responses 705

0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time, seconds

Mass position, metres(a) (b)

Mass 1 position and mass 2
position overlay each other

0 0.5 1 1.5
–0.08

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

0.08

Mass position, metres

Mass 1

Time, seconds

Mass 2

Figure 22.5 Mass positions under (a) the same and (b) opposite applied forces.

Multiple choice

Questions: practical skills

Q22.1 Use the determinant formula to find the system eigenvalues and determine the stability of the
following systems:

(a)

706 Analysis of state variable systems

M22.1 The determinant of

is
(a) –1
(b) –7
(c) –4
(d) –8

M22.2 Given the vector–matrix equation AX = B,
how do we calculate the vector X?
(a) X = B/A
(b) X = BA–1

(c) X = A–1B
(d) X = BA

M22.3 If a system has matrix dimension A3×3, B3×2
and C1×3, how many eigenvalues will there be?
(a) 1
(b) 2
(c) 3
(d) 9

M22.4 The inverse of A, A–1, is given by:
(a) BA–1 = I
(b) M–1ËM = I
(c) A–1B = I
(d) A–1A = I

M22.5 The system stability is determined from:
(a) the A matrix
(b) the A and B matrices
(c) the A and C matrices
(d) the A, B and C matrices

M22.6 The eigenvalues of

can be found by solving
(a) λ2 – 7λ + 6 = 0
(b) λ2 – 7λ + 10 = 0
(c) λ2 – 5λ + 4 = 0
(d) λ2 – 2λ + 4 = 0

M22.7 If the eigenvalues of the system matrix are
λ1 = –2, λ2 = –0.3 and λ3 = 5:
(a) the system is unstable
(b) the system is stable
(c) the system is sometimes stable
(d) the system is partially stable

M22.8 If the system eigenvalues are λ1 = 2,
λ2,3 = –3 ± 2j, then the poles of the associated
transfer function are:
(a) p1 = –2, p2,3 = 3 ± 2j
(b) p1 = 2, p2,3 = 3 ± 2j
(c) p1 = 2, p2,3 = –3 ± 2j
(d) p1 = –2, p2,3 = – 3 ± 2j

M22.9 Given the system equation �()x A But x= + ,
the eigenvalues can be found by solving:
(a) (λI – A)–1 = 0
(b) (λI – A)–1B = 0
(c) |λI – A| = 0
(d) (λI – A)B = 0

M22.10 If A = M–1ËM where Ë is the diagonal
matrix of system eigenvalues, then:
(a) M is the matrix of eigenvectors
(b) M–1 is the matrix of eigenvectors
(c) M is the matrix given by (λI – A)–1

(d) M is the matrix given by A–1B

-È ˘ È ˘
= +Í ˙ Í ˙-Î ˚ Î ˚
=

�
2.94 8.01 1.5

() () ()
3.33 6.95 1.3

() [2.8 5.2] ()

t t t

t t

x x u

y x

2 3

1 2
È ˘

= Í ˙-Î ˚
A

2 1

4 5
È ˘

= Í ˙
Î ˚

A

(b)

(c)

Q22.2 Use MATLAB to find the system eigenvalues and determine the stability of the following systems:

(a)

(b)

Q22.3 A system’s state space model is given by

(a) Find the system eigenvalues using the determinant formula, det(sI – A) = 0.
(b) Find the system eigenvalues using the MATLAB command eig(A).
(c) Find the system transfer function using G(s) = C(sI – A)–1B.
(d) Use the system transfer function, G(s), to identify the system poles.
(e) Make as many connections as possible between the various findings.

Q22.4 A system’s state space model is given by

(a) Find the system eigenvalues using the MATLAB command eig(A).
(b) Find the system transfer function using the MATLAB command ss2tf(a,b,c,d,iu).
(c) Use the system transfer function, G(s), to identify the system poles.
(d) Make as many connections as possible between the various findings.

Q22.5 Use the integrating factor method to investigate the time dynamics of a state variable model given
by

�() [.] () [.] ()x t x t u t= − +075 2 5

(a) If x(0) = 150, find the state free response equation.
(b) If the input is set to u(t) = 1.5, 0 ≤ t, find the forced state response.
(c) Use an eigenvalue analysis to determine the stability status of the system.
(d) How is the system stability reflected in the system responses?

Practical skills 707

1.4 2.6 0 6.4

() 2.6 1.4 0 () 2.5 ()

0 0 2.5 1.8

() [0.36 0.92 0.23] ()

t t t

t t

-È ˘ È ˘
Í ˙ Í ˙= - - +Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

= - -

x x u

y x

�

19.02 8.70 3.11 0.55

() 24.95 10.67 5.14 () 0.32 ()

32.73 17.22 3.04 0.58

() [0.36 0.96 0.45] ()

t t t

t t

-È ˘ È ˘
Í ˙ Í ˙= - + -Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

= - -

x x u

y x

�

0 1.0 1.5
() () ()

0.75 2.0 0.5

() [0.2 0.8] ()

t t t

t t

È ˘ È ˘
= +Í ˙ Í ˙- -Î ˚ Î ˚
=

x x u

y x

�

27.61 12.77 5.58 0.55

() 20.67 7.45 4.61 () 0.32 ()

68.89 36.52 12.67 0.58

() [0.36 0.96 0.45] ()

t t t

t t

-È ˘ È ˘
Í ˙ Í ˙= - + -Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

= - -

x x u

y x

�

5.29 5.33 0.36
() () ()

2.22 1.29 0.58

() [0.84 0.91] ()

t t t

t t

-È ˘ È ˘
= +Í ˙ Í ˙-Î ˚ Î ˚
=

x x u

y x

�

4.07 3.53 5.1
() () ()

3.53 4.07 9.4

() [1.0 5.7] ()

t t t

t t

-È ˘ È ˘
= +Í ˙ Í ˙-Î ˚ Î ˚
=

x x u

y x

�

Problems

P22.1 In a control system design exercise for a marine engine, an engineer is using the state space
framework. The system model is given as

�() () ()

() ()

x Ax Bu
y Cx

t t t
t t
= +
=

The data for the model are:

where the system eigenvector matrices are given by

(a) (i) Determine the system eigenvalues
(ii) Find the decomposed form for the system as

�() () ()

() ()

z z M Bu
y CM z

t t t
t t
= +
=

−Ë 1

(iii) Examine the structure of the system using the form

(iv) Compute the system transfer function,

G s s() ()= − −C I A B2
1

(v) Does the transfer function have the same pole locations as the eigenvalues of the system
matrix?

(b) The engineer decides to experiment with a different method of actuation for the system and this
leads to a different input matrix:

(i) Find the decomposed form for the system which uses B1 as the input matrix.
(ii) Examine the structure of the system using the form in part (a)(iii). What differences can be

found between this new decomposition and the one found in part (a)?
(iii) Compute the system transfer function for the new actuation system:

G s s() ()= − −C I A B2
1

1

(iv) What differences can be found between this new transfer function and the one found in part
(a)?

(v) Would this difference have any implication for the design of closed-loop control?
(c) The engineer then decides to experiment with a different method of measurement for the system

and this leads to a different output matrix: C0 = [1.14 2.28].

708 Analysis of state variable systems

1 11 1

2 22 2

1
1 2

2

0() ()
()

0() ()

()
() []

()

z t z t
u t

z t z t

z t
y t

z t

l b
l b

c c

È ˘ È ˘È ˘ È ˘
= +Í ˙ Í ˙Í ˙ Í ˙

Î ˚ Î ˚Î ˚ Î ˚
È ˘

= Í ˙
Î ˚

�
�

1
1/6

1/3

-È ˘
Í ˙
Î ˚

B

13/6 4/3 0
, , and [1 1]

4/3 7/6 0.5
È ˘ È ˘

= = =Í ˙ Í ˙- -Î ˚ Î ˚
A B C

11/3 2/3 1 2
and

2/3 1/3 2 1
--È ˘ È ˘

= =Í ˙ Í ˙-Î ˚ Î ˚
M M

(i) Find the decomposed form for the system.
(ii) Examine the structure of the system using the form in part (a)(iii). What differences can be

found between this new decomposition and the one found in part(a)?
(iii) Compute the system transfer function for the new measurement system in place:

G s s0 0 2
1() ()= − −C I A B

(iv) What differences can be found between this new transfer function and the one found in part
(a)?

(v) Would this difference have any implication for the design of closed-loop control?

P22.2 The temperature of an ingot in a reheat furnace in a steel mill obeys a state space dynamical
equation:

�() [.] () [] ()T t T t f t= − +05 600 oil

where the ingot temperature T(t) is measured in °C, and the fuel flow variable, foil(t), takes values in
the range 0 1< <f toil() , where unity flow corresponds to the fuel valve fully open. In this process, time
is measured in hours.

Use Simulink to determine the following system temperature responses.
(a) The ingot is charged cold at an ambient temperature of 0 °C, and the furnace operated for 5

hours. What is the steady state temperature of the ingot when it leaves the reheat furnace?
(b) The ingot is allowed to stand for 20 minutes after discharge from the furnace. By how much does

the temperature fall?
(c) Which of the above represents a free state response, and which represents a forced response?

P22.3 Consider the state space equation

�() () ()

() ()

x Ax Bu
y Cx

t t t
t t
= +
=

with an initial condition, x0.
The eigenvalue–eigenvector decomposition for A is given by AM = MË, where the matrix Ë is a diag-

onal matrix of the eigenvalues, and matrix M contains the eigenvectors. This further gives A = MËM–1.
If the state is replaced everywhere by x(t) = Mz(t), then the following transformation occurs:

�() () ()

() ()

x Ax Bu
y Cx

t t t
t t
= +
=

⇒ �() () ()

() ()

z x M B u
y CM x

t t t
t t
= +
=

−Ë 1

(a) If n = 3 and

draw out the structure of the transformed system.
(b) Consider the implications for the system if a row of the transformed input matrix [M–1B] is

completely zero. What would this imply for the control of the associated eigenvalue and its time
response?

(c) Consider the implication for the system if a column of the transformed output matrix [CM] is
completely zero. Would the associated eigenvalue and its time response be seen in the output
vector?

Problems 709

1

2

3

0 0

0 0

0 0

l
l

l

È ˘
Í ˙= Í ˙
Í ˙Î ˚

Ë

An introduction to control using state
variable system models

23

Output feedback

Responses from an ABCD
model

State variable system structures Single degree of freedomController structure

State feedback

Further studies

Closed loop analysis: choice of
feedback gain

Solving pole-placement equations

Output feedback for an
electro-mechanical system

Pole-placement design

Closed loop analysis: choice of
feedback gain

Solving pole-placement
equations

State feedback and system analysis

Pole-placement design

Two degree of freedom

Help? Time to readGaining confidence Skill sectionGoing deeper

State space system models are popular because of the precision they bring to the task of model-
ling systems or processes we wish to control. Simulink and other simulation software tools
usually have a state variable system icon or routine to help us exploit the structure and notation
when we wish to load the state variable matrices A, B, C, D with system data. The very fact that we
describe a system using a state variable equation model leads directly to new terms and analysis
methods when we discuss system stability and system responses.

We saw in the last chapter that we used system eigenvalues when we discussed system
stability. We also saw that these eigenvalues took the same values as the system poles. When we
looked at the initial condition and forced system responses we found that these naturally
occurred in the state variable framework. One powerful result we found was that the state variable
method easily accommodated multiple-input and multiple-output systems.

With state variable systems we are using an internal description of the system dynamics as
opposed to a straightforward input–output transfer system model. We will find that we gain from
the knowledge of these internal states and benefit from the use of this information in control
system design.

When we discuss the control of a plant or process using a state system model we will find many
new fundamental insights about control theory. As always we must relate these insights back to
the practical problem of why controlling real systems is such a difficult task. We will also learn
how state variable systems lead to new methods for the design of compensators. These develop-
ments are relatively new; whereas PID control dates from about 1940 onwards, state variable
methods emerged from around 1960 and underwent many refinements before reaching the highly
developed level available today. In this last chapter of the book we introduce state variable control
methods and point the way forward to new methods that will be found in more advanced courses
and books on control engineering.

Learning objectives

� To understand output feedback and its practical limitations.

� To understand the basics of state feedback and its potential advantages.

� To appreciate the way forward in control system engineering studies.

23.1 State variable system structure

We begin our introduction to state variable control methods by looking once more at the
general state variable diagram as shown in Figure 23.1.

23.1 State variable system structure 711

B C

A
SYSTEM

Inputs

u t()

+ �

+

x t() x t()

States
Outputs

y t()
Ú

Figure 23.1 General state variable system diagram.

With the state variable method it becomes increasingly important to appreciate and use
the link between the real world and the rather abstract representation of the state vari-
able model. Thus we must relate this general schematic to the dynamical behaviour of
any particular practical or industrial system.

(a) The system state
We usually denote the system state by the vector x(t). It is the important set or list of
system variables. It is the system state and the system matrix, A, that govern how the
system internal dynamics will operate. This means that the state is the key informa-
tion-carrying vector in a state variable system model.

(b) The system inputs
We list the system inputs through the input vector, u(t). These inputs are the control
and actuator inputs to the system. They are able to influence and shape the dynam-
ical behaviour of the system. The inputs are connected to the internal states of the
system through the input matrix B. We sometimes find this matrix being called the
driving matrix or control matrix to emphasise its purpose as a link between controls
and state. In real systems, it is usual to find that we do not have many control inputs
available to us to manipulate and control the states and output values.

(c) The system outputs
The system outputs are generally those variables we can measure and wish to
control. We list these as the vector y(t). The state is connected to the system outputs
via the output matrix, C. As with the control inputs, we usually find that there are
many fewer outputs than states in real systems. Thus the matrix C is informa-
tion-reducing in the sense that C specifies just how much we are able to view of the
whole system state vector, x(t).

This fundamental appreciation of the system structure is a key feature of the way state
variable methods work. We have seen in the previous chapters that state variable system
models are very general and that we can deal with general multi-input, multi-output
(MIMO) systems very easily. However, throughout most of this book we have dealt with
single-input single-output (SISO) systems, where we have a single input available to
control a single output. For example, in an electro-mechanical system we might use
motor voltage to control the output shaft position. In this chapter we assume that our
system has the same number of control input variables as the number of output variables
that we wish to control. We call these square systems, because if we worked out the input
to output transfer function we would find that it is a square matrix. Examples of square
systems are quite common in industry. For example, in a distillation column we might
use input feedstock flow and recycle flow to control the column top and bottom
feedstock temperatures. This is a two-input, two-output (2I2O) system and the system is
square.

23.2 State variable controller structure

We start by looking at an output feedback structure that we have generally used in this
book. We saw that in Chapter 18 on the practical aspects of PID that we often split the
pathways of the PID controller to achieve particular practical effects. We follow and
extend this idea for this last chapter in the book. Past chapters have used what is called a

712 An introduction to control using state variable system models

single degree of freedom controller structure. For example we commonly used propor-
tional control as

u(t) = Kp(r(t) – y(t))

The ‘single degree of freedom’ refers to the choice of only one controller, Kp, in the design
problem (Figure 23.2(a)).

However, we can use a similar idea, except we use two pathways for the controller. This
structure has two separate controllers, KR and Ko, and the control law would be written
as

u(t) = KRr(t) – Koy(t)

This controller has different gains in the reference path and the feedback path (Figure
23.2(b)). We use the reference path gain, KR, to ensure that the steady state output values
are correctly met for constant reference signals, r. The feedback path gain Ko we use to
meet the dynamic design specification of the system. We give this structure a proper
technical name and call it a two degree of freedom controller.

The structures in Figure 23.2 are examples of output feedback controllers, and this is
where we start our investigation into the control of systems with state variable models.

23.3 A state variable investigation of output feedback

Output feedback and the use of an output feedback controller has been the common
control structure applied in this book so far. These controllers were used in the context of
an input–output transfer function model. When we move to a state variable model for the
system we have time domain information about the internal structure of the system
available in the form of a state vector. To investigate the link between the state informa-
tion and output feedback, we set up a simple two degrees of freedom output feedback
control system, as shown in Figure 23.3.

The output feedback law is

u(t) = KRr(t) – Koy(t)

It is useful to realise that this is a matrix gain control law because the control, u(t), and
the output, y(t), can both be vectors. For example, if we have m controls, m outputs and m
references, then the gains KR and Ko are square gain matrices.

23.3 A state variable investigation of output feedback 713

KP

y t()

r t() +

(a) (b)

–

u t()
KR

y t()

r t() +

–

u t()

Ko

Figure 23.2 Feedback controller structures: (a) single degree of
freedom structure; (b) two degree of freedom structure.

Example single-input, single-output system case
In the SISO case, we have one control and one output, so that m = 1. The gains in the
control law are scalars or 1 × 1 matrices, giving

u(t) = kRr(t) – koy(t)

Example multi-input, multi-output system case
In the MIMO case, we have more than one control and more than one output. Let us
suppose that m = 2. The gains in the control law are now 2 × 2 matrices and we can write
the control law in matrix form as

u(t) = KRr(t) – Koy(t)

or we can use matrix element form as

It is not difficult to see that the matrix element form is unnecessarily tedious to write and
manipulate.

23.3.1 Closed-loop system analysis for output feedback system
We use the system structure shown in Figure 23.3 and directly write down the equations
for the closed loop in matrix form as follows:

1. the system equations:

�x Ax Bu
y Cx
= +
=

2. the output feedback law:

u(t) = KRr(t) – Koy(t)

Although we do not explicitly use the fact at this stage, we assume that the gain matrices
KR and Ko are constant and square. The gain matrix KR will be used to ensure that the
correct state output values are reached for constant step reference signals, r(t) = r0. If we
now progress this analysis for the closed-loop system, we substitute for the control law,
u(t) = KRr(t) – Koy(t), in the system equation as follows:

714 An introduction to control using state variable system models

B C

System

u t()

+

x t() y t()
KR

r t()

AK0

–

++

Controller

Ú

Figure 23.3 Output feedback control for state variable system model.

È ˘ È ˘È ˘ È ˘ È ˘
= -Í ˙ Í ˙Í ˙ Í ˙ Í ˙

Î ˚ Î ˚ Î ˚Î ˚ Î ˚
R R o o1 1 1

R R o o2 2 2

(1,1) (1,2) (1,1) (1,2)() () ()
(2,1) (2,2) (2,1) (2,2)() () ()

k k k ku t r t y t
k k k ku t r t y t

�() () ()
() (() (())

x Ax Bu
Ax B K r K y

t t t
t t t

= +
= + −R o

We follow this by using the output equation y(t) = Cx(t), giving

�() () (() (()))x Ax B K r K Cxt t t t= + −R o

We tidy up to find

�() () () ()
() ()

x A BK C x BK r
A x BK r

t t t
t t

= − +
= +

o R

CL R

This equation is the state variable model for the closed-loop system.

Key result: Output feedback control

We define the closed-loop system matrix as

ACL = A – BKoC

and the closed-loop system poles will depend on the eigenvalues of the closed-loop system
matrix, ACL.

We now have two design problems: the choice of matrix Ko and the choice of matrix KR.
We can easily see that the closed-loop matrix depends on our choice of output feedback
gain matrix, Ko. If the matrix gain Ko is varied, then the eigenvalues of the closed-loop
system matrix ACL = (A – BKoC) will also vary and move to new locations. We would like
these new locations to maintain the stability of the closed loop and also achieve some
desired performance measures like specified damping or natural frequency. This is the
first problem we have: how do we choose Ko, and what can we achieve in terms of perfor-
mance with our choice?

The second part of our output feedback study concerns the choice of the reference gain
matrix, KR. This is not so difficult if we first assume that we can find an output feedback
gain Ko that stabilises the closed-loop so that ACL = [A – BKoC] has all its eigenvalues
with negative real parts. We can then use the closed-loop state variable equations

�() () ()
() ()

x A x BK r
y Cx

t t t
t t

R= +
=

CL

We wish to find KR so that for step references, r(t) = ro, the output y(t) reaches the correct
output reference values, ro.

23.3.2 Analysis for choice of KR
Let the constant steady state value of state x(t) be defined as xss; then because the steady
state is constant, �x 0ss = . This gives the equation

�x A x BK r 0ss CL ss R o= + =

This rearranges to give xss as

x A BK rss CL R o= − −1

Then, using the output equation,

y Cx C A BK r C A BK rss ss CL R CL R o))= = − = −− −([(]1 1
o

23.3 A state variable investigation of output feedback 715

Since we require the value of yss to equal the input reference, ro, we set

[(]C A BK I− =−
CL R)1

Rearranging gives

K C A BR CL)= − − −[(]1 1

Thus to use the two degrees of freedom output control law

u(t) = KRr(t) – Koy(t)

we have two calculations to consider:

1. Can we find feedback gain Ko such that the closed-loop system matrix ACL = [A – BKoC]
is stable and gives satisfactory transient performance?

2. To attain the correct steady state reference levels in the output we must calculate the
reference control gain KR = [C(–ACL)–1B]–1, where ACL = A – BKoC is dependent on the
chosen output controller gain Ko.

23.4 Pole placement design with output feedback

This is a simple idea that follows from the closed-loop state variable equations above. We
have seen that the state variable system in closed loop has the equation

�() () () ()
() ()

x A BK C x BK r
A x BK r

t t t
t t

= − +
= +

o R

CL R

where the closed-loop system matrix is ACL = A – BKoC. This matrix specifies the
closed-loop poles of the control system. This condition can also be given through the
closed-loop pole polynomial that specifies the eigenvalues of the closed-loop system
matrix, ACL:

p s s sCL CL CL() det() | |= − = − =I A I A 0

However, we note that the closed-loop system matrix, ACL = A – BKoC, is dependent on
the controller gain, in this case, Ko. We also know that the closed-loop system matrix ACL
will define the dynamic performance of the closed loop. So we can merge these two ideas
to form a design method for the closed-loop dynamic behaviour of the state variable
control system.

1. Turn the desired closed-loop design performance into a condition on closed-loop pole
positions. Then put all of the desired pole locations into a design pole polynomial
which we call pdesign(s).

2. Choose the available controller gain matrix so that the closed-loop pole polynomial,
pCL(s) equals the design pole polynomial, pdesign(s).

Putting these two ideas together defines the pole placement design method. It is a fairly
algebraic approach to closed-loop design, since it tends to lead to sets of equations which
have to be solved for feedback gains. Indeed, we now continue to explore the output feed-
back control problem for systems describe by state variable models using a pole place-
ment design framework.

716 An introduction to control using state variable system models

Problem An engineer wishes to design the controller for a highly oscillatory electro-mechanical system. A
modelling exercise leads to a state variable model with the following parameters:

and

The engineer decides to investigate a two-degree-of-freedom output controller using the frame-
work of Figure 23.3.

(a) What are the A, B, C data matrices for the electro-mechanical model?

(b) Use the open-loop data to show the response characteristics of the open-loop system.

(c) Use the general equations for ACL and KR to find expressions for these matrices from the
system matrices.

(d) Use MATLAB to calculate the closed-loop system eigenvalues (poles) for different Ko values.
Calculate the corresponding KR values. Comment on the flexibility available in tuning
closed-loop system parameters.

(e) Investigate whether pole placement design can be used for this example?

(f) Find the two-degrees-of-freedom design for ζ = 0.7.

(g) Use Simulink to provide the transient responses for an example where damping takes the
value 0.7.

Solution (a) From the given state variable model equations,

we identify

We note that the number of state variables, n = 2, that the number of control inputs m = 1, and the
number of outputs is r = 1. This reveals the basic data for the system model and that this is a SISO
system.

(b) To see the difficulty in controlling this problem, we find the open-loop system eigenvalues
(poles). For this we solve

p s s
s

s
s s0

2
025 6

6 025
05 360625 0() det()

.

.
. .= − =

+ −
+

= + + =I A

23.4 Pole placement design with output feedback 717

-È ˘ È ˘È ˘ È ˘
= +Í ˙ Í ˙Í ˙ Í ˙- -Î ˚ Î ˚Î ˚ Î ˚

�
�
1 1

2 2

0.25 6.00 0.4() ()
()

6.00 0.25 1.5() ()

x t x t
u t

x t x t

1

2

()
() [0.73 1.82]

()

x t
y t

x t
È ˘

= Í ˙
Î ˚

1 1

2 2

1

2

0.25 6.00 0.4() ()
()

6.00 0.25 1.5() ()

()
() [0.73 1.82]

()

x t x t
u t

x t x t

x t
y t

x t

-È ˘ È ˘È ˘ È ˘
= +Í ˙ Í ˙Í ˙ Í ˙- -Î ˚ Î ˚Î ˚ Î ˚

È ˘
= Í ˙

Î ˚

�
�

0.25 6.00 0.4
[0.73 1.82]

6.00 0.25 1.5

-È ˘ È ˘
= = =Í ˙ Í ˙- -Î ˚ Î ˚

A B C

The open-loop pole polynomial, p0(s), shows a rather high value of natural frequency (ωn = 6.005)
and a rather low value of damping (ζ = 0.5/(2 × 6.005) = 0.04). If we solve the quadratic equation,
p0(s) = 0, we find that the open-loop poles are located at s = –0.25 ± j6.005. This leads us to
expect highly oscillatory open-loop system responses that take a long time to die out. Such
responses might be quite typical of an electro-mechanical system.

(c) The general equations for ACL and KR are

A A BK CCL o= −[]

and

K C A BR CL= − − −[()]1 1

We note from part (a) that n = 2 and m = r = 1, so that A is 2 × 2, B is 2 × 1, C is 1 × 2 giving Ko as
1 × 1, and ACL as 2 × 2. If we let Ko = [ko] we can use the data of part (a) to obtain

This gives ACL as a function of the output controller gain, ko, and once Ko = [ko] is selected the
formula KR = [C(–ACL)–1B]–1 can be used directly.

(d) The closed-loop system matrix is 2 × 2 and hence will have two closed-loop eigenvalues. We
can use standard routines in MATLAB to work out the eigenvalues. Given that the closed-loop
eigenvalues form a complex conjugate pair, we can also evaluate damping ζ and natural frequency
ωn for the closed-loop system. If we have eigenvalues, s, as s1,2 = α± jβ = –ωnζ± jωn 1 2−ζ then ωn
can be calculated by remembering that the natural frequency is the distance of the pole
(eigenvalue) from the origin:

ωn = |s| = (α2 + β2)1/2

and the damping ratio can then be calculated from the real part of the poles: ζ = –α/ωn.

The above was coded as the MATLAB M-file:

% Set up System matrices
a(1,1)=–0.25;a(1,2)=6;
a(2,1)=–6; a(2,2)=–0.25;
b(1,1)=0.4;
b(2,1)=1.5;
c(1,1)=0.73; c(1,2)=1.82;
A=a;B=b;C=c;
%Input a value for K0
K0(1,1)=input(‘Input a value for K0')

%Calculate closed-loop system matrix and eigenvalues
ACL=A-B*K0*C
e=eig(ACL)
% Calculate omega_n and damping:

718 An introduction to control using state variable system models

CL o

o

o o

o o

0.25 6.00 0.4
[][0.73 1.82]

6.00 0.25 1.5

0.25 0.29 6.00 0.73

6.00 1.09 0.25 2.73

k

k

k k
k k

= -
-È ˘ È ˘

= -Í ˙ Í ˙- -Î ˚ Î ˚
- - -È ˘

= Í ˙- - - -Î ˚

A A B C

% since two complex eigenvalues, calculate magnitude of
% either to give omega_n
omega_n=abs(e(1,1))
damping =-real(e(1,1))/omega_n
%Reference Control Gain
KR=inv(-C*inv(ACL)*B)

The results from the MATLAB file may be tabulated as shown in Table 23.1.

What can be seen from the table is that we have only one gain parameter ko that is changing two
closed-loop eigenvalue locations. In fact, the table of results shows that as we change ko we
make the real part of the closed-loop eigenvalue position increasingly negative while not
changing the imaginary value greatly. We find that the damping factor changes significantly while
the value of ωn has only marginal changes. We note that we cannot tune closed-loop system
damping ζ and natural frequency ωn independently.

(e) In this section of the problem, we are going to look at the theoretical relationship between
closed-loop eigenvalue positions and the choice of ko. We find the eigenvalue of ACL from
det[sI – ACL] = 0 as follows:

p s s
s k k

CL CL
o o

() det[]
(. .) (.)

(
= − =

− − − − −
− −

I A
025 029 6 073

6− − − −

= + + +

109 025 2 73

05 302 3606252

.) (. .)

(. .) (.

k s k

s k s

o o

o +2915.)ko

This second-order eigenvalue relationship can be compared with the usual second-order under-
damped system relationship p(s) = s2 + 2ζωns + ωn

2 to yield the equations

ω

ζ
ω

n o

o

n

= +

=
+
×

=
+

(. .)

(. .)
()

. .

360625 2 915

05 302
2

025 151

k

k k
k

o

o(. .)360625 2 915+

These second-order system relationships show that ωn and ζ cannot be tuned independently by
selection of output gain, ko. This implies that a full pole placement solution cannot be obtained
and that we have to settle for only partial control over the closed-loop pole locations.

23.4 Pole placement design with output feedback 719

Output gain , ko Eigenvalues (ACL) Damping Natural frequency n Reference gain
KR(ko)

0 –0.25 ± j6 0.04 6.005 12.19

0.5 –1.01 ± j6.04 0.16 6.13 12.69

1.0 –1.76 ± j5.99 0.28 6.25 13.19

1.5 –2.52 ± j5.85 0.39 6.36 13.69

2.0 –3.27 ± j5.59 0.51 6.48 14.19

2.5 –4.03 ± j5.22 0.61 6.59 14.69

3.0 –4.78 ± j4.70 0.71 6.70 15.19

Table 23.1 MATLAB results.

(f) To find the two degree of freedom output control law gain which yields ζ = 0.7, we solve

ζ =
+
+

=
025 151

360625 2915
071 2

. .
(. .)

./
k

k
o

o

Squaring up and rearranging gives

00625 0755 228
360625 2915

0 49
. . .

(. .)
.

+ +
+

=
k k

k
o o

2

o

Further rearrangement gives a quadratic for ko as ko
2 – 0.296ko – 7.72 = 0, from which two values

are obtained for ko, namely, ko = 2.93 or ko = –2.63. The negative value for ko is inadmissible. A
run of the MATLAB program devised above with ko = 2.93 gives the following results for the
closed-loop system parameters.

ko Eigenvalues n KR(ko = 2.93)

2.93 –4.68 ± j4.78 0.699 6.69 15.12

The required output feedback law is u(t) = 15.12r(t) – 2.93 y(t). The Simulink simulation (part (g))
follows directly, as shown in Figure 23.4 and the output response is shown in Figure 23.5.

720 An introduction to control using state variable system models

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Time

O
ut

pu
t v

ar
ia

bl
e

Figure 23.5 The output response for design where ζ = 0.7.

t

Time

Step

x = Ax + Bu¢
y = Cx + Du

State-Space

y

Output

2.93

K0

15.12

KR

Clock

Figure 23.4 The Simulink simulation for output feedback solution.

23.4.1 Analysis of results
We see from Figure 23.5 that the output attains the correct steady state reference level.
However, the response is seen to have an overshoot of over 350% which does not satisfy
the design specification of ζ = 0.7. We found from our analysis that we would not be able
to satisfy specifications on both ζ and ωn with our output feedback, but we did expect to
have met the damping ratio specification. There will be reasons for this, for example:

1. The design specification was based on second-order system analysis: if the system is of
higher order then we would not expect to have an exact match between our
second-order analysis and results from higher order systems.

2. Use of state variable models can sometimes obscure the pole–zero knowledge of the
system which we are more familiar with.

3. The model of the system may not have accurately represented the actual dynamics.

In this example, we find that the system is second-order (two states), but if we convert the
state variable model to transfer function model, we find that the system transfer function
is given by:

G s
s

s s
()

. (.)
. .

=
+

+ +
3 025 0 9787

0 5 36 062

We note that there is one zero in the numerator at s = –0.9787. From our knowledge of
poles and zeros, we remember that although the system stability is determined by the
poles of the system, the transient response can be affected by the zeros. To gain further
insight, we can look at a root locus plot (Figure 23.6).

23.4 Pole placement design with output feedback 721

–12 –10 –8 –6 –4 –2 0
–8

–6

–4

–2

0

2

4

6

8

Real axis

Im
ag

in
ar

y
ax

is

Root locus design

System polesSystem zero

Closed loop
poles with gain
K0 of 2.93

Figure 23.6 Root locus plot for output feedback of electro-mechanical system.

We find that for a gain of Ko = 2.93, the complex poles move along the locus to the positions
shown. The closed-loop system still has complex poles, but the zero of the system transfer
function remains. Since the zero is closer to the origin than the poles, the system does not have
‘dominant second-order poles’ and therefore the response will be significantly altered from the
expected second-order response. This is what we have seen in Figure 23.5, where the overshoot
is excessive. In practice, there would usually be an actuator in the loop that would have
limited this overshoot, and also provided some saturation nonlinearity within the system.

This problem shows:

1. That we should be careful when performing our initial system analysis and that we
should stop and analyse our results if they appear at odds with what we expect to see.

2. That output feedback in a state variable framework does not necessarily have suffi-
cient degrees of freedom to satisfy all design requirements. We can see this from the
general form of the closed-loop system matrix, ACL = A – BKoC. The output feedback
gain Ko will have r × m parameters to tune the n dynamic eigenvalues of ACL. In most
real systems the order of the system n will be very much greater than the number of
measurements and/or control, and so sufficient degrees of design freedom are not
usually available in this form of state variable system method. One of the important
issues here is that the output vector is only a partial view of the state vector, x. As we
have seen from the output equation, the state passes through the output matrix C to
give the output variables in the vector, y.

In the next section we investigate what happens if we can remove this constraint and
have direct access to all the state variables.

23.5 Investigating state feedback: using the state vector directly
Output feedback is the control structure that we have used for most of the book so far. In
the investigation that we performed in the previous section for output feedback using the
framework of a state variable system model, we found some restrictions in design
freedom. The example we used was a single-input, single-output electromechanical
system model with two states. A two-degrees-of-freedom control law enabled us to
consider one control gain for achieving the correct steady state values, and a second
control gain for shaping the dynamic response of the system. Simple calculations showed
us that we were not able to tune the transient response of the system adequately. It was
intimated that this was due to the information-reducing property of the output equation,
which only allowed a partial view of the full information content of the state vector, x(t).
In this section we follow this idea further and instead of using the output in a feedback
law, we investigate the outcome of using the state vector directly in a state feedback law.

The two degrees of freedom output feedback control law was given by

u(t) = KRr(t) – Koy(t)

If we assume that we have a set of measurements (or a system model) available that allow
a full view of the state vector, we can consider using a two-degree-of-freedom state feed-
back law of the form

u(t) = KRr(t) – Kx(t)

The closed-loop system block diagram for the state feedback law is given in Figure 23.7.
This shows the same basic reference tracking structure as the output feedback case

722 An introduction to control using state variable system models

shown in Figure 23.3. The main difference is that the internal system state is now
providing the feedback action through a state feedback gain, K. We should note that the
gain, K, is an m × n matrix and that this is generally larger in size that the corresponding
output feedback gain, Ko, which was only an m × r matrix. We anticipate that we should
be able to achieve more with state feedback.

Example: Extra design freedom through state feedback
We consider a system with one input, one output and two state variables. Therefore, for a single input
and single output we set m = r = 1, and for two state variables we set n = 2. In the state feedback
control law, the reference control gain matrix KR is now a 1 × 1 matrix, or a scalar, [kR]. The state feed-
back gain, K = [k(1,1) k(1,2)], is a 1 × 2 matrix. Thus we can write the control law in matrix form as

u(t) = KRr(t) – Kx(t)

or we can use matrix element form as

It is not difficult to see that the matrix form is generally easier to work with and that we usually only
use the element-wise form when we consider the particular details of a given problem. We can
recall that the equivalent output feedback law for a single-input, single-output system gave rise to
a matrix form in which both the reference and the control gain matrices were scalars:

u t k r t k y t() [] () [] ()= −R o

Hence the state feedback law shows an extra degree of design freedom in the control gain by
having an extra controller gain to tune, and we expect to be able to achieve better control tuning
with the new flexibility.

23.5.1 Closed-loop system analysis for general state feedback system
The closed-loop control analysis follows from the system equations and is similar to that
performed for output feedback, only we use the state feedback control law in place of the
output feedback control equation:

�() () ()x Ax But t t= +

and the two degrees of freedom state feedback law:

u(t) = KRr(t) – Kx(t)

23.5 Investigating state feedback: using the state vector directly 723

B C

System

u t()

+

x t() y t()
KR

r t()

AK

–

+
Ú

+

Controller

Figure 23.7 State feedback control for reference tracking.

1
R

2

()
() [][()] [(1,1) (1,2)]

()

x t
u t k r t k k

x t
È ˘

= - Í ˙
Î ˚

1. To find the closed-loop system matrix we use direct substitution of the control law
into the system equation:

�() () ()
() (() ())

[] ()

x Ax Bu
Ax B K r Kx
A BK x

t t t
t t t

t

= +
= + −
= −

R

+
= +

BK r
A x BK r

R

CL R

()
[] () ()

t
t t

The closed-loop system matrix is then given by ACL = [A – BK].

2. To find the reference controller KR we assume that a state feedback gain can be found
to stabilise the closed-loop so that all the eigenvalues of ACL have a strictly negative
real part. This allows the inversion of matrix ACL = [A – BK]. We then assume that the
constant reference signals r(t) = ro cause the states to reach constant levels as t →∞. We
denote this steady level as xss and use the property that �x 0ss = to obtain

�x A x BK r 0ss CL ss R o= + =

This rearranges to give

x A BK rss CL R o= − −1

Then, using the output equation, y(t) = Cx(t), we find

y Cx C A BK r C A BK rss ss CL R o CL R o= = − = −− −() [()]1 1

Since we required that yss = ro, we find

[()]C A BK I− =−
CL R

1

and

K C A BR CL= − − −[()]1 1

Key result: State feedback control

The important difference from the previous analysis for the output feedback case is that the
closed-loop matrix here, ACL = [A – BK], is a function of the state feedback gain matrix, K.

Thus overall, the state feedback closed-loop analysis also leads to two matrix expressions, a
closed-loop matrix, ACL = [A – BK] and a reference controller gain matrix, KR = [C(–ACL)–1B]–1.

The design problem is therefore similar to that for the output feedback case, and the pole
placement method is a possible solution procedure.

To investigate the success or failure of state feedback, we re-examine the lightly
damped single-input, single-output electro-mechanical example of the previous section
that has two states. We use this example to be able to make a comparison of the outcomes
of output feedback and state feedback designs for the same system.

Problem The state variable model for an electro-mechanical system has been derived with the following
parameters:

724 An introduction to control using state variable system models

The engineer on this control project decides to investigate the use of state feedback control using
the two degrees of freedom control law:

u(t) = KRr(t) – Kx(t)

(a) Summarise the open-loop characteristics of this system model.

(b) Use the coefficient form of the state feedback matrix K to determine the pole placement
equations for closed-loop design.

(c) Discuss the flexibility available in the design equations. Use MATLAB to determine the state
feedback gains and the reference controller gain for the two design cases:

Case (a) Underdamped design ζ =
1
2

, ωn = 2

Case (b) Critically damped design ζ ω= =1 1, n

(d) Develop a Simulink simulation to show the system unit step responses resulting from the
designs. Comment on the results found.

Solution (a) The open-loop characteristics of the electro-mechanical system model are determined from
the system matrix A which was previously identified as

A =
−
− −
⎡
⎣⎢

⎤
⎦⎥

025 600

600 025

. .

. .

To see the difficulty in controlling this problem, the open-loop system eigenvalues (poles) can be
examined from the open-loop eigenvalue polynomial

p s s
s

s
s s0

2
025 6

6 025
05 360625 0() det()

.

.
. .= − =

+ −
+

= + + =I A

The open-loop poles are located at s = –0.25± j6.005. The poles correspond to positions associ-
ated with low damping, ζ = 0.04, and a high value of natural frequency, ωn = 6.005. Thus
open-loop responses are highly oscillatory and will take a long time to settle. If the system transfer
function is evaluated:

G s
s

s s
()

. (.)
. .

=
+

+ +
3025 09787

05 36062

it then becomes apparent that there is an open-loop zero at sz = –0.9787. This zero will have effect
on the time responses of the system.

(b) We use the following equations in our design procedure:

A A BKCL = −[] and K C A BR CL= − − −[()]1 1

Since we have a second-order system, we can perform some general analysis to show the advan-
tages of the state feedback design method. In particular, we use the coefficient form of the

23.5 Investigating state feedback: using the state vector directly 725

1 1

2 2

1

2

0.25 6.00 0.4() ()
()

6.00 0.25 1.5() ()

()
() [0.73 1.82]

()

x t x t
u t

x t x t

x t
y t

x t

-È ˘ È ˘È ˘ È ˘
= +Í ˙ Í ˙Í ˙ Í ˙- -Î ˚ Î ˚Î ˚ Î ˚

È ˘
= Í ˙

Î ˚

�
�

state-feedback matrix K to determine the general pole placement equations for our second-order
closed-loop design.

The pole placement analysis follows the procedure:

1. Find the general pole placement coefficient equations for our second-order closed-loop
design.

2. Equate the coefficients of the second-order closed-loop pole polynomial to a general
second-order design polynomial.

3. Write down the linear set of equations that results in a form suitable for solution by MATLAB.

4. Then, evaluating the parameters of the design pole polynomial from the design specifications,
run the program to find the resulting coefficients of the controller gain matrix, K.

5. Use the controller gain K in the equation for KR to find the reference tracking gain.

We begin the pole placement procedure at Step 1.

1. We wish to calculate the closed-loop system matrix expression, ACL = [A – BK]. From the
state variable model we identify matrices A and B as:

where A is 2 × 2 and B is 2 × 1 and K is 1 × 2. We let the coefficient form of the state-feedback
matrix be K = [k1 k2].

To investigate the design freedom we examine the eigenvalues of the closed-loop system, and
first produce a set of equations which define all the possible pole placement positions for the
closed-loop system matrix. To keep the procedure and the subsequent programs general we will
perform the next steps algebraically. Although a little tedious, this will make the MATLAB program
more useful, since we will be able to change the system data easily. The closed-loop system
matrix is given by

The eigenvalue polynomial for the closed-loop system matrix can now be found:

p s s
s a b k a b k

a b k s aCL CL() | |= − =
− + − +
− + −

I A
11 11 1 21 11 2

21 21 1 22 21 2

11 11 1 22 21 2 21 21 1

+
= − + − + − − + −

b k

s a b k s a b k a b k()() ()(a b k

s a b k a b k s a b k
12 11 2

2
11 11 1 22 21 2 11 11 1

+

= + − + − + + − +

)

() ()()

()()

− +
− − + − +

a b k
a b k a b k

22 21 2

21 21 1 12 11 2

We find that when multiplying these expressions out, the cross-term in k1k2 always disappears
from this type of problem. Hence we have a closed-loop polynomial as

p s s b k b k a a s b a b a kCL() () ()= + + − − + − +2
11 1 21 2 11 22 11 22 21 12 1

11 21 21 11 2 11 22 21 12+ − + + −() ()a b a b k a a a a

The quadratic, pCL(s), gives all the locations of the eigenvalue positions for the closed-loop
system matrix ACL in terms of the elements of the state feedback gain, K.

726 An introduction to control using state variable system models

0.25 6.00 0.4
and

6.00 0.25 1.5

-È ˘ È ˘
= =Í ˙ Í ˙- -Î ˚ Î ˚

A B

11 12 11 11 11 1 12 11 2
CL 1 2

21 22 21 21 21 1 22 21 2
[]

a a b a b k a b k
k k

a a b a b k a b k
- -È ˘ È ˘ È ˘

= - = - =Í ˙ Í ˙ Í ˙- -Î ˚ Î ˚ Î ˚
A A BK

2. In a pole placement design, we can assume that the design specification have been trans-
formed into a design closed-loop system eigenvalue quadratic, pdesign(s). We can then
equate coefficients to obtain some equations for the elements of the gain matrix, K. Let the
design eigenvalue polynomial be given by

p s s t s tdesign() = + +2
1 2

Equating coefficients of the design polynomial pdesign(s) and the closed-loop pole polynomial,
pCL(s), gives

Coefficients of s2: 1 = 1

Coefficients of s1: t1 = b11k1 + b21k2 – a11 – a22

Coefficients of s0: t2 = (–b11a22 + b21a12)k1 + (–a11b21 + a21b11)k2 + (a11a22 – a21a12)

3. We rewrite these equations into a set of linear equations for the gains k1 and k2:

b k b k t a a
b a b a k a b

11 1 21 2 1 11 22

11 22 21 12 1 11 21

+ = + +
− + + − +() (a b k t a a a a21 11 2 2 11 22 21 12) ()= − −

This can be written as

where the elements are given by

X(1,1) = b11 X(1,2) = b21

X(2,1) = –b11a22 + b21a12 X(2,2) = –a11b21 + a21b11

Y(1,1) = t1 + a11 + a22

Y(2,1) = t2 – (a11a22 – a21a12)

This can be given in matrix form as

XK = Y, giving K = X–1Y

Although the above seems a little long-winded, it does give us a much neater MATLAB program.
This program will have the steps as follows:

Step 1: Set up A, B data.
Step 2: Specify the design polynomial data, t1, t2.
Step 3: Set up X and Y matrices.
Step 4: Use K = X–1Y to find K.
Step 5: Use ACL = A – BK to find the closed-loop system matrix.
Step 6: Use KR = [C(ACL

−1)B]–1 to find reference control gain.

Thus the element-wise expression for the closed-loop matrix, ACL, leads to the design equations,
and the formula KR = [C(ACL

−1)B]–1 gives the value of the reference gain.

(c) The design equations found above require the design pole polynomial, pdesign(s) = s2 + t1s + t2,
to be created from the design specification. We can look at the pole assignment from two
viewpoints.

23.5 Investigating state feedback: using the state vector directly 727

1

2

(1,1) (1,2) (1,1)

(2,1) (2,2) (2,1)

kX X Y
kX X Y

È ˘ È ˘È ˘
=Í ˙ Í ˙Í ˙

Î ˚Î ˚ Î ˚

From a practical viewpoint we often have an intuitive idea of how fast we should like the modes to
decay and what region of the s-plane we should like to see the closed-loop poles occupy. So we
could specify the closed-loop system modes to take desired values, λ = –α± jβ. We can turn this
directly into a target eigenvalue polynomial:

p s s s s t s tdesign() ()= + + + = + +2 2 2 2
1 22α α β

From this we can specify coefficients t1 = 2α and t2 = (α2 + β2).
Alternatively, we could take the design route in which we specify a desired damping ζ and

natural frequency, ωn. We then use the usual second-order underdamped polynomial for speci-
fying t1 and t2. We set

p s s s s t s tdesign n n() = + + = + +2 2 2
1 22ζω ω

and obtain t1 = 2ζωn, t2 = ωn
2.

Presuming we have already set up the matrix coefficients in MATLAB, the design equations
can then be added to the system setup.

%Design parameters
t1=2; t2=1;
%Gain Equation Set up
X(1,1)=b(1,1);
X(1,2)=b(2,1);
Z(1,1)=t1+a(1,1)+a(2,2);
X(2,1)=-b(1,1)*a(2,2)+b(2,1)*a(1,2);
X(2,2)=-b(2,1)*a(1,1)+b(1,1)*a(2,1);
Z(2,1)=t2-(a(1,1)*a(2,2)-a(2,1)*a(1,2));
%Gain Equation Solution
Y=inv(X)*Z;
%Closed-loop System Matrix
k(1,1)=Y(1,1); k(1,2)=Y(2,1);
K=k;
%Calculate closed-loop system matrix
ACL=A-B*K;
%Reference Control Gain
KR=inv(-C*inv(ACL)*B)

We can check the closed-loop eigenvalues as we did for the output feedback example by using
eig(ACL).

Program verification
It is important to verify the program and we use the data of the given model to check the program
calculations. We have system data:

a a b
a a b
c

11 12 11

21 22 21

025 600 0 4

600 025 15

= − = =
= − = − =

. . .

. . .

11 12073 182= =. .c

We can verify the following element calculations,

X(1,1) = b11 = 0.4

X(1,2) = b21 = 1.5

728 An introduction to control using state variable system models

X(2,1) = –b11a22 + b21a12 = 9.1

X(2,2) = a11b21 + a21b11 = –2.025

Y(1,1) = t1 + a11 + a22 = t1 – 0.5

Y(2,1) = t2 – (a11a22 + a21a12) = t2 – 36.0625

(d) Finding the design parameters t1 and t2.
Case (a): Underdamped design where ζ = 1 2/ , ωn = 2.
We seek a design polynomial of the form:

p s s s s t s tdesign n n() = + + = + +2 2 2
1 22ζω ω

and use t1 = 2ζωn, t2 = ωn
2. We can calculate that:

t1 = 2ζωn = 2 × ×
1
2

2 = 2

t2 = ωn
2 = (2)2 = 2

Case (b): Critically damped design where ζ = 1, ωn = 1.
We seek a target polynomial of the form

pdesign(s) = s2 + 2ζωns + ωn
2 = s2 + t1s + t2

and use t1 = 2ζωn, t2 = ωn
2. We can calculate that

t1 = 2ζωn = 2 × 1 × 1 = 2 and t2 = ωn
2 = (1)2 = 1

Using MATLAB we find the results shown in Table 23.2.

(e) We present two versions for the Simulink simulation: one using the full matrix notation, and
one showing the matrix coefficients. Both give the same results.

(i) The Simulink simulation using full matrix notation is given in Figure 23.8.
Implementation note: to use the state space block for our problem, we have set the C matrix
to be the identity matrix. This provides an output vector from the state space block which
contains the states, y(t) = Cx(t) = Ix(t) = x(t). This has additional implications for the size of
the output vector y(t), which must now be the same dimensions as x(t), and the size of the
(zero) D matrix.

23.5 Investigating state feedback: using the state vector directly 729

Case (a) Underdamped design

KR K(1,1) K(1,2) CL poles Calculated ζ Calculated ωn

0.6762 –3.323 1.886 s = –1± j1 0.7071 1.414

Case (b) Critically damped design

KR K(1,1) K(1,2) CL poles Calculated ζ Calculated ωn

0.3381 –3.427 1.914 s = –1± j0 1.0 1.0

Table 23.2 Results for underdamped and critically damped design cases.

(ii) The Simulink simulation giving gain coefficients is shown in Figure 23.9. Once again we have
had to set the C matrix in the state space block to be an identity matrix in order that the output
of the block is the state vector x(t). We then pass this through a Demux block which allows us
access to the individual state vector components.

Analysis of results
The Case (a) underdamped response is shown in Figure 23.10, and the Case (b) critically under-
damped response is shown in Figure 23.11. We see that the shape of the dynamic response has
been much tamed. We have an overshoot of 21.6% in the underdamped case and no overshoot in
the critically damped case. In both cases the correct steady state values have been achieved. In
the underdamped case the overshoot is higher than what we required, since a design damping of

730 An introduction to control using state variable system models

t

Time

Step

x = Ax + Bu¢
+

– y = Cx + Du

State space

x

State

K

Output matrix, C

y

Output

0.6762

Gain

K

Feedback gain K

Clock

Figure 23.8 Simulink state feedback simulation using matrix notation.

t

Time

Step

x = Ax + Bu¢
y = Cx + Du

State-Space

0.6762

Reference
gain

y+ +

+

+
+

–

Output

Demux

Demux

1.886

Control gain, k12

–3.323

Control gain, k11

Clock

1.82

C(1,2)

0.73

C(1,1)

Figure 23.9 Simulink state feedback simulation using matrix gain coefficients.

 0.7 translates as an overshoot of about 5%, and we have 21.6%. But we note from the results
analysis at the end of the output feedback case that the system has a zero close to the origin
which affects the transient response. The effect of the zero is to give a non-standard
second-order system response. However, what we do notice is that the step response has
improved greatly due to the use of state feedback.

MATLAB has a command acker which provides a quick and convenient route to performing
pole-placement design with a simple state feedback system. The command is

K = acker (A,B,P)

where A and B are the system and input matrices from the state variable model. P represents the
vector containing the desired pole locations. If we apply this to the previous example we find:

23.5 Investigating state feedback: using the state vector directly 731

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

O
ut

pu
t v

ar
ia

bl
e

Figure 23.10 Case (a) underdamped output response.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

O
ut

pu
t v

ar
ia

bl
e

Figure 23.11 Case (b) critically damped output response.

A = [-0.25 6; -6 -0.25]; % Enter system matrices
B = [0.4; 1.5];
p1= roots([1 2 2]); % Calculate first desired pole locations
p2 = roots([1 2 1]); % Calculate second desired pole locations
KR1 = acker(A,B,p1) % Calculate first control gain

KR1
-3.3234 1.8862

KR2 = acker(A,B,p2) % Calculate second control gain
KR2

-3.4271 1.9139

We see that the results from the control gains KR1 and KR2 are the same as those given in Table
23.2 in the previous problem.

23.5.2 Summary: Output and state feedback in a state variable system framework
We have already discussed the similarities between the two laws:

output feedback law u(t) = KRr(t) – Koy(t)

state feedback law u(t) = KRr(t) – Kx(t)

The output feedback law is restricted in design achievements while the state feedback
law is able to give total control over the system dynamics. Indeed, the design flexibility of
the state feedback law can be supported by deep technical results to guarantee the design
properties. But theory is always what it says it is: just theory, which has to be matched
against the practical reality of the real world. The design flexibility of state feedback is
achieved because it has been assumed that we can access each state variable. In practice
this means that we must be able to measure every state variable, or we must have a more
complicated control system where we include a model of the process which provides us
with the state information. Further, we have also assumed that the model is a very accu-
rate representation of the actual process being controlled. We find that most industrial
control systems will have many unmeasurable system states and that industrial process
models are not usually so well known or accurate. These problems lead us into the
following three control design areas that rely on state feedback.

State feedback controllers
1. Observers

These are controllers which incorporate models of the process and are used when all
the states are not able to be measured and we have a good model of the process.

2. Optimal control
We have used a simple pole-placement technique to introduce state feedback control.
We can take this further by providing control design methods to choose the controller
state feedback gains in an optimal manner.

3. Kalman filters
These are used to provide an estimate of the states when we have a process model but
presume that there is some noise acting on the system states and outputs.

Therefore the promise of excellent design flexibility in state feedback has driven the
subject of advanced control forward. The state variable framework and the use of models
to design controls is now common in advanced control.

732 An introduction to control using state variable system models

23.6 At the signpost of advanced control

State variable methods provided control theory with a deep and satisfying mathematical
basis for the discipline. Of course, there is always a gap between theory and practice, but
it is the interplay between them that makes the practical outcomes so interesting and
useful. We need the precision of mathematical control tools to illuminate control appli-
cation problems in industry and commerce. For example, all of the complex systems
described in the opening chapter of this book would not have succeeded without the use
of design and simulation methods like those we have developed and investigated in the
past chapters of this book. We hope you have enjoyed learning about the control system
descriptions, classical control design methods like root locus and Bode plots and state
variable systems that you have found in this book. Although we have reached the end of a
first-level course, it is highly likely that you will be looking at the modules in control
engineering available to you next. What sort of topics can you expect?

As we have seen, control engineering uses a model of the system or process either for
control design or for predicting control system performance. This basic feature is aided
by the availability of computer simulation tools like Simulink, which use our model
data, compute system responses, and display the outcomes in a variety of graphical
formats. We use models of systems in our design and feasibility studies because of their
low cost and wide availability. It is simply cheaper to use software simulations than to
develop hardware prototypes or perform extensive trials on production lines. This
dependence on models has led to new analysis methods and design procedures which try
to overcome the various shortcomings of the model-based approach in control engi-
neering. Some control techniques even incorporate online modelling into the architec-
ture of the controller itself. It is these types of topic that you are likely to meet in your
second-level control engineering courses. We should like to give you some brief
comments on just three areas that you might meet.

System identification: how to find better system models
It would seem natural that, if we have an engineering approach based on using system
models, that we should also investigate how to find these models efficiently and econom-
ically. You are quite likely to meet the least-squares method for system identification,
where we use process data obtained from the production line or from carefully designed
experiments,to compute the parameters and coefficients in our system models. The
online version of this routine is known as recursive least-squares, and this method has
been used in some online control techniques.

Robust control: dealing with modelling uncertainty
We met gain and phase margin measures in this book. We found that these were simple
ways of defining the closed-loop stability margin we have in our control design. This
safety margin was needed because our system models might not completely match the
real system. Model mismatch and designing control systems to accommodate model
discrepancy will be themes that will continue into your second-level course modules.
This whole area is commonly termed robust control.

23.6 At the signpost of advanced control 733

Digital control: where control, computing, signal processing and communications meet
In some chapters we made brief links to the field of digital control. The amazing growth
of LANs and the Internet is having a dramatic effect on the way that we do digital control
and the way that we control systems, particularly large-scale systems. For example, we
recently read of a student who had set up links between a system digital controller and a
mobile phone. This was described as a new method of real-time control monitoring!
Despite the rapid changes and developments in digital control, your digital control
modules are likely to discuss Kalman filtering, discrete-state variable systems and
model-based predictive control, among other topics. Again there will be a continuing
emphasis on using process and system models in all of these methods.

And your future in control engineering...
As well as looking at second-level course modules we hope you may even be considering
possible career in control engineering. Almost all the professional engineering fields,
mechanical, electrical, environmental, chemical, aeronautical and marine have control
activities of some form or another. In some areas, for example electrical engineering, it is
possible to be ‘a control engineer’; in others it is always useful to have a good under-
standing of control topics. In closing, we hope that this book has provided the inspiration
to find out more about the useful field of control engineering.

Multiple choice

734 An introduction to control using state variable system models

M23.1 How are the control or actuator connections
to the internal states of the system
represented?
(a) through the A matrix
(b) by diagonalisation of the system matrix
(c) through the B matrix
(d) through the system eigenvalues

M23.2 The ‘two-degrees-of-freedom’ title for the
controller, u(t) = KRr(t) – Koy(t), refers to the
fact that:
(a) there are two states in the system
(b) we use two different values for Ko
(c) there are two dependent controller parame-

ters, KR and Ko
(d) there are two independent controller

pathways

M23.3 If we have two inputs, two outputs and two
reference inputs:
(a) there are two states
(b) there are four states
(c) there are six states
(d) the number of states is undefined

M23.4 For the system �x = Ax + Bu, y = Cx and the
control law u(t) = KRr(t) – Koy(t), the
closed-loop system matrix is given by:
(a) A – BKoC
(b) A – BKRC
(c) A + BKoC
(d) A + BKRC

M23.5 A pole-placement design:
(a) places all the poles on the real axis in the

LHP
(b) chooses the pole locations to suit the

design specification
(c) can only be performed with a SISO system
(d) can never be achieved with output feedback

M23.6 The closed-loop pole polynomial is given by:
(a) det(sI – A) = 0
(b) det(sI – A)–1 = 0
(c) det(sI + A – BKoC) = 0
(d) det(sI – A + BKoC) = 0

M23.7 For a second-order system, tuning the
output feedback gain Ko can:
(a) fix the values of ζ and ωn independently
(b) fix only the value of ζ
(c) fix only the value of ωn
(d) only fix the values of ζ and ωn dependently

Questions: practical skills

Q23.1 An engineer who is developing a closed-loop control system based on state space methods has
modelled a flow process in a chemical works. The flow process has a model:

�() . () .

() . ()

f t f t f
f t f t

= − +
=

02 675

126
in

m

where fm(t) represents a measured flow output, and fin is a normalised flow input such that 0 < fin < 1.
The engineer chooses to design a two-degrees-of-freedom control law using output feedback,
u(t) = kRfref – kofm(t), where the reference flow will take values in the range 4.5 < fref < 5.5.
(a) If the desired closed-loop system eigenvalue is λ(ACL) = –1.45, find the gains kR and ko to

achieve the design specification.
(b) Draw a block diagram for the system and control scheme.
(c) Create a Simulink simulation for the complete control system and show if satisfactory responses

are obtained.

Q23.2 A ship autopilot for rudder angle control is required. A simple linear model in state space format
has been developed as

�() . () .

() . ()

φ φ
φ φ

t t T
t t
= +
=

035 1055

105
A

m

where φm(t) represents a measured rudder angle output and TA is a normalised applied torque such
that –1 < TA < 1. The control engineer on the project chooses to design a two-degrees-of-freedom
control law using state feedback, u(t) = kRφ ref – kφ (t), where the reference rudder angle will take
values in the range –45° < φ ref < 45°.
(a) If the desired closed-loop system eigenvalue is λ(ACL) = –2.25, find the gains kR and k to achieve

the design specification.
(b) Draw a block diagram for the system and control scheme.
(c) Create a Simulink simulation for the complete control system and show if satisfactory responses

are obtained.

Practical skills 735

M23.8 State feedback can be achieved by a
control law of the form:
(a) u(t) = KRr(t) – Kx(t)
(b) u(t) = KRr(t) – Ky(t)
(c) u(t) = K(r(t) – y(t))
(d) u(t) = KRr(t) – Koy(t) – Kx(t)

M23.9 To stabilise a state feedback system we
require:
(a) all eigenvalues of A – BK have negative real

parts
(b) all eigenvalues of A have negative real parts
(c) all eigenvalues of K have negative real parts
(d) all eigenvalues of A – BKR have negative

real parts

M23.10 To implement state feedback we need:
(a) measurements of all the system states
(b) an internal model of the process
(c) one of (a) or (b)
(d) both (a) and (b)

Q23.3 An industrial system has a state space model with the following parameters:

It is desired to design a two-degrees-of-freedom state feedback control law:

u(t) = KRr(t) – Kx(t)

(a) Find the system eigenvalues and the open-loop transfer function for this system.
(b) Derive the closed-loop formulas for ACL and KR.
(c) Derive the equations for the state feedback matrix K in element form if pole placement design is

to be used.
(d) Use MATLAB to determine the state feedback gains and the reference controller gain for the

design case, which has the desired system eigenvalues s = –4.5 ± j3.
(e) Develop a Simulink simulation to show the system unit step responses resulting from the designs.

Comment on the results found.

Q23.4 In a control system design exercise for a marine engine, an engineer is using the state space
framework. The system model is given as

�() () ()

() ()

x Ax Bu
y Cx

t t t
t t
= +
=

The data for the model are

(a) (i) Determine the system eigenvalues and the stability status of the system.
(ii) Prove that arbitrary pole placement by state feedback is possible for this system.

(b) The engineer decides to experiment with a different method of actuation for the system and this
leads to a different input matrix:

(i) Prove that arbitrary pole placement is not possible with the new actuation system.
(ii) Show that the open-loop system eigenvalue at s = 1.5 is unaltered by feedback.
(iii) Comment on the practical implications of this finding.

Problems

P23.1 A modelling exercise leads to a state space model with the following parameters:

and

736 An introduction to control using state variable system models

1 1

2 2

1

2

5.26 7.32 3.6() ()
()

7.32 5.26 2.4() ()

()
() [0.36 0.37]

()

x t x t
u t

x t x t

x t
y t

x t

-È ˘ È ˘È ˘ È ˘
= +Í ˙ Í ˙Í ˙ Í ˙- -Î ˚ Î ˚Î ˚ Î ˚

È ˘
= Í ˙

Î ˚

�
�

13/6 4/3 0
, and [1 1]

4/3 7/6 0.5
È ˘ È ˘

= = =Í ˙ Í ˙- -Î ˚ Î ˚
A B C

1
1/6

1/3

-È ˘
= Í ˙

Î ˚
B

1 1

2 2

0.2 0 1.4() ()
()

0 0.2 0.5() ()

x t x t
u t

x t x t

-È ˘ È ˘È ˘ È ˘
= +Í ˙ Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚ Î ˚

�
�

1

2

()
() [3.21 2.31]

()

x t
y t

x t
È ˘

= Í ˙
Î ˚

Use a two-degrees-of-freedom output controller to design a closed-loop control system. Follow the
steps indicated.
(a) What are the A, B, C data matrices for the system model?
(b) Find the open-loop transfer function and use simulations, if necessary, to detail the response char-

acteristics of the open-loop system to step inputs.
(c) Derive the closed-loop system equations using the two-degrees-of-freedom control law,

u(t) = KRr(t) – Koy(t). Find expressions for ACL and KR.
(d) Use MATLAB to calculate the closed-loop system eigenvalues (poles) for different Ko values.

Calculate the corresponding KR values. Comment on the flexibility available in tuning closed-loop
system parameters. Comment on your findings.

P23.2 The technical manual gives the state space model for a hydraulic servo system as

In an attempt to improve on the existing control scheme, an engineer decides to investigate the use of
state feedback control using the two-degrees-of-freedom control law:

u K r Kx() () ()t t t= −R

(a) Determine the open-loop characteristics of this system model.
(b) Briefly derive the closed-loop equations to determine expressions for ACL and KR.
(c) Use the coefficient form of the state feedback matrix K to determine the pole placement equations

for closed-loop design.
(d) Discuss the flexibility available in the design equations. Use MATLAB to determine the state feed-

back gains and the reference controller gain for the two design cases:

Case (i) Underdamped design ζ = 0.5, ωn = 1.8

Case (ii) Critically damped design ζ = 1, ωn = 1

(e) Develop a Simulink simulation to show the system unit step responses resulting from the designs.
Comment on the results found.

Problems 737

1 1

2 2

1

2

0.125 7.85 4.0() ()
()

7.85 0.125 3.5() ()

()
() [0.85 0.76]

()

x t x t
u t

x t x t

x t
y t

x t

-È ˘ È ˘È ˘ È ˘
= +Í ˙ Í ˙Í ˙ Í ˙- -Î ˚ Î ˚Î ˚ Î ˚

È ˘
= Í ˙

Î ˚

�
�

Answers to multiple choice questions

Chapter 2
M2.1 (b) M2.2 (a) M2.3 (d) M2.4 (b) M2.5 (a)
M2.6 (b) M2.7 (b) M2.8 (c) M2.9 (a) M2.10 (b)

Chapter 3
M3.1 (b) M3.2 (d) M3.3 (d) M3.4 (d) M3.5 (c)
M3.6 (c) M3.7 (b) M3.8 (a) M3.9(a) M3.10 (a)

Chapter 4
M4.1 (a) M4.2 (b) M4.3 (a) M4.4 (c) M4.5 (a)
M4.6 (c) M4.7 (d) M4.8 (b) M4.9(b) M4.10 (d)

Chapter 5
M5.1 (c) M5.2 (b) M5.3 (d) M5.4 (c) M5.5 (c)
M5.6 (b) M5.7 (a) M5.8 (a) M5.9 (b) M5.10 (d)

Chapter 6
M6.1 (c) M6.2 (a) M6.3 (c) M6.4 (d) M6.5 (a)
M6.6 (c) M6.7 (c) M6.8 (a) M6.9(b) M6.10 (c)

Chapter 7
M7.1 (a) M7.2 (c) M7.3 (d) M7.4 (a) M7.5 (b)
M7.6 (d) M7.7 (c) M7.8 (b) M7.9 (c) M7.10 (c)

Chapter 8
M8.1 (c) M8.2 (d) M8.3 (a) M8.4 (c) M8.5 (a)
M8.6 (a) M8.7 (b) M8.8 (d) M8.9 (a) M8.10 (a)

Chapter 9
M9.1 (c) M9.2 (d) M9.3 (a) M9.4 (a) M9.5 (d)
M9.6 (c) M9.7 (a) M9.8 (c) M9.9 (a) M9.10 (b)

Chapter 10
M10.1 (d) M10.2 (a) M10.3 (c) M10.4 (d) M10.5 (a)
M10.6 (c) M10.7 (a) M10.8 (a) M10.9 (c) M10.10 (c)

Chapter 11
M11.1 (b) M11.2 (a) M11.3 (a) M11.4 (b) M11.5 (a)
M11.6 (c) M11.7 (c) M11.8 (b) M11.9 (c) M11.10 (d)

Chapter 12
M12.1 (b) M12.2 (c) M12.3 (d) M12.4 (a) M12.5 (c)
M12.6 (d) M12.7 (d) M12.8 (b) M12.9 (d) M12.10 (b)

Chapter 13
M13.1 (a) M13.2 (a) M13.3 (c) M13.4 (d) M13.5 (a)
M13.6 (b) M13.7 (c) M13.8 (d) M13.9 (d) M13.10 (a)

Chapter 14
M14.1 (a) M14.2 (d) M14.3 (b) M14.4 (d) M14.5 (c)
M14.6 (d) M14.7 (d) M14.8 (d) M14.9 (c) M14.10 (b)

Chapter 15
M15.1 (d) M15.2 (d) M15.3 (c) M15.4 (a) M15.5 (b)
M15.6 (a) M15.7 (a) M15.8 (c) M15.9 (a) M15.10 (a)

Chapter 16
M16.1 (a) M16.2 (a) M16.3 (b) M16.4 (c) M16.5 (b)
M16.6 (b) M16.7 (a) M16.8 (b) M16.9 (d) M16.10 (d)

Chapter 17
M17.1 (a) M17.2 (c) M17.3 (c) M17.4 (d) M17.5 (c)
M17.6 (a) M17.7 (a) M17.8 (a) M17.9 (a) M17.10 (b)

Chapter 18
M18.1 (a) M18.2 (d) M18.3 (b) M18.4 (d) M18.5 (a)
M18.6 (d) M18.7 (c) M18.8 (d) M18.9 (d) M18.10 (a)

Chapter 19
M19.1 (d) M19.2 (c) M19.3 (b) M19.4 (b) M19.5 (a)
M19.6 (d) M19.7 (b) M19.8 (d) M19.9 (c) M19.10 (b)

Chapter 20
M20.1 (c) M20.2 (b) M20.3 (d) M20.4 (d) M20.5 (b)
M20.6 (c) M20.7 (c) M20.8 (c) M20.9 (d) M20.10 (a)

Chapter 21
M21.1 (b) M21.2 (d) M21.3 (b) M21.4 (b) M21.5 (c)
M21.6 (a) M21.7 (c) M21.8 (c) M21.9 (a) M21.10 (c)

Chapter 22
M22.1 (b) M22.2 (c) M22.3 (c) M22.4 (d) M22.5 (a)
M22.6 (a) M22.7 (a) M22.8 (c) M22.9 (c) M22.10 (a)

Chapter 23
M23.1 (c) M23.2 (d) M23.3 (d) M23.4 (a) M23.5 (b)
M23.6 (d) M23.7 (d) M23.8 (a) M23.9 (a) M23.10 (c)

Answers to multiple choice questions 739

Answers to selected questions

Chapter 2
Q2.1 (3.61, 56.3°), (7.21, 56.3°), (1.12, 26.6°), (7, –90°)
Q2.2 5.20 +j3, 1.29 –j1.53, 2.06 + j1.41, 0.955 –j0.296
Q2.3 6∠–5°, 24∠50°, 60∠–60°
Q2.4 (i) 0.707, 45°; (ii) 0.464, –35.5°
Q2.5 (i) –1 ± j 2, –2 ± j 2, 0.167 ± j0.799; (ii) (s + 1)2 + 1.4142, (s + 2)2 + 1.4142,

(s – 0.165)2 + 0.8022

Q2.6 6/(s + 1), 2/s2, (7s2 + 4s + 8)/(s2(s + 2)), 5/(s2 + 25), –s/(s2 + 4)
Q2.7 3e–2t , 6e3t, 28 sin 4t, 0.33(1–e–3t), 3t
Q2.8 0, 2
P2.1 (a) x(t) = 0.5e–0.5t; (b) x(t) = 1 – e–0.5t

P2.2 (a) U(s) = 2/s, V(s) = 1/s; (b) X(s) = –7/s, Y(s) = 7/s; (c) p = 0
P2.3 (a) Poles of X1(s): p1 = –1, p2 = –2 , Poles of X2(s) : p1, p2 = –1± j;

(b) x1ss = 0, x2ss = 0
P2.4 X(jω) = 1/(3 + jω)

Chapter 3
Q3.2 (a) –2.2056, 0.1028 ± 0.6655j; (b) –1, 0.5 ± 0.866j; (c) –2, 0.3333
Q3.3 (a) ga = (4/3)*(s + 3)/(s+4); (b) gb =12.5*(s+1)/((s+1–j*.5)*(s+1+j*0.5));

(c) gc = (s+6)/s^2/(s+4)

Chapter 4
Q4.2 (b) K = 0.1
Q4.3 (a) H(s) = 1/(11.5s + 1)Q(s)
Q4.4 (b) about 3000 sec (50 minutes)
P4.4 (e) Approx: Kp = 0.1

Chapter 5
Q5.1 (a) 2 volts/litre; (b) 1.33 mA/bar; (c) 40 μV/°C
Q5.2 (a) Y(s) = 10/(4s + 3)Q(s); (b) M(s) = 2/(6s + 1)P(s) + (18/6s + 1);

(c) Y(s) = (K/(τ s + 1))U(s) + (τ /τ s + 1)yo

Q5.3 (a) Y(s) = (K/(Ms2 + Bs + Ks))F(s); (b) θ(s) =
K

Js Bs K()2 + + s
T(s) =

−
+ +

2
2

J
Js Bs K()s

P5.2 M
x

t
B

x
t

K x t M
z

t
d
d

d
d

d
ds

2

2

2

2+ + =()

P5.3 (b) KA = 300/28 = 10.7143

Chapter 6
Q6.1 (a) K = 0.3, τ = 0.1; (b) K = 6, τ = 1; (c) K = 0.667, τ = 0.33
Q6.2 (a) 30; (b) 2.25; (c) 10

Q6.3 (a) (1 – s)/(1 + s); (b) (1 – 5s)/(1 + 5s)
P6.1 0.3(dx/dt) + x = 2u(t), Input u(t): °C, Output x(t): mm
P6.2 τ = RC , R = 6 kΩ

Chapter 7
Q7.1 (a) underdamped, ωd = 0.4975 rad/s; (b) overdamped, no damped natural frequency;

(c) underdamped, ωd = 0.9539 rad/s
Q7.2 G1(s) = (3/7)/(s2 + (4/7)s + 9/7), G2(s) = 2/(s2 + 1.5s + 0.5),

G3(s) = 2/(s2 + 0.67s + 12)
Q7.3 (a) Unity s2 coefficient: ωn = 3, ζ = 0.33, K = 0.33; (b) unity constant coefficient: K = 4,

ωn = 0.707, ζ = 0.707; (c) unity constant coefficient: K = 100, ωn = 0.1, ζ = 0.5
Q7.4 (a) K = 6, ωn = 1/6, ζ = 0.5, underdamped, two complex roots; (b) K = 14, ωn = 1,

ζ = 1, critically damped, two equal roots; (c) K = 2, ωn = 1/ 6, ζ = 4/ 6, overdamped, two
real roots; (d) K = 15, ωn = 2, ζ = 2, overdamped, two real roots

Q7.5 Plot A and plot C are underdamped with complex roots of characteristic equation.
P7.1 (a) mm/bar; (b) G(s) = 2.36/(0.25s2 + 0.7s + 1)
P7.2 (a) K = 20, ωn = 31.6, ζ = 9.49; (b) system very overdamped; (c) roots will lie on nega-

tive real axis
P7.4 (a) Ω(s) = 0.15/[(0.3s + 1)(4s + 3)]U(s); (b) iss = 2, tqss = 0.2, ωss = 0.05

Chapter 8
Q8.2 (a) 7.68, 1.0, 0.8848; (b) 16.0, 4.0, 0.2462; (c) K1K2K3, H1, (K1K2K3)/(1 + K1K2K3H1)
Q8.3 (a) 1.2, 1, Y/R = 0.5455, Y/d = 0.1818; (b) 0.48, 3.2, Y/R = 0.1893, Y/d = 0.1577;

(c) 1.2, 6.0, Y/R = 0.1463, Y/d = 0.1707; (d) GK, H, Y/R = GK/(1 + GKH),
Y/d = GF/(1 + GKH)

Q8.4 (a) GCL(s) = 30/(3s + 31), GE(s) = (3s + 1)/(3s + 31);
(b) GCL(s) =(10s + 5)/(3s2 + 11s + 5), GE(s) = (3s2 + 1)/(3s2 + 11s + 5)

Q8.5 (a) GCL(s) = 80/(2s + 81), GE(s) = (2s + 1)/(2s + 81), Gd(s) = (2s + 1)/(2s + 81);
(b) GCL(s) = 3/(2s2 + 4s + 4), GE(s) = (2s2 + 4s + 1)/(2s2 + 4s + 4),
Gd(s) = 2(s2 + 4s + 1)/[(s + 1)(2s2 + 4s + 4)]

P8.2 c = 0.23
P8.4 K = 0.01: overdamped, K = 1 : underdamped, oscillatory, overshoot
P8.5 overdamped: K < 16/30, underdamped: K > 16/30

Chapter 9
Q9.1 (a) 30; (b) 2.25; (c) unstable system, no steady state value
Q9.2 (a) 24; (b) 13.33; (c) unstable, no steady state value
Q9.3 Plot A: (a) 38%; (b) ζ = 0.2944; (c) tr(10%,90%) = 0.9 seconds;

(d) ts (5%) = 5.2 seconds; (e) ωd = 1.904 rad/s; (f) ωn = 1.9923 rad/s,
GA(s) = 3.9693/(s2 + 1.1731s + 3.9693)

Q9.4 System 1: Dpeak = 1.8 volts, Dts(2%) = 17.5 seconds, ωd = 0.6981 rad/s
P9.1 1st order, c = 3
P9.2 K = 0.052

Chapter 10
Q10.1 (a) s = –3, slow exponential decay; (b) s = ± j0.125, zero at s = 0, constant oscilla-

tion; (c) s = 0.1, slow exponential growth; (d) s = 10.6, fast exponential growth;
(e) s = –0.222, slow exponential decay; (f) s = –100, fast exponential decay; (g) s = ± 8,
fast exponential growth; (h) s = 4, s = ± j8, zeros at s = –6, s = –4: poles provide fast
increasing sinusoidal growth

Answers to selected questions 741

Q10.3 (a) ωn = 0.707, K = 1, ζ = 1.0605; (b) ωn = 1.25, K = 1, ζ = 0.6; (c) ωn = 1, K = 1,
ζ = 0.4

Q10.4 (a) s = –1/4; (b) s = –3/2; (c) s = 4; (d) –1.5 ± j.2.6; (e) 1.5 ± j1.3; (f) –1, –1
(a) stable (b) stable (c) unstable (d) stable (e) unstable (f) stable

Q10.5 (a) A unstable; B, C and D all stable. (b) D
Q10.6 (a) A unstable, B unstable, C and D stable. (b) A unstable; B oscillating, no decay; C

oscillatory, decays to a steady state value; D overdamped, settles at a steady state value
P10.1 Th3 is the fastest. τ 3 = 1/3
P10.2 K ≤2/3
P10.4 (a) z = –0.5, p1 = –2 and p2 = –0.0833; (b) z1 = –0.5, z2 = –0.1, p1 = –2,

p2 = –0.0833, p3 = 0; (c) pCL1 = –4.9891, pCL2 = –0.3247, pCL3 = –0.1029, z1 = –0.5,
z2 = –0.1

Chapter 11

Q11.1 (a) GCL(s) =
32

2 4 32 16 322

()

(.)

K K s

s K s K
p d

d p

+
+ + + +

, S(s) =
(.)

(.)
s s

s K s K

2

2
2 4 16

2 4 32 16 32
+ +

+ + + +d p

Q11.2 (a) 3/(1 + 6Kp); (b) 3/(1 + 6Kp); (c) 0
Q11.3 (a) ess = 1/(3Kp); (b) ess = 0
Q11.4 K(s) = 0.75 + (2/s)
Q11.5 K(s) = (6.3 + 1.56s)
P11.1 Kp = 0.167
P11.2 K(s) = 0.44 + 0.46s
P11.3 K1 = 0.16, K2 = 0.012, Kp = 0.16, Kd = 0.012

Chapter 12
Q12.4 (a) K = 8, τ = 26 minutes; (b) ess = 0.303
Q12.5 (b) K = 0.8, τ = 10 minutes; (d) manual controller: Kc(s) = 3.5 + (0.4/s)
P12.2 (a) K = 0.25, τ = 5 minutes, Kp = 8, Ki = 1.8
P12.3 Kp = 1.25, Kd = 4

Chapter 13
Q13.1 (a) p1,2 = –4 ± 2j, finite zeros: z = –3, nz∞= 1; (b) p1 = –4, p2 = –5, no finite zeros,

infinite zeros: nz∞= 2; (c) p1 = 0, p2 = –0.33, p3 = –0.2, no finite zeros, infinite zeros:
nz∞= 3

Q13.2 G(s) = K[(s + 1)(s – 1)(s + 0.5)]/[s(s + 3)(s + 5)]
Q13.3 G(s) = K/s3

Q13.4 (a) 2; (b) the plot is symmetric with respect to the real axis; (c) p1 = 0 and p2 = –4,
z = –8; (d) the root locus starts at the poles and ends at infinity and at the zero at s = –8;
(e) the locus exists only to the right of z1 = –8 and to the right of p2 = –4

Q13.5 K = 0.1
Q13.6 (a) Gfict(s) = 3s/(4s2 + 21); (b) Gfict(s) = 2/(s2 + s)
P13.1 (c) K = 0.8
P13.2 (a) K = 47.6; (b) 2.82 rad/s; (c) for K = 8, ζ ~ 0.5

Chapter 14
Q14.1 (a) ω= 3 rad/s, mag = 5, phase = +0.2 rads; (b) ω= 1 rad/s, mag = 3,

phase = –0.3 rads; (c) ω= 6 rad/s, mag = 10, phase = 0 rads; (d) ω= 1 rad/s, mag = 20,
phase = –1.2 rads

Q14.1 (a) 29.54 dB; (b) 9.54 dB; (c) –7.96 dB
Q14.3 (a) 2.25; (b) 10; (c) 1.20

742 Answers to selected questions

Q14.4 (a) infinite; (b) 0 < ω< 0.2 rad/s; (c) ω= 2 rad/s; (d) –20 dB/decade; (e) 20 dB and
0 dB

Q14.5 ωgco = 1.28 rad/s ωpco = 1.05 rad/s, GM ~ 36 dB, PM ~ –45°, unstable
P14.1 Gain = 0.2, Phase = –89°
P14.2 u(t) = 1.58 cos(10t – 7π/6)
P14.3 The system is stable
P14.4 PM about 70°, GM about 24 dB. Closed loop system will be stable
P14.5 ζ = 0.25
P14.6 The closed loop system will be stable

Chapter 15
Q15.2 (a) ω1 = 0.3 rad/s, ω2 = 0.5 rad/s, ω3 = 2 rad/s, d.c. gain = 13.33; (b) ω1 = 0.1 rad/s,

ωn = 1 rad/s, ω3 = 4 rad/s, d.c. gain → ∞
Q15.3 K = 10, τ = 10 seconds
Q15.6 GOL(s) = g(s)[g1(s) + g2(s)] = g(s)g1(s) + g(s)g2(s)
P15.2 |G(jω)| = 10/ ω2 1+ ∠ G(jω) = –tan–1(ω). PM = 96°, GM = ∞
P15.3 K = 0.18 gives PM = 40°
P15.4 K = 4.6

Chapter 16
Q16.3 k = 0.1, PM = 78° (stable), k = 1, PM = 23° (stable), k = 2, PM = 0° (critically stable),

k = 10, PM = –37° (unstable). As k increases the PM decreases
Q16.4 (b) As PM decreases, overshoot increases. As gain increases, PM decreases
Q16.5 PM increases to 75°, GM increases to ∞
Q16.6 ess = 0.05, OS(%) = 2%
Q16.7 τ = 2, α = 0.1, K1(s) is a lead controller. τ = 2, β = 10, K2(s) is a lag controller
P16.2 Lead compensator does not meet requirements
P16.3 For example, Glag(s) = (8.6s + 1)/(40.9s + 1)
P16.4 For example, Glead(s) =(0.09864s + 1)/(0.05401s + 1)

Chapter 17
Q17.1 PM = 135°, GM = ∞
Q17.2 K = 6.3
Q17.3 G(s): 78.5°, H(s): –75.8°
Q17.4 Mp = 0.6 dB
Q17.5 ωbw = 0.23 rad/s, Mp = 3 dB
P17.1 ωbw = 0.22 rad/s, Mp = 3 dB
P17.2 Mp = 3 dB, PM = 40° and GM = ∞
P17.3 (a) 20 log10(S(jω)) = 20 log10 (GCL(jω)) – 20 log10(G(jω)); (c) 0.15 to 1 rad/s

Chapter 18
Q18.1 (a) Kp = Kp, Ki = Kp/Ti, Kd = KpTd; (b) GP(s) ≠ GQ(s)
Q18.2 Kp = 0.2083 × 105

Q18.4 (a) GPID(s) = 5.054 + (0.455/s) + 2.688s

Chapter 19
Q19.1 (a) GMdB = 4.1 dB; (d) K = 1.596
Q19.2 (b) Kp = 4.39, Ti = 5.41
Q19.4 (a) Ku = 33.690, Kp = 16.605, Ti = 3.600
P19.1 G(s) = 17e–5s/(13s + 1), GPI(s) = 0.24 + (0.016/s)
P19.2 (a) Ku = 35, Pu = 4.15; (b) Kp = 15.75, Ti = 3.46

Answers to selected questions 743

P19.3 (a) M = 20, Aosc = 0.28, Ku = 90.99, Pu = 3.32; (b) PID , no overshoot: Kp = 18.20,
Ti = 1.10, Td = 1.66

Chapter 20
Q20.1 A = [0 –4.27; –2.21 –3.96], B =[0; 3.04], C = [1 0.56], D = [1]
Q20.2 A = [δC1/cP νT/cP; ηT/cT δC2/cT], B = [4.03δC1/ωPcP 0.4ηT/cT; 0 3.04/cT], C = [1 ηT],

D = [0 0]
Q20.4 (a) A = [0 1 0; 0 0 1; –5 –9 –5]; B = [0; 0; 2]; C = [1 0 1]; D = [0];

(b) Y(s) = 2(s2 + 1)/(s3 + 5s2 + 9s + 5) × U(s)
Q20.5 A = [0 1 0; 0 0 1; –1.875 –5.75 –4.5]; B = [0; 0; 1]; C = [1 3.5 0]; D = [0]
P20.1 (a) Gain = 2.375, τ = 0.5; (c) A = –2, B = 1, C = 4.65, D = 0
P20.2

D = 0 and C = [1 0]
P20.3 (a) A = [0 1; 0 –K2/JR], B = [0; K/JR], C = [1 0], D = [0]; (c) C = [1 0, 0 1],

D = [0; 0]; (d) Y1(s) = 1.35/(s2 –0.054s), Y2(s) = 1.35s/(s2 –0.054s)

Chapter 21
Q21.4 510 °C

Chapter 22
Q22.1 (a) λ1,2 = –2.005 ± j1.490, stable; (b) λ1,2 = ± j1.99, unstable;

(c) λ1,2 = +2.000 ± j1.005, unstable
Q22.2 (a) λ1,2 = –1.4 ± 2.6j, λ3 = –2.5, stable; (b) λ1 = 1.2469, λ2 = –2.5334,

λ3 = –4.0236, unstable
Q22.3 (a) λ1 = –1.5, λ2 = –0.5; (b) as (a); (c) G(s) = (0.7s – 0.2)/(s2 + 2s + 0.75);

(d) p1 = –0.5, p2 = –1.5
P22.2 (a) T(0) = 0 °C, T(5 hours) = 1102.5 °C; (b) 168.5°C

Chapter 23
Q23.1 (a) ko = 0.147, kR = 0.2148
Q23.2 (a) k = 0.0246, kr = 0.0203
Q23.3 (a) λ1,2 = –5.26 ± j7.32, G(s) = (2.184s + 8.0621)/(s2 + 10.52s + 81.25);

(d) K = [–1.0630 0.9612], KR = 3.6281
Q23.4 (a) (i) λ1 = 1.5, λ2 = –0.5, system is open loop unstable, (ii) det(X) = –0.333 ≠ 0. Thus

arbitrary pole placement is possible; (b) det(X) = 0, X is no longer invertible
P23.1 (a) G(s) = (5.899s + 1.1798)/(s + 0.2)2; (d) Ko = 1, λ(ACL) = –6.1, –0.2, Ko = 2,

λ(ACL) = –11.9, –0.2
P23.2 (d) (i) K = [–0.7053 1.2489], KR = 13.1041, (ii) K = [–0.7127 1.3145], KR = 4.0445

744 Answers to selected questions

T

T T

T T

T T

4.25(1 2) 0.75
4.25 4.25

2 3 12
4.25 4.25

h ha hd h
a h a h

ha d ha
a h a h

- - + -È ˘
Í ˙- -Í ˙=
Í ˙- -
Í ˙- -Í ˙Î ˚

A T

T

T

3.995 4.75
4.25

0.94 4.75
4.25

h
a h

a
a h

-È ˘
Í ˙-Í ˙=
Í ˙+
Í ˙-Í ˙Î ˚

B

Index

A/D interface 565
ABCD state model

block diagram 629
state variable notation

summary 628
accelerometer 123, 128
actuator 108
actuator saturation 538

nonlinear model 662
actuator-process-transducer

structure 106, 109
aliasing 566
amplification 398
anti wind-up circuit 539, 541
anti-alias filters 566
attenuation 398
autopilot 8, 10

control specification 317
autotune 578

process reaction curve method
578

technology 578
auxiliary equation 184

bandwidth 406
open and closed loop 408
signal 407

block diagram 103
block
absolute value 542
multiplier 541
feedback path 208
forward path 208
manipulation 204
open loop 208
push-through rule 207
shorthand formula 208
signal equations 205
system block 103

Bode plot 393, 426, 428
adding a pole at the origin 457
adding a real pole 458
adding a real zero 460
effect of damping ratio 454
finding the transfer function

446

gain and first order lag 445
identification of second order

transfer function 455
s-term and first order lag 448
two first order lags 449

boiler system 556
bounded signals 264, 268

table 266

cascaded system 105, 117, 456,
484

causality 43
characteristic equation

complex roots 185
real roots 184

characteristic polynomial 281
chemical system, state variables

622
closed loop 197

control signals 203
control system 202

closed loop bandwidth 509
closed loop control, block diagram

analysis 280
closed loop frequency response

461
Nichols 513

closed loop peak magnitude, Mp
509

closed loop polynomial 354
closed loop stability 281, 292
closed loop system, PD control

analysis 301
commercial controller units 578
comparator 201
compensator, effect of 485
complementary sensitivity func-

tion 461
complex numbers 17

addition and subtraction 20
cartesian form 17
complex exponential form 17,

18
division 21
magnitude, gain and phase 22
modulus 18

multiplication 20
parameter (frequency) depend-

ence 24
polar angle 18, 22
polar form 17
rectangular form 17

contours
constant damping 250, 363
natural frequency 250, 363

control improvements
natural resource usage 2
quality control 1
quality of life 2

control matrix, B 712
controller structure 473

selection of PID terms 313
conveying system

actuator 139
complete block diagram 142
process 137
Simulink model 142
state variable model 640
transducer 138

co-ordinate measuring machines,
description 8–10

corner frequency 441, 454
critically damped 178, 252
cut-off rate 400

d.c. gain 399, 582
d.c. motor 139
D/A interface 565
damped oscillation method 601

advantages/disadvantages, table
606

procedure 600
rule-base 600

damped oscillation, ωd 134
damper element 124, 174
damping 126
damping factor 127
damping ratio, ζ 127, 176, 178,

419, 456,
effect on Bode plot 454

data outliers 585
DCS system 530

deadtime 165
Padé approximation 168
temperature model 165

deciBel 387
delay time 582
denominator, closed loop 281
denominator polynomial 28, 243
derivative, bandwidth limited 539
derivative control 278, 299

disturbance rejection 305
Laplace domain formula 299
noise amplification 545
reference tracking 302
relationship to damping ratio

302
time domain formula 299

derivative kick 335, 539, 550
derivative term

Bode plot 545
digital form 569
filter 539
incremental form 572
modified Bode plot 547

derivative time constant 531,
579

design pole polynomial 716
design specifications 410, 470¸

220
diagonalisation of a matrix 689
differentiation, numerical approx-

imation, backward form
567

differentiator 278
digital control 734

algorithm 565
PID control 565
recurrent relationship 565

digital filters 566
digital PID control

incremental form 572
positional algorithms 572
summary table 570
velocity form 572
summary table 573

direct feedthrough matrix 628
disturbance 198, 203, 279

input and output 204
disturbance rejection 233, 279,

281
Laplace analysis 288

disturbance rejection performance
296

derivative control 305
driving matrix, B 712
dynamics 148

eigenvalue 688
determinant formula 689

eigenvalue–eigenvector formula
689

eigenvector 688
electrical circuit, state variable

model 632
electrical system, state variables

622
electromagnetic coil 122, 129
electro-mechanical system model,

state variable model 717
error transfer function 221
exothermic reactor system 556

feedback 413
feedback control system 200
Final value theorem 221, 223

application 315
definition 45

first order differential equation
150, 156

first order lag plus deadtime
response 582, 584

first order terms, magnitude and
phase 440

flight control systems descrip-
tion 6–8

fluid flow system 110
forced response 157

state-space 635, 639
Fourier analysis 384
free response 157

state-space 635, 638
frequency, damped oscillation, ωd

134
frequency axis 390, 428
frequency content of a signal

47
frequency ranges 433
frequency response 386, 397,

426, 430
amplification 398
attenuation 398
MATLAB plot 430
roll-off rate 400

frequency response plot, interpre-
tation 409

frequency scales 390
functional specification 116

gain, constant 104
gain calculation 428
gain crossover frequency 405
gain margin 414

Bode 415
Nichols 416
Nyquist 417

gain terms, magnitude and phase
437

gas turbine system control speci-
fication 318

general polynomial form 181

hertz 390
high-frequency asymptote 400,

440
hot strip rolling mills, description

11–13

ideal gas law, nonlinear equation
662

industrial heaters, description
14–15

infinite zeros 354
initial value theorem, definition

46
input disturbances 203
input matrix, B 628, 712
integral control 278, 290

closed loop system analysis
291

first order system analysis
291

Laplace domain formula 290
summary table 299
time domain formula 290

integral controller, phase lag 486
integral term

digital form 569
incremental form 572

integral time constant 531, 579
integral wind-up 539
integrating factor 156
integrating process 40
integration, numerical approxima-

tion 568
integrator, 1/s 278
inverse response system 368,

557
inverted pendulum system, state

variable model 695

Kalman filters 732

lag term 444
Laplace transform models 110
Laplace transforms 16, 25

1/s, integrator 37
decaying exponential cosine

signal 33
decaying exponential signal

26, 31
decaying exponential trigono-

metric signal 33
definition 25
derivations, first principles 30
derivative of a signal 37

746 Index

differential equation 38
Final value theorem, example

45
first derivative of a signal 37
growing exponential trigono-

metric signal 33
initial value theorem, defini-

tion 46
integration of a signal 37
inverse Laplace transform 28
Laplace transform tables 29
Laplace variable, s 26
left half plane (LHP) 26
partial fractions 44
properties, linear combination

34
properties, signal by a constant

34
properties, table of 35
ramp signal 31
right half plane(RHP) 26
s, differentiator 37
second derivative of a signal

37
sine signal 32
s-plane 26, 27
step signal 30
superposition theorem 42

lead term 444
left half plane (LHP) 244
limit cycle 607
linear relationship 660
linear system 41, 660
linearisation 668

actual process values 671
general nonlinear state variable

model 675
output equations 669
procedure 668
system dynamics 668

liquid level model
actuator 117
complete block diagram 120
performance specification 116
process 112
Simulink model 121
transducer 114

liquid level system
nonlinear model 662
state variable model 636

load disturbance 279, 581
logarithmic frequency 390
low frequency asymptote 440
low pass filter 546

magnetic suspension model 666
magnitude of sinusoidal signal

386

magnitude axis 428
magnitude plot 48, 393
manipulated variable 104
manufacturing systems 135
mass and spring system model,

state variable model 699
matrices

determinant 687
diagonal eigenvalue matrix

688
inverse 686
inverse (2 × 2), formula 687
inverse (n × n) formula 687
MATLAB eig command 689
MATLAB inv command 687
multiplication 684
compatibility 685
postmultiplication 687
premultiplication 686
unity matrix 686

maximum peak value, ymax 228
M-contours 508
mechanical system, state vari-

ables 622
MIMO 104
model

conveying system 137
earthquake disturbance on

building 190
fan pressure system 601, 610
feeder tank simulation 254
first order with time delay

341
industrial furnace 279
liquid level 112
motor 332
RC circuit 159
shaker table 124
trailer suspension 174

model parameters K and τ 158
modelling 103, 109
modified derivative term 546
multivariable system 624

natural frequency, ωn 176, 179,
232

N-contours 509
negative feedback 200
negative gain 557
negative step 154
Nichols chart 395, 505
Nichols chart design

bandwidth specification 523
gain margin specification 517,

520
Mp specification 522
phase margin specification

518, 521

Nichols plot 394, 507
nominal linear model 664
non-interacting form, PID 554
nonlinear model, magnetic

suspension 666
nonlinear system 41, 154, 538,

660, 662
non-minimum phase 369
numerator polynomial 27, 243
numerical approximations 567
Nyquist plot 395

observers 732
on–off control 578
on–off relay 605, 607
open loop system 197
operating points 664
optical encoder 136
optimal control 732
oscillation 174
oscillatory system 251
output disturbances 203
output feedback control 713

closed loop analysis 714
closed loop pole polynomial

716
closed loop system matrix 715
reference gain matrix 715
two-degrees-of-freedom output

control law 713, 722
output matrix, C 628, 712
overdamped 178, 253

Padé approximation 168
parallel form, PID control 531
parameter (frequency) dependent

complex numbers 24
parameter Root Locus 370
partial fractions 44
PD control

P on error, D on measured
variable 335

procedure for type 1 model
336

textbook form 333
peak disturbance, Dpeak 234
percent overshoot, OS(%) 228,

232
phase axis 428
phase calculation 386, 428, 437
phase crossover frequency 405,

607
phase graphs 401
phase lag lead, summary 500
phase margin

advantages/disadvantages, table
614

Bode 415

Index 747

example 610
Nichols 416
Nyquist 417
PID tuning 609

phase plot 48, 393
phase shift 389
phase-lag controller 482, 486

as integral controller 486
design example 489
design procedure 488
properties 482

phase-lead controller 482
as derivative controller 493
controller 491
design example 496
design procedure 494
properties 483

physical realisability 43
PI control, design example 477
PI control of first order model

327
general analysis 327
procedure (design) 329
steady state offset, specifica-

tion 327
transient specification 328

PID control 11
damped oscillation method

600
decoupled form 315
digital formula, summary table

570
Laplace domain formula 314,

531
manual tuning 318
manual tuning procedure 318
non-interacting form 554
parallel form 315, 531
pole-placement 340
pole-placement procedure 343
relay experiment 605
sustained oscillation method

592
term selection chart 483
textbook and industrial forms,

summary 532
textbook form 314, 531
textbook form 531
time domain formula 531
time-constant form 531
Ziegler and Nichols rule base

586
PID control terms, effects of,

summary table 314
PID controller family

Laplace domain formula 314
summary table 314
time domain formula 314

PID industrial forms, summary
table 555

PID tuning
diagram 537
rule-based 579
SCADA interface 537

pole-placement 340
design specification 343

pole-placement design, state vari-
able model 717

poles 27, 243
finding 245
link to system eigenvalues

691
on jω axis 268
open loop and closed loop 259

pole-zero conservation 354
pole-zero map 245

second order poles 249
process 106
process controller unit

description 535
diagram 536

process reaction curve
advantages/disadvantages, table

592
procedure 584

proportional and derivative
control 300

Laplace domain formula 300
time domain formula 300

proportional band 533
formula 534
relationship with proportional

gain 534
table of values 534

proportional control 278, 282
closed loop analysis 282
closed loop stability 283
design example, with lag term

471
disturbance rejection 286
disturbance time response 287
final value theorem 285
first order system analysis

283
Laplace domain formula 282
reference tracking 285
summary table 290
time domain formula 282

proportional control of first order
model 321

disturbance rejection 323
reference tracking 323
steady state offset, disturbance

rejection 324
steady state offset, reference

tracking 324

proportional control of type 1
model 332

disturbance rejection 333
reference tracking 333

proportional gain 531, 579
proportional kick 338, 476, 547
proportional term

digital form 568
incremental form 572

quadratic equations 23
quarter amplitude display 600

rate of change equation 39, 559
rate of change variables, for state

variables 622
RC circuit, model 159
reference signal 200, 279
reference tracking performance

279, 280, 293
derivative control 302

regulator design 280
relay experiment 605

PID rule-base 609
procedure 608

reverse-acting controllers 556
PI control 562

right half plane (RHP) 244
rise-time, tr 230
robust control 733
roll-off rate 400, 472
root locus

adding a pole 366
adding a zero 365
asymptotes 359, 360
branch 359, 360
breakaway points 360
closed loop poles 356
MATLAB investigations 357
poles and dynamic response

352
rules 360

rotational system 137

sampled data values 565
sampling 565
sampling, notation 567
saturation characteristic 538, 539
SCADA system 530
scaling, input scaling 472
second order differential equa-

tions 183
sensitivity, magnitude plot 464
sensitivity transfer function 461,

210
servo-control design 280
setpoint 200
settling time, ts 229

748 Index

disturbance input 235
shaft encoder 138
Shaker table model

actuator 129
complete block diagram 131
process 124
Simulink model 131
transducer 127

ship autopilot design, control
problems 10–11

ship steering system, state vari-
able model 693

signal 103
signal equations 222
signal take-off 201
single degree of freedom

controller 713
sinusoidal signal 386
SISO 103, 112
sketching table, Bode plot 439
small change model 668
span, transducer 108
specification 414
speed of response 163
spring element 124, 175
square systems 712
stability, eigenvalue condition 692
stable system 268
start-up procedure 560
state 621
state space to transfer function,

Laplace analysis 691
state variable 621

inputs 712
outputs 712

state variable block diagram 629
state variable feedback 722

closed loop analysis 723
closed loop system matrix 724
reference controller 724
two-degrees-of-freedom state

control law 722
state variable model, procedure

for defining 624
state variable notation 623
state variable system model

eigenvalue and system
dynamics 697

non-uniqueness 696
state vector 622
state-feedback design freedom 723
state-space icon, MATLAB 630
state-space to transfer function

643
example 644
general analysis 643
ss2tf, MATLAB command

645

steady state 148, 151, 158, 220
steady state

design specification 223
performance 221
specification 473

steady state conditions 666
steady state error, ess 221
steady state output, yss 151
steam boiler example 621
stem position 118
step response 151

second order examples 187
step response tests, example 315
s-terms, magnitude and phase 437
stiffness constant 126
summation symbol 105
supply disturbance 581
sustained oscillation

advantages/disadvantages, table
599

basic principles 593
Bode plots 593
gain margin 594
Nyquist plot 593
procedure 594
time response plot 593
tuning rules, PID 595
ultimate gain 594

system gain, K 151, 152, 176,
177, 387, 456

dimensional units 115
units 104

system identification 582, 733
system matrix, A 628, 712
system matrices 624
system overshoot 227
system stability 243, 267, 412

Nichols 518
system type 332

tank level system, control specifi-
cation 317

tank system
model 39
transfer function 40

Taylor series 667
temperature model, with

deadtime 165
thermistor, nonlinear equation

662
time constant, τ 151, 152, 158,

582
relation to system pole 248

time delay 165, 368
time domain specifications 317
time-constant form, PID control

531
torque 137

trailer suspension model 174
trailer suspension system

state variable model 624
transducer 107

level 114
pressure measurement 111

transfer function 22
transfer function components

434
magnitude and phase 436

transfer function representation
gain-time constant form 162
general polynomial form

181
pole-zero form 162
unity constant coefficient form

181
unity s2 coefficient form 181

transfer function to state space
647

companion form 648
general analysis 650
phase variable 648
tf2ss, MATLAB command

653
transient 148, 220
transient performance 226
transport delay 165
two degrees of freedom controller

713

unbounded signal 412, 265
table of 266

underdamped 178, 251
underdamped system, frequency

response 451
unity constant coefficient form

181
unity feedback system 207
unity s2 coefficient form 181
unstable closed loop 7
unstable system, test by

eigenvalues 696

valve 112, 118
viscous friction constant 125

wastewater treatment plant,
description 4–6

wind turbine systems, description
3–4

working regions 664

zeros 27, 243
at infinity 354
blocking zeros 259
finding 245
how do they arise? 253

Index 749

in RHP 256, 368
open loop and closed loop 260
origin of zeros 253

Ziegler and Nichols rule base
586

750 Index

MATLAB and Simulink index

command history 53, 69
command window 53, 54
constants 59
current directory 53, 69

functions 59
as M-files 72

graph, co-ordinate finding 62

help command 60
help window 60, 70
house heating system

comparator 84
setpoint 85
thermostat block 90

house model 86
disturbances 88
first order differential equation

87
first order dynamics 88
rate of change equation 87
system gain 88
time constant 88

labels on plots, axes 62
launch pad 53, 68

MATLAB commands, table 78

matrices
data entry 58
inverse 59
power 59
product 59
sum 59
transpose 59

M-files 70
types 71

multiple plots 62

operations 55

plotting, MATLAB 61
polynomials

convolution 58
data entry 57
deconvolution 58
divide 58
manipulations 58
multiply 58

running MATLAB 53

Simulink
connecting blocks 95
continuous library 92
data input 95

icon
constant 94
gain 94
relay 96
scope 94
sum 94
transfer function 94

library browser 84
model construction procedure

91
parameters command 96
scope 91
simulation command 96

SISO design tool 75
state-space icon 630

time responses, commands 66
transfer function input 64
transfer function manipulation

65

vectors 55
column 55
manipulations 56
row 55
size of 55

workspace 53, 68

MATLAB command index

There is a table of MATLAB commands on p. 78

bode 431
clear 61
eig 689
feedback 67, 212
figure 62
freqresp 430
ginput 62
hold on 62
inv 687

ngrid 511
nichols 511

ngrid 511
pade 168
plot 61
pole 66
pzmap 66
rlocus 375
rltool 75, 363, 375, 432

semilogx 63
ss2tf 645
step 66
tf2ss 653
variable, ans 61
who 61
zero 66

	Cover
	Copyright
	Contents
	Dear Student
	1 Introduction Control engineering is a part of our life
	2 Tools for the control engineer Analysis kit
	3 Software toolkit: MATLAB
	4 Software toolkit: Simulink
	5 Modelling for control engineering
	6 Simple systems: first-order behaviour
	7 Simple systems: second-order systems
	8 Feedback improves system performance
	9 Design specifications on system time response
	10 Poles, zeros and system stability
	11 Three-term control: PID control
	12 PID control: the background to simple tuning methods
	13 Root locus for analysis and design
	14 The frequency domain
	15 Frequency response using Bode plot presentation
	16 Controller design using the Bode plot
	17 Analysis and simple design using the Nichols chart
	18 The practical aspects of PID control
	19 PID controller tuning methods
	20 Introducing a state variable description of a system
	21 Linearisation of systems from the real nonlinear world
	22 Analysis of state variable systems
	23 An introduction to control using state variable system models
	Answers to multiple choice questions
	Answers to selected questions
	Index
	MATLAB and Simulink index

